/* * Copyright (c) 2015 Andrew Kelley * * This file is part of zig, which is MIT licensed. * See http://opensource.org/licenses/MIT */ #include "analyze.hpp" #include "ast_render.hpp" #include "codegen.hpp" #include "compiler.hpp" #include "config.h" #include "errmsg.hpp" #include "error.hpp" #include "hash_map.hpp" #include "ir.hpp" #include "os.hpp" #include "translate_c.hpp" #include "target.hpp" #include "util.hpp" #include "zig_llvm.h" #include "userland.h" #include #include #define CACHE_OUT_SUBDIR "o" #define CACHE_HASH_SUBDIR "h" static void init_darwin_native(CodeGen *g) { char *osx_target = getenv("MACOSX_DEPLOYMENT_TARGET"); char *ios_target = getenv("IPHONEOS_DEPLOYMENT_TARGET"); // Allow conflicts among OSX and iOS, but choose the default platform. if (osx_target && ios_target) { if (g->zig_target->arch == ZigLLVM_arm || g->zig_target->arch == ZigLLVM_aarch64 || g->zig_target->arch == ZigLLVM_thumb) { osx_target = nullptr; } else { ios_target = nullptr; } } if (osx_target) { g->mmacosx_version_min = buf_create_from_str(osx_target); } else if (ios_target) { g->mios_version_min = buf_create_from_str(ios_target); } else if (g->zig_target->os != OsIOS) { g->mmacosx_version_min = buf_create_from_str("10.10"); } } static ZigPackage *new_package(const char *root_src_dir, const char *root_src_path, const char *pkg_path) { ZigPackage *entry = allocate(1); entry->package_table.init(4); buf_init_from_str(&entry->root_src_dir, root_src_dir); buf_init_from_str(&entry->root_src_path, root_src_path); buf_init_from_str(&entry->pkg_path, pkg_path); return entry; } ZigPackage *new_anonymous_package() { return new_package("", "", ""); } static const char *symbols_that_llvm_depends_on[] = { "memcpy", "memset", "sqrt", "powi", "sin", "cos", "pow", "exp", "exp2", "log", "log10", "log2", "fma", "fabs", "minnum", "maxnum", "copysign", "floor", "ceil", "trunc", "rint", "nearbyint", "round", // TODO probably all of compiler-rt needs to go here }; CodeGen *codegen_create(Buf *main_pkg_path, Buf *root_src_path, const ZigTarget *target, OutType out_type, BuildMode build_mode, Buf *override_lib_dir, Buf *override_std_dir, ZigLibCInstallation *libc, Buf *cache_dir) { CodeGen *g = allocate(1); codegen_add_time_event(g, "Initialize"); g->libc = libc; g->zig_target = target; g->cache_dir = cache_dir; if (override_lib_dir == nullptr) { g->zig_lib_dir = get_zig_lib_dir(); } else { g->zig_lib_dir = override_lib_dir; } if (override_std_dir == nullptr) { g->zig_std_dir = buf_alloc(); os_path_join(g->zig_lib_dir, buf_create_from_str("std"), g->zig_std_dir); } else { g->zig_std_dir = override_std_dir; } g->zig_c_headers_dir = buf_alloc(); os_path_join(g->zig_lib_dir, buf_create_from_str("include"), g->zig_c_headers_dir); g->build_mode = build_mode; g->out_type = out_type; g->import_table.init(32); g->builtin_fn_table.init(32); g->primitive_type_table.init(32); g->type_table.init(32); g->fn_type_table.init(32); g->error_table.init(16); g->generic_table.init(16); g->llvm_fn_table.init(16); g->memoized_fn_eval_table.init(16); g->exported_symbol_names.init(8); g->external_prototypes.init(8); g->string_literals_table.init(16); g->type_info_cache.init(32); g->is_test_build = false; g->is_single_threaded = false; buf_resize(&g->global_asm, 0); for (size_t i = 0; i < array_length(symbols_that_llvm_depends_on); i += 1) { g->external_prototypes.put(buf_create_from_str(symbols_that_llvm_depends_on[i]), nullptr); } if (root_src_path) { Buf *root_pkg_path; Buf *rel_root_src_path; if (main_pkg_path == nullptr) { Buf *src_basename = buf_alloc(); Buf *src_dir = buf_alloc(); os_path_split(root_src_path, src_dir, src_basename); if (buf_len(src_basename) == 0) { fprintf(stderr, "Invalid root source path: %s\n", buf_ptr(root_src_path)); exit(1); } root_pkg_path = src_dir; rel_root_src_path = src_basename; } else { Buf resolved_root_src_path = os_path_resolve(&root_src_path, 1); Buf resolved_main_pkg_path = os_path_resolve(&main_pkg_path, 1); if (!buf_starts_with_buf(&resolved_root_src_path, &resolved_main_pkg_path)) { fprintf(stderr, "Root source path '%s' outside main package path '%s'", buf_ptr(root_src_path), buf_ptr(main_pkg_path)); exit(1); } root_pkg_path = main_pkg_path; rel_root_src_path = buf_create_from_mem( buf_ptr(&resolved_root_src_path) + buf_len(&resolved_main_pkg_path) + 1, buf_len(&resolved_root_src_path) - buf_len(&resolved_main_pkg_path) - 1); } g->root_package = new_package(buf_ptr(root_pkg_path), buf_ptr(rel_root_src_path), ""); g->std_package = new_package(buf_ptr(g->zig_std_dir), "std.zig", "std"); g->root_package->package_table.put(buf_create_from_str("std"), g->std_package); } else { g->root_package = new_package(".", "", ""); } g->zig_std_special_dir = buf_alloc(); os_path_join(g->zig_std_dir, buf_sprintf("special"), g->zig_std_special_dir); assert(target != nullptr); if (!target->is_native) { g->each_lib_rpath = false; } else { g->each_lib_rpath = true; if (target_os_is_darwin(g->zig_target->os)) { init_darwin_native(g); } } if (target_os_requires_libc(g->zig_target->os)) { g->libc_link_lib = create_link_lib(buf_create_from_str("c")); g->link_libs_list.append(g->libc_link_lib); } get_target_triple(&g->triple_str, g->zig_target); g->pointer_size_bytes = target_arch_pointer_bit_width(g->zig_target->arch) / 8; return g; } void codegen_set_clang_argv(CodeGen *g, const char **args, size_t len) { g->clang_argv = args; g->clang_argv_len = len; } void codegen_set_llvm_argv(CodeGen *g, const char **args, size_t len) { g->llvm_argv = args; g->llvm_argv_len = len; } void codegen_set_test_filter(CodeGen *g, Buf *filter) { g->test_filter = filter; } void codegen_set_test_name_prefix(CodeGen *g, Buf *prefix) { g->test_name_prefix = prefix; } void codegen_set_lib_version(CodeGen *g, size_t major, size_t minor, size_t patch) { g->version_major = major; g->version_minor = minor; g->version_patch = patch; } void codegen_set_is_test(CodeGen *g, bool is_test_build) { g->is_test_build = is_test_build; } void codegen_set_emit_file_type(CodeGen *g, EmitFileType emit_file_type) { g->emit_file_type = emit_file_type; } void codegen_set_each_lib_rpath(CodeGen *g, bool each_lib_rpath) { g->each_lib_rpath = each_lib_rpath; } void codegen_set_errmsg_color(CodeGen *g, ErrColor err_color) { g->err_color = err_color; } void codegen_set_strip(CodeGen *g, bool strip) { g->strip_debug_symbols = strip; } void codegen_set_out_name(CodeGen *g, Buf *out_name) { g->root_out_name = out_name; } void codegen_add_lib_dir(CodeGen *g, const char *dir) { g->lib_dirs.append(dir); } void codegen_add_rpath(CodeGen *g, const char *name) { g->rpath_list.append(buf_create_from_str(name)); } LinkLib *codegen_add_link_lib(CodeGen *g, Buf *name) { return add_link_lib(g, name); } void codegen_add_forbidden_lib(CodeGen *codegen, Buf *lib) { codegen->forbidden_libs.append(lib); } void codegen_add_framework(CodeGen *g, const char *framework) { g->darwin_frameworks.append(buf_create_from_str(framework)); } void codegen_set_mmacosx_version_min(CodeGen *g, Buf *mmacosx_version_min) { g->mmacosx_version_min = mmacosx_version_min; } void codegen_set_mios_version_min(CodeGen *g, Buf *mios_version_min) { g->mios_version_min = mios_version_min; } void codegen_set_rdynamic(CodeGen *g, bool rdynamic) { g->linker_rdynamic = rdynamic; } void codegen_set_linker_script(CodeGen *g, const char *linker_script) { g->linker_script = linker_script; } static void render_const_val(CodeGen *g, ConstExprValue *const_val, const char *name); static void render_const_val_global(CodeGen *g, ConstExprValue *const_val, const char *name); static LLVMValueRef gen_const_val(CodeGen *g, ConstExprValue *const_val, const char *name); static void generate_error_name_table(CodeGen *g); static bool value_is_all_undef(ConstExprValue *const_val); static void gen_undef_init(CodeGen *g, uint32_t ptr_align_bytes, ZigType *value_type, LLVMValueRef ptr); static void addLLVMAttr(LLVMValueRef val, LLVMAttributeIndex attr_index, const char *attr_name) { unsigned kind_id = LLVMGetEnumAttributeKindForName(attr_name, strlen(attr_name)); assert(kind_id != 0); LLVMAttributeRef llvm_attr = LLVMCreateEnumAttribute(LLVMGetGlobalContext(), kind_id, 0); LLVMAddAttributeAtIndex(val, attr_index, llvm_attr); } static void addLLVMAttrStr(LLVMValueRef val, LLVMAttributeIndex attr_index, const char *attr_name, const char *attr_val) { LLVMAttributeRef llvm_attr = LLVMCreateStringAttribute(LLVMGetGlobalContext(), attr_name, (unsigned)strlen(attr_name), attr_val, (unsigned)strlen(attr_val)); LLVMAddAttributeAtIndex(val, attr_index, llvm_attr); } static void addLLVMAttrInt(LLVMValueRef val, LLVMAttributeIndex attr_index, const char *attr_name, uint64_t attr_val) { unsigned kind_id = LLVMGetEnumAttributeKindForName(attr_name, strlen(attr_name)); assert(kind_id != 0); LLVMAttributeRef llvm_attr = LLVMCreateEnumAttribute(LLVMGetGlobalContext(), kind_id, attr_val); LLVMAddAttributeAtIndex(val, attr_index, llvm_attr); } static void addLLVMFnAttr(LLVMValueRef fn_val, const char *attr_name) { return addLLVMAttr(fn_val, -1, attr_name); } static void addLLVMFnAttrStr(LLVMValueRef fn_val, const char *attr_name, const char *attr_val) { return addLLVMAttrStr(fn_val, -1, attr_name, attr_val); } static void addLLVMFnAttrInt(LLVMValueRef fn_val, const char *attr_name, uint64_t attr_val) { return addLLVMAttrInt(fn_val, -1, attr_name, attr_val); } static void addLLVMArgAttr(LLVMValueRef fn_val, unsigned param_index, const char *attr_name) { return addLLVMAttr(fn_val, param_index + 1, attr_name); } static void addLLVMArgAttrInt(LLVMValueRef fn_val, unsigned param_index, const char *attr_name, uint64_t attr_val) { return addLLVMAttrInt(fn_val, param_index + 1, attr_name, attr_val); } static bool is_symbol_available(CodeGen *g, Buf *name) { return g->exported_symbol_names.maybe_get(name) == nullptr && g->external_prototypes.maybe_get(name) == nullptr; } static Buf *get_mangled_name(CodeGen *g, Buf *original_name, bool external_linkage) { if (external_linkage || is_symbol_available(g, original_name)) { return original_name; } int n = 0; for (;; n += 1) { Buf *new_name = buf_sprintf("%s.%d", buf_ptr(original_name), n); if (is_symbol_available(g, new_name)) { return new_name; } } } static LLVMCallConv get_llvm_cc(CodeGen *g, CallingConvention cc) { switch (cc) { case CallingConventionUnspecified: return LLVMFastCallConv; case CallingConventionC: return LLVMCCallConv; case CallingConventionCold: // cold calling convention only works on x86. if (g->zig_target->arch == ZigLLVM_x86 || g->zig_target->arch == ZigLLVM_x86_64) { // cold calling convention is not supported on windows if (g->zig_target->os == OsWindows) { return LLVMCCallConv; } else { return LLVMColdCallConv; } } else { return LLVMCCallConv; } break; case CallingConventionNaked: zig_unreachable(); case CallingConventionStdcall: // stdcall calling convention only works on x86. if (g->zig_target->arch == ZigLLVM_x86) { return LLVMX86StdcallCallConv; } else { return LLVMCCallConv; } case CallingConventionAsync: return LLVMFastCallConv; } zig_unreachable(); } static void add_uwtable_attr(CodeGen *g, LLVMValueRef fn_val) { if (g->zig_target->os == OsWindows) { addLLVMFnAttr(fn_val, "uwtable"); } } static void add_probe_stack_attr(CodeGen *g, LLVMValueRef fn_val) { // Windows already emits its own stack probes if (!g->disable_stack_probing && g->zig_target->os != OsWindows && (g->zig_target->arch == ZigLLVM_x86 || g->zig_target->arch == ZigLLVM_x86_64)) { addLLVMFnAttrStr(fn_val, "probe-stack", "__zig_probe_stack"); } } static LLVMLinkage to_llvm_linkage(GlobalLinkageId id) { switch (id) { case GlobalLinkageIdInternal: return LLVMInternalLinkage; case GlobalLinkageIdStrong: return LLVMExternalLinkage; case GlobalLinkageIdWeak: return LLVMWeakODRLinkage; case GlobalLinkageIdLinkOnce: return LLVMLinkOnceODRLinkage; } zig_unreachable(); } static uint32_t get_err_ret_trace_arg_index(CodeGen *g, ZigFn *fn_table_entry) { if (!g->have_err_ret_tracing) { return UINT32_MAX; } if (fn_table_entry->type_entry->data.fn.fn_type_id.cc == CallingConventionAsync) { return 0; } ZigType *fn_type = fn_table_entry->type_entry; if (!fn_type_can_fail(&fn_type->data.fn.fn_type_id)) { return UINT32_MAX; } ZigType *return_type = fn_type->data.fn.fn_type_id.return_type; bool first_arg_ret = type_has_bits(return_type) && handle_is_ptr(return_type); return first_arg_ret ? 1 : 0; } static void maybe_export_dll(CodeGen *g, LLVMValueRef global_value, GlobalLinkageId linkage) { if (linkage != GlobalLinkageIdInternal && g->zig_target->os == OsWindows && g->is_dynamic) { LLVMSetDLLStorageClass(global_value, LLVMDLLExportStorageClass); } } static void maybe_import_dll(CodeGen *g, LLVMValueRef global_value, GlobalLinkageId linkage) { if (linkage != GlobalLinkageIdInternal && g->zig_target->os == OsWindows) { // TODO come up with a good explanation/understanding for why we never do // DLLImportStorageClass. Empirically it only causes problems. But let's have // this documented and then clean up the code accordingly. //LLVMSetDLLStorageClass(global_value, LLVMDLLImportStorageClass); } } static bool cc_want_sret_attr(CallingConvention cc) { switch (cc) { case CallingConventionNaked: zig_unreachable(); case CallingConventionC: case CallingConventionCold: case CallingConventionStdcall: return true; case CallingConventionAsync: case CallingConventionUnspecified: return false; } zig_unreachable(); } static LLVMValueRef fn_llvm_value(CodeGen *g, ZigFn *fn_table_entry) { if (fn_table_entry->llvm_value) return fn_table_entry->llvm_value; Buf *unmangled_name = &fn_table_entry->symbol_name; Buf *symbol_name; GlobalLinkageId linkage; if (fn_table_entry->body_node == nullptr) { symbol_name = unmangled_name; linkage = GlobalLinkageIdStrong; } else if (fn_table_entry->export_list.length == 0) { symbol_name = get_mangled_name(g, unmangled_name, false); linkage = GlobalLinkageIdInternal; } else { FnExport *fn_export = &fn_table_entry->export_list.items[0]; symbol_name = &fn_export->name; linkage = fn_export->linkage; } bool external_linkage = linkage != GlobalLinkageIdInternal; CallingConvention cc = fn_table_entry->type_entry->data.fn.fn_type_id.cc; if (cc == CallingConventionStdcall && external_linkage && g->zig_target->arch == ZigLLVM_x86) { // prevent llvm name mangling symbol_name = buf_sprintf("\x01_%s", buf_ptr(symbol_name)); } ZigType *fn_type = fn_table_entry->type_entry; // Make the raw_type_ref populated (void)get_llvm_type(g, fn_type); LLVMTypeRef fn_llvm_type = fn_type->data.fn.raw_type_ref; if (fn_table_entry->body_node == nullptr) { LLVMValueRef existing_llvm_fn = LLVMGetNamedFunction(g->module, buf_ptr(symbol_name)); if (existing_llvm_fn) { fn_table_entry->llvm_value = LLVMConstBitCast(existing_llvm_fn, LLVMPointerType(fn_llvm_type, 0)); return fn_table_entry->llvm_value; } else { auto entry = g->exported_symbol_names.maybe_get(symbol_name); if (entry == nullptr) { fn_table_entry->llvm_value = LLVMAddFunction(g->module, buf_ptr(symbol_name), fn_llvm_type); if (target_is_wasm(g->zig_target)) { assert(fn_table_entry->proto_node->type == NodeTypeFnProto); AstNodeFnProto *fn_proto = &fn_table_entry->proto_node->data.fn_proto; if (fn_proto-> is_extern && fn_proto->lib_name != nullptr ) { addLLVMFnAttrStr(fn_table_entry->llvm_value, "wasm-import-module", buf_ptr(fn_proto->lib_name)); } } } else { assert(entry->value->id == TldIdFn); TldFn *tld_fn = reinterpret_cast(entry->value); // Make the raw_type_ref populated (void)get_llvm_type(g, tld_fn->fn_entry->type_entry); tld_fn->fn_entry->llvm_value = LLVMAddFunction(g->module, buf_ptr(symbol_name), tld_fn->fn_entry->type_entry->data.fn.raw_type_ref); fn_table_entry->llvm_value = LLVMConstBitCast(tld_fn->fn_entry->llvm_value, LLVMPointerType(fn_llvm_type, 0)); return fn_table_entry->llvm_value; } } } else { if (fn_table_entry->llvm_value == nullptr) { fn_table_entry->llvm_value = LLVMAddFunction(g->module, buf_ptr(symbol_name), fn_llvm_type); } for (size_t i = 1; i < fn_table_entry->export_list.length; i += 1) { FnExport *fn_export = &fn_table_entry->export_list.items[i]; LLVMAddAlias(g->module, LLVMTypeOf(fn_table_entry->llvm_value), fn_table_entry->llvm_value, buf_ptr(&fn_export->name)); } } fn_table_entry->llvm_name = strdup(LLVMGetValueName(fn_table_entry->llvm_value)); switch (fn_table_entry->fn_inline) { case FnInlineAlways: addLLVMFnAttr(fn_table_entry->llvm_value, "alwaysinline"); g->inline_fns.append(fn_table_entry); break; case FnInlineNever: addLLVMFnAttr(fn_table_entry->llvm_value, "noinline"); break; case FnInlineAuto: if (fn_table_entry->alignstack_value != 0) { addLLVMFnAttr(fn_table_entry->llvm_value, "noinline"); } break; } if (cc == CallingConventionNaked) { addLLVMFnAttr(fn_table_entry->llvm_value, "naked"); } else { LLVMSetFunctionCallConv(fn_table_entry->llvm_value, get_llvm_cc(g, fn_type->data.fn.fn_type_id.cc)); } if (cc == CallingConventionAsync) { addLLVMFnAttr(fn_table_entry->llvm_value, "optnone"); addLLVMFnAttr(fn_table_entry->llvm_value, "noinline"); } bool want_cold = fn_table_entry->is_cold || cc == CallingConventionCold; if (want_cold) { ZigLLVMAddFunctionAttrCold(fn_table_entry->llvm_value); } LLVMSetLinkage(fn_table_entry->llvm_value, to_llvm_linkage(linkage)); if (linkage == GlobalLinkageIdInternal) { LLVMSetUnnamedAddr(fn_table_entry->llvm_value, true); } ZigType *return_type = fn_type->data.fn.fn_type_id.return_type; if (return_type->id == ZigTypeIdUnreachable) { addLLVMFnAttr(fn_table_entry->llvm_value, "noreturn"); } if (fn_table_entry->body_node != nullptr) { maybe_export_dll(g, fn_table_entry->llvm_value, linkage); bool want_fn_safety = g->build_mode != BuildModeFastRelease && g->build_mode != BuildModeSmallRelease && !fn_table_entry->def_scope->safety_off; if (want_fn_safety) { if (g->libc_link_lib != nullptr) { addLLVMFnAttr(fn_table_entry->llvm_value, "sspstrong"); addLLVMFnAttrStr(fn_table_entry->llvm_value, "stack-protector-buffer-size", "4"); } add_probe_stack_attr(g, fn_table_entry->llvm_value); } } else { maybe_import_dll(g, fn_table_entry->llvm_value, linkage); } if (fn_table_entry->alignstack_value != 0) { addLLVMFnAttrInt(fn_table_entry->llvm_value, "alignstack", fn_table_entry->alignstack_value); } addLLVMFnAttr(fn_table_entry->llvm_value, "nounwind"); add_uwtable_attr(g, fn_table_entry->llvm_value); addLLVMFnAttr(fn_table_entry->llvm_value, "nobuiltin"); if (g->build_mode == BuildModeDebug && fn_table_entry->fn_inline != FnInlineAlways) { ZigLLVMAddFunctionAttr(fn_table_entry->llvm_value, "no-frame-pointer-elim", "true"); ZigLLVMAddFunctionAttr(fn_table_entry->llvm_value, "no-frame-pointer-elim-non-leaf", nullptr); } if (fn_table_entry->section_name) { LLVMSetSection(fn_table_entry->llvm_value, buf_ptr(fn_table_entry->section_name)); } if (fn_table_entry->align_bytes > 0) { LLVMSetAlignment(fn_table_entry->llvm_value, (unsigned)fn_table_entry->align_bytes); } else { // We'd like to set the best alignment for the function here, but on Darwin LLVM gives // "Cannot getTypeInfo() on a type that is unsized!" assertion failure when calling // any of the functions for getting alignment. Not specifying the alignment should // use the ABI alignment, which is fine. } unsigned init_gen_i = 0; if (!type_has_bits(return_type)) { // nothing to do } else if (type_is_nonnull_ptr(return_type)) { addLLVMAttr(fn_table_entry->llvm_value, 0, "nonnull"); } else if (want_first_arg_sret(g, &fn_type->data.fn.fn_type_id)) { // Sret pointers must not be address 0 addLLVMArgAttr(fn_table_entry->llvm_value, 0, "nonnull"); addLLVMArgAttr(fn_table_entry->llvm_value, 0, "sret"); if (cc_want_sret_attr(cc)) { addLLVMArgAttr(fn_table_entry->llvm_value, 0, "noalias"); } init_gen_i = 1; } // set parameter attributes FnWalk fn_walk = {}; fn_walk.id = FnWalkIdAttrs; fn_walk.data.attrs.fn = fn_table_entry; fn_walk.data.attrs.gen_i = init_gen_i; walk_function_params(g, fn_type, &fn_walk); uint32_t err_ret_trace_arg_index = get_err_ret_trace_arg_index(g, fn_table_entry); if (err_ret_trace_arg_index != UINT32_MAX) { // Error return trace memory is in the stack, which is impossible to be at address 0 // on any architecture. addLLVMArgAttr(fn_table_entry->llvm_value, (unsigned)err_ret_trace_arg_index, "nonnull"); } return fn_table_entry->llvm_value; } static ZigLLVMDIScope *get_di_scope(CodeGen *g, Scope *scope) { if (scope->di_scope) return scope->di_scope; ZigType *import = get_scope_import(scope); switch (scope->id) { case ScopeIdCImport: zig_unreachable(); case ScopeIdFnDef: { assert(scope->parent); ScopeFnDef *fn_scope = (ScopeFnDef *)scope; ZigFn *fn_table_entry = fn_scope->fn_entry; if (!fn_table_entry->proto_node) return get_di_scope(g, scope->parent); unsigned line_number = (unsigned)(fn_table_entry->proto_node->line == 0) ? 0 : (fn_table_entry->proto_node->line + 1); unsigned scope_line = line_number; bool is_definition = fn_table_entry->body_node != nullptr; bool is_optimized = g->build_mode != BuildModeDebug; bool is_internal_linkage = (fn_table_entry->body_node != nullptr && fn_table_entry->export_list.length == 0); unsigned flags = 0; ZigLLVMDIScope *fn_di_scope = get_di_scope(g, scope->parent); assert(fn_di_scope != nullptr); ZigLLVMDISubprogram *subprogram = ZigLLVMCreateFunction(g->dbuilder, fn_di_scope, buf_ptr(&fn_table_entry->symbol_name), "", import->data.structure.root_struct->di_file, line_number, fn_table_entry->type_entry->data.fn.raw_di_type, is_internal_linkage, is_definition, scope_line, flags, is_optimized, nullptr); scope->di_scope = ZigLLVMSubprogramToScope(subprogram); ZigLLVMFnSetSubprogram(fn_llvm_value(g, fn_table_entry), subprogram); return scope->di_scope; } case ScopeIdDecls: if (scope->parent) { ScopeDecls *decls_scope = (ScopeDecls *)scope; assert(decls_scope->container_type); scope->di_scope = ZigLLVMTypeToScope(get_llvm_di_type(g, decls_scope->container_type)); } else { scope->di_scope = ZigLLVMFileToScope(import->data.structure.root_struct->di_file); } return scope->di_scope; case ScopeIdBlock: case ScopeIdDefer: { assert(scope->parent); ZigLLVMDILexicalBlock *di_block = ZigLLVMCreateLexicalBlock(g->dbuilder, get_di_scope(g, scope->parent), import->data.structure.root_struct->di_file, (unsigned)scope->source_node->line + 1, (unsigned)scope->source_node->column + 1); scope->di_scope = ZigLLVMLexicalBlockToScope(di_block); return scope->di_scope; } case ScopeIdVarDecl: case ScopeIdDeferExpr: case ScopeIdLoop: case ScopeIdSuspend: case ScopeIdCompTime: case ScopeIdCoroPrelude: case ScopeIdRuntime: return get_di_scope(g, scope->parent); } zig_unreachable(); } static void clear_debug_source_node(CodeGen *g) { ZigLLVMClearCurrentDebugLocation(g->builder); } static LLVMValueRef get_arithmetic_overflow_fn(CodeGen *g, ZigType *operand_type, const char *signed_name, const char *unsigned_name) { ZigType *int_type = (operand_type->id == ZigTypeIdVector) ? operand_type->data.vector.elem_type : operand_type; char fn_name[64]; assert(int_type->id == ZigTypeIdInt); const char *signed_str = int_type->data.integral.is_signed ? signed_name : unsigned_name; LLVMTypeRef param_types[] = { get_llvm_type(g, operand_type), get_llvm_type(g, operand_type), }; if (operand_type->id == ZigTypeIdVector) { sprintf(fn_name, "llvm.%s.with.overflow.v%" PRIu32 "i%" PRIu32, signed_str, operand_type->data.vector.len, int_type->data.integral.bit_count); LLVMTypeRef return_elem_types[] = { get_llvm_type(g, operand_type), LLVMVectorType(LLVMInt1Type(), operand_type->data.vector.len), }; LLVMTypeRef return_struct_type = LLVMStructType(return_elem_types, 2, false); LLVMTypeRef fn_type = LLVMFunctionType(return_struct_type, param_types, 2, false); LLVMValueRef fn_val = LLVMAddFunction(g->module, fn_name, fn_type); assert(LLVMGetIntrinsicID(fn_val)); return fn_val; } else { sprintf(fn_name, "llvm.%s.with.overflow.i%" PRIu32, signed_str, int_type->data.integral.bit_count); LLVMTypeRef return_elem_types[] = { get_llvm_type(g, operand_type), LLVMInt1Type(), }; LLVMTypeRef return_struct_type = LLVMStructType(return_elem_types, 2, false); LLVMTypeRef fn_type = LLVMFunctionType(return_struct_type, param_types, 2, false); LLVMValueRef fn_val = LLVMAddFunction(g->module, fn_name, fn_type); assert(LLVMGetIntrinsicID(fn_val)); return fn_val; } } static LLVMValueRef get_int_overflow_fn(CodeGen *g, ZigType *operand_type, AddSubMul add_sub_mul) { ZigType *int_type = (operand_type->id == ZigTypeIdVector) ? operand_type->data.vector.elem_type : operand_type; assert(int_type->id == ZigTypeIdInt); ZigLLVMFnKey key = {}; key.id = ZigLLVMFnIdOverflowArithmetic; key.data.overflow_arithmetic.is_signed = int_type->data.integral.is_signed; key.data.overflow_arithmetic.add_sub_mul = add_sub_mul; key.data.overflow_arithmetic.bit_count = (uint32_t)int_type->data.integral.bit_count; key.data.overflow_arithmetic.vector_len = (operand_type->id == ZigTypeIdVector) ? operand_type->data.vector.len : 0; auto existing_entry = g->llvm_fn_table.maybe_get(key); if (existing_entry) return existing_entry->value; LLVMValueRef fn_val; switch (add_sub_mul) { case AddSubMulAdd: fn_val = get_arithmetic_overflow_fn(g, operand_type, "sadd", "uadd"); break; case AddSubMulSub: fn_val = get_arithmetic_overflow_fn(g, operand_type, "ssub", "usub"); break; case AddSubMulMul: fn_val = get_arithmetic_overflow_fn(g, operand_type, "smul", "umul"); break; } g->llvm_fn_table.put(key, fn_val); return fn_val; } static LLVMValueRef get_float_fn(CodeGen *g, ZigType *type_entry, ZigLLVMFnId fn_id) { assert(type_entry->id == ZigTypeIdFloat); ZigLLVMFnKey key = {}; key.id = fn_id; key.data.floating.bit_count = (uint32_t)type_entry->data.floating.bit_count; auto existing_entry = g->llvm_fn_table.maybe_get(key); if (existing_entry) return existing_entry->value; const char *name; if (fn_id == ZigLLVMFnIdFloor) { name = "floor"; } else if (fn_id == ZigLLVMFnIdCeil) { name = "ceil"; } else if (fn_id == ZigLLVMFnIdSqrt) { name = "sqrt"; } else { zig_unreachable(); } char fn_name[64]; sprintf(fn_name, "llvm.%s.f%" ZIG_PRI_usize "", name, type_entry->data.floating.bit_count); LLVMTypeRef float_type_ref = get_llvm_type(g, type_entry); LLVMTypeRef fn_type = LLVMFunctionType(float_type_ref, &float_type_ref, 1, false); LLVMValueRef fn_val = LLVMAddFunction(g->module, fn_name, fn_type); assert(LLVMGetIntrinsicID(fn_val)); g->llvm_fn_table.put(key, fn_val); return fn_val; } static LLVMValueRef gen_store_untyped(CodeGen *g, LLVMValueRef value, LLVMValueRef ptr, uint32_t alignment, bool is_volatile) { LLVMValueRef instruction = LLVMBuildStore(g->builder, value, ptr); if (is_volatile) LLVMSetVolatile(instruction, true); if (alignment == 0) { LLVMSetAlignment(instruction, LLVMABIAlignmentOfType(g->target_data_ref, LLVMTypeOf(value))); } else { LLVMSetAlignment(instruction, alignment); } return instruction; } static LLVMValueRef gen_store(CodeGen *g, LLVMValueRef value, LLVMValueRef ptr, ZigType *ptr_type) { assert(ptr_type->id == ZigTypeIdPointer); uint32_t alignment = get_ptr_align(g, ptr_type); return gen_store_untyped(g, value, ptr, alignment, ptr_type->data.pointer.is_volatile); } static LLVMValueRef gen_load_untyped(CodeGen *g, LLVMValueRef ptr, uint32_t alignment, bool is_volatile, const char *name) { LLVMValueRef result = LLVMBuildLoad(g->builder, ptr, name); if (is_volatile) LLVMSetVolatile(result, true); if (alignment == 0) { LLVMSetAlignment(result, LLVMABIAlignmentOfType(g->target_data_ref, LLVMGetElementType(LLVMTypeOf(ptr)))); } else { LLVMSetAlignment(result, alignment); } return result; } static LLVMValueRef gen_load(CodeGen *g, LLVMValueRef ptr, ZigType *ptr_type, const char *name) { assert(ptr_type->id == ZigTypeIdPointer); uint32_t alignment = get_ptr_align(g, ptr_type); return gen_load_untyped(g, ptr, alignment, ptr_type->data.pointer.is_volatile, name); } static LLVMValueRef get_handle_value(CodeGen *g, LLVMValueRef ptr, ZigType *type, ZigType *ptr_type) { if (type_has_bits(type)) { if (handle_is_ptr(type)) { return ptr; } else { assert(ptr_type->id == ZigTypeIdPointer); return gen_load(g, ptr, ptr_type, ""); } } else { return nullptr; } } static bool ir_want_fast_math(CodeGen *g, IrInstruction *instruction) { // TODO memoize Scope *scope = instruction->scope; while (scope) { if (scope->id == ScopeIdBlock) { ScopeBlock *block_scope = (ScopeBlock *)scope; if (block_scope->fast_math_set_node) return block_scope->fast_math_on; } else if (scope->id == ScopeIdDecls) { ScopeDecls *decls_scope = (ScopeDecls *)scope; if (decls_scope->fast_math_set_node) return decls_scope->fast_math_on; } scope = scope->parent; } return false; } static bool ir_want_runtime_safety(CodeGen *g, IrInstruction *instruction) { // TODO memoize Scope *scope = instruction->scope; while (scope) { if (scope->id == ScopeIdBlock) { ScopeBlock *block_scope = (ScopeBlock *)scope; if (block_scope->safety_set_node) return !block_scope->safety_off; } else if (scope->id == ScopeIdDecls) { ScopeDecls *decls_scope = (ScopeDecls *)scope; if (decls_scope->safety_set_node) return !decls_scope->safety_off; } scope = scope->parent; } return (g->build_mode != BuildModeFastRelease && g->build_mode != BuildModeSmallRelease); } static Buf *panic_msg_buf(PanicMsgId msg_id) { switch (msg_id) { case PanicMsgIdCount: zig_unreachable(); case PanicMsgIdBoundsCheckFailure: return buf_create_from_str("index out of bounds"); case PanicMsgIdCastNegativeToUnsigned: return buf_create_from_str("attempt to cast negative value to unsigned integer"); case PanicMsgIdCastTruncatedData: return buf_create_from_str("integer cast truncated bits"); case PanicMsgIdIntegerOverflow: return buf_create_from_str("integer overflow"); case PanicMsgIdShlOverflowedBits: return buf_create_from_str("left shift overflowed bits"); case PanicMsgIdShrOverflowedBits: return buf_create_from_str("right shift overflowed bits"); case PanicMsgIdDivisionByZero: return buf_create_from_str("division by zero"); case PanicMsgIdRemainderDivisionByZero: return buf_create_from_str("remainder division by zero or negative value"); case PanicMsgIdExactDivisionRemainder: return buf_create_from_str("exact division produced remainder"); case PanicMsgIdSliceWidenRemainder: return buf_create_from_str("slice widening size mismatch"); case PanicMsgIdUnwrapOptionalFail: return buf_create_from_str("attempt to unwrap null"); case PanicMsgIdUnreachable: return buf_create_from_str("reached unreachable code"); case PanicMsgIdInvalidErrorCode: return buf_create_from_str("invalid error code"); case PanicMsgIdIncorrectAlignment: return buf_create_from_str("incorrect alignment"); case PanicMsgIdBadUnionField: return buf_create_from_str("access of inactive union field"); case PanicMsgIdBadEnumValue: return buf_create_from_str("invalid enum value"); case PanicMsgIdFloatToInt: return buf_create_from_str("integer part of floating point value out of bounds"); case PanicMsgIdPtrCastNull: return buf_create_from_str("cast causes pointer to be null"); } zig_unreachable(); } static LLVMValueRef get_panic_msg_ptr_val(CodeGen *g, PanicMsgId msg_id) { ConstExprValue *val = &g->panic_msg_vals[msg_id]; if (!val->global_refs->llvm_global) { Buf *buf_msg = panic_msg_buf(msg_id); ConstExprValue *array_val = create_const_str_lit(g, buf_msg); init_const_slice(g, val, array_val, 0, buf_len(buf_msg), true); render_const_val(g, val, ""); render_const_val_global(g, val, ""); assert(val->global_refs->llvm_global); } ZigType *u8_ptr_type = get_pointer_to_type_extra(g, g->builtin_types.entry_u8, true, false, PtrLenUnknown, get_abi_alignment(g, g->builtin_types.entry_u8), 0, 0, false); ZigType *str_type = get_slice_type(g, u8_ptr_type); return LLVMConstBitCast(val->global_refs->llvm_global, LLVMPointerType(get_llvm_type(g, str_type), 0)); } static void gen_panic(CodeGen *g, LLVMValueRef msg_arg, LLVMValueRef stack_trace_arg) { assert(g->panic_fn != nullptr); LLVMValueRef fn_val = fn_llvm_value(g, g->panic_fn); LLVMCallConv llvm_cc = get_llvm_cc(g, g->panic_fn->type_entry->data.fn.fn_type_id.cc); if (stack_trace_arg == nullptr) { ZigType *ptr_to_stack_trace_type = get_ptr_to_stack_trace_type(g); stack_trace_arg = LLVMConstNull(get_llvm_type(g, ptr_to_stack_trace_type)); } LLVMValueRef args[] = { msg_arg, stack_trace_arg, }; LLVMValueRef call_instruction = ZigLLVMBuildCall(g->builder, fn_val, args, 2, llvm_cc, ZigLLVM_FnInlineAuto, ""); LLVMSetTailCall(call_instruction, true); LLVMBuildUnreachable(g->builder); } // TODO update most callsites to call gen_assertion instead of this static void gen_safety_crash(CodeGen *g, PanicMsgId msg_id) { gen_panic(g, get_panic_msg_ptr_val(g, msg_id), nullptr); } static void gen_assertion(CodeGen *g, PanicMsgId msg_id, IrInstruction *source_instruction) { if (ir_want_runtime_safety(g, source_instruction)) { gen_safety_crash(g, msg_id); } else { LLVMBuildUnreachable(g->builder); } } static LLVMValueRef get_stacksave_fn_val(CodeGen *g) { if (g->stacksave_fn_val) return g->stacksave_fn_val; // declare i8* @llvm.stacksave() LLVMTypeRef fn_type = LLVMFunctionType(LLVMPointerType(LLVMInt8Type(), 0), nullptr, 0, false); g->stacksave_fn_val = LLVMAddFunction(g->module, "llvm.stacksave", fn_type); assert(LLVMGetIntrinsicID(g->stacksave_fn_val)); return g->stacksave_fn_val; } static LLVMValueRef get_stackrestore_fn_val(CodeGen *g) { if (g->stackrestore_fn_val) return g->stackrestore_fn_val; // declare void @llvm.stackrestore(i8* %ptr) LLVMTypeRef param_type = LLVMPointerType(LLVMInt8Type(), 0); LLVMTypeRef fn_type = LLVMFunctionType(LLVMVoidType(), ¶m_type, 1, false); g->stackrestore_fn_val = LLVMAddFunction(g->module, "llvm.stackrestore", fn_type); assert(LLVMGetIntrinsicID(g->stackrestore_fn_val)); return g->stackrestore_fn_val; } static LLVMValueRef get_write_register_fn_val(CodeGen *g) { if (g->write_register_fn_val) return g->write_register_fn_val; // declare void @llvm.write_register.i64(metadata, i64 @value) // !0 = !{!"sp\00"} LLVMTypeRef param_types[] = { LLVMMetadataTypeInContext(LLVMGetGlobalContext()), LLVMIntType(g->pointer_size_bytes * 8), }; LLVMTypeRef fn_type = LLVMFunctionType(LLVMVoidType(), param_types, 2, false); Buf *name = buf_sprintf("llvm.write_register.i%d", g->pointer_size_bytes * 8); g->write_register_fn_val = LLVMAddFunction(g->module, buf_ptr(name), fn_type); assert(LLVMGetIntrinsicID(g->write_register_fn_val)); return g->write_register_fn_val; } static LLVMValueRef get_coro_destroy_fn_val(CodeGen *g) { if (g->coro_destroy_fn_val) return g->coro_destroy_fn_val; LLVMTypeRef param_types[] = { LLVMPointerType(LLVMInt8Type(), 0), }; LLVMTypeRef fn_type = LLVMFunctionType(LLVMVoidType(), param_types, 1, false); Buf *name = buf_sprintf("llvm.coro.destroy"); g->coro_destroy_fn_val = LLVMAddFunction(g->module, buf_ptr(name), fn_type); assert(LLVMGetIntrinsicID(g->coro_destroy_fn_val)); return g->coro_destroy_fn_val; } static LLVMValueRef get_coro_id_fn_val(CodeGen *g) { if (g->coro_id_fn_val) return g->coro_id_fn_val; LLVMTypeRef param_types[] = { LLVMInt32Type(), LLVMPointerType(LLVMInt8Type(), 0), LLVMPointerType(LLVMInt8Type(), 0), LLVMPointerType(LLVMInt8Type(), 0), }; LLVMTypeRef fn_type = LLVMFunctionType(ZigLLVMTokenTypeInContext(LLVMGetGlobalContext()), param_types, 4, false); Buf *name = buf_sprintf("llvm.coro.id"); g->coro_id_fn_val = LLVMAddFunction(g->module, buf_ptr(name), fn_type); assert(LLVMGetIntrinsicID(g->coro_id_fn_val)); return g->coro_id_fn_val; } static LLVMValueRef get_coro_alloc_fn_val(CodeGen *g) { if (g->coro_alloc_fn_val) return g->coro_alloc_fn_val; LLVMTypeRef param_types[] = { ZigLLVMTokenTypeInContext(LLVMGetGlobalContext()), }; LLVMTypeRef fn_type = LLVMFunctionType(LLVMInt1Type(), param_types, 1, false); Buf *name = buf_sprintf("llvm.coro.alloc"); g->coro_alloc_fn_val = LLVMAddFunction(g->module, buf_ptr(name), fn_type); assert(LLVMGetIntrinsicID(g->coro_alloc_fn_val)); return g->coro_alloc_fn_val; } static LLVMValueRef get_coro_size_fn_val(CodeGen *g) { if (g->coro_size_fn_val) return g->coro_size_fn_val; LLVMTypeRef fn_type = LLVMFunctionType(g->builtin_types.entry_usize->llvm_type, nullptr, 0, false); Buf *name = buf_sprintf("llvm.coro.size.i%d", g->pointer_size_bytes * 8); g->coro_size_fn_val = LLVMAddFunction(g->module, buf_ptr(name), fn_type); assert(LLVMGetIntrinsicID(g->coro_size_fn_val)); return g->coro_size_fn_val; } static LLVMValueRef get_coro_begin_fn_val(CodeGen *g) { if (g->coro_begin_fn_val) return g->coro_begin_fn_val; LLVMTypeRef param_types[] = { ZigLLVMTokenTypeInContext(LLVMGetGlobalContext()), LLVMPointerType(LLVMInt8Type(), 0), }; LLVMTypeRef fn_type = LLVMFunctionType(LLVMPointerType(LLVMInt8Type(), 0), param_types, 2, false); Buf *name = buf_sprintf("llvm.coro.begin"); g->coro_begin_fn_val = LLVMAddFunction(g->module, buf_ptr(name), fn_type); assert(LLVMGetIntrinsicID(g->coro_begin_fn_val)); return g->coro_begin_fn_val; } static LLVMValueRef get_coro_suspend_fn_val(CodeGen *g) { if (g->coro_suspend_fn_val) return g->coro_suspend_fn_val; LLVMTypeRef param_types[] = { ZigLLVMTokenTypeInContext(LLVMGetGlobalContext()), LLVMInt1Type(), }; LLVMTypeRef fn_type = LLVMFunctionType(LLVMInt8Type(), param_types, 2, false); Buf *name = buf_sprintf("llvm.coro.suspend"); g->coro_suspend_fn_val = LLVMAddFunction(g->module, buf_ptr(name), fn_type); assert(LLVMGetIntrinsicID(g->coro_suspend_fn_val)); return g->coro_suspend_fn_val; } static LLVMValueRef get_coro_end_fn_val(CodeGen *g) { if (g->coro_end_fn_val) return g->coro_end_fn_val; LLVMTypeRef param_types[] = { LLVMPointerType(LLVMInt8Type(), 0), LLVMInt1Type(), }; LLVMTypeRef fn_type = LLVMFunctionType(LLVMInt1Type(), param_types, 2, false); Buf *name = buf_sprintf("llvm.coro.end"); g->coro_end_fn_val = LLVMAddFunction(g->module, buf_ptr(name), fn_type); assert(LLVMGetIntrinsicID(g->coro_end_fn_val)); return g->coro_end_fn_val; } static LLVMValueRef get_coro_free_fn_val(CodeGen *g) { if (g->coro_free_fn_val) return g->coro_free_fn_val; LLVMTypeRef param_types[] = { ZigLLVMTokenTypeInContext(LLVMGetGlobalContext()), LLVMPointerType(LLVMInt8Type(), 0), }; LLVMTypeRef fn_type = LLVMFunctionType(LLVMPointerType(LLVMInt8Type(), 0), param_types, 2, false); Buf *name = buf_sprintf("llvm.coro.free"); g->coro_free_fn_val = LLVMAddFunction(g->module, buf_ptr(name), fn_type); assert(LLVMGetIntrinsicID(g->coro_free_fn_val)); return g->coro_free_fn_val; } static LLVMValueRef get_coro_resume_fn_val(CodeGen *g) { if (g->coro_resume_fn_val) return g->coro_resume_fn_val; LLVMTypeRef param_types[] = { LLVMPointerType(LLVMInt8Type(), 0), }; LLVMTypeRef fn_type = LLVMFunctionType(LLVMVoidType(), param_types, 1, false); Buf *name = buf_sprintf("llvm.coro.resume"); g->coro_resume_fn_val = LLVMAddFunction(g->module, buf_ptr(name), fn_type); assert(LLVMGetIntrinsicID(g->coro_resume_fn_val)); return g->coro_resume_fn_val; } static LLVMValueRef get_coro_save_fn_val(CodeGen *g) { if (g->coro_save_fn_val) return g->coro_save_fn_val; LLVMTypeRef param_types[] = { LLVMPointerType(LLVMInt8Type(), 0), }; LLVMTypeRef fn_type = LLVMFunctionType(ZigLLVMTokenTypeInContext(LLVMGetGlobalContext()), param_types, 1, false); Buf *name = buf_sprintf("llvm.coro.save"); g->coro_save_fn_val = LLVMAddFunction(g->module, buf_ptr(name), fn_type); assert(LLVMGetIntrinsicID(g->coro_save_fn_val)); return g->coro_save_fn_val; } static LLVMValueRef get_coro_promise_fn_val(CodeGen *g) { if (g->coro_promise_fn_val) return g->coro_promise_fn_val; LLVMTypeRef param_types[] = { LLVMPointerType(LLVMInt8Type(), 0), LLVMInt32Type(), LLVMInt1Type(), }; LLVMTypeRef fn_type = LLVMFunctionType(LLVMPointerType(LLVMInt8Type(), 0), param_types, 3, false); Buf *name = buf_sprintf("llvm.coro.promise"); g->coro_promise_fn_val = LLVMAddFunction(g->module, buf_ptr(name), fn_type); assert(LLVMGetIntrinsicID(g->coro_promise_fn_val)); return g->coro_promise_fn_val; } static LLVMValueRef get_return_address_fn_val(CodeGen *g) { if (g->return_address_fn_val) return g->return_address_fn_val; ZigType *return_type = get_pointer_to_type(g, g->builtin_types.entry_u8, true); LLVMTypeRef fn_type = LLVMFunctionType(get_llvm_type(g, return_type), &g->builtin_types.entry_i32->llvm_type, 1, false); g->return_address_fn_val = LLVMAddFunction(g->module, "llvm.returnaddress", fn_type); assert(LLVMGetIntrinsicID(g->return_address_fn_val)); return g->return_address_fn_val; } static LLVMValueRef get_add_error_return_trace_addr_fn(CodeGen *g) { if (g->add_error_return_trace_addr_fn_val != nullptr) return g->add_error_return_trace_addr_fn_val; LLVMTypeRef arg_types[] = { get_llvm_type(g, get_ptr_to_stack_trace_type(g)), g->builtin_types.entry_usize->llvm_type, }; LLVMTypeRef fn_type_ref = LLVMFunctionType(LLVMVoidType(), arg_types, 2, false); Buf *fn_name = get_mangled_name(g, buf_create_from_str("__zig_add_err_ret_trace_addr"), false); LLVMValueRef fn_val = LLVMAddFunction(g->module, buf_ptr(fn_name), fn_type_ref); addLLVMFnAttr(fn_val, "alwaysinline"); LLVMSetLinkage(fn_val, LLVMInternalLinkage); LLVMSetFunctionCallConv(fn_val, get_llvm_cc(g, CallingConventionUnspecified)); addLLVMFnAttr(fn_val, "nounwind"); add_uwtable_attr(g, fn_val); // Error return trace memory is in the stack, which is impossible to be at address 0 // on any architecture. addLLVMArgAttr(fn_val, (unsigned)0, "nonnull"); if (g->build_mode == BuildModeDebug) { ZigLLVMAddFunctionAttr(fn_val, "no-frame-pointer-elim", "true"); ZigLLVMAddFunctionAttr(fn_val, "no-frame-pointer-elim-non-leaf", nullptr); } LLVMBasicBlockRef entry_block = LLVMAppendBasicBlock(fn_val, "Entry"); LLVMBasicBlockRef prev_block = LLVMGetInsertBlock(g->builder); LLVMValueRef prev_debug_location = LLVMGetCurrentDebugLocation(g->builder); LLVMPositionBuilderAtEnd(g->builder, entry_block); ZigLLVMClearCurrentDebugLocation(g->builder); LLVMTypeRef usize_type_ref = g->builtin_types.entry_usize->llvm_type; // stack_trace.instruction_addresses[stack_trace.index & (stack_trace.instruction_addresses.len - 1)] = return_address; LLVMValueRef err_ret_trace_ptr = LLVMGetParam(fn_val, 0); LLVMValueRef address_value = LLVMGetParam(fn_val, 1); size_t index_field_index = g->stack_trace_type->data.structure.fields[0].gen_index; LLVMValueRef index_field_ptr = LLVMBuildStructGEP(g->builder, err_ret_trace_ptr, (unsigned)index_field_index, ""); size_t addresses_field_index = g->stack_trace_type->data.structure.fields[1].gen_index; LLVMValueRef addresses_field_ptr = LLVMBuildStructGEP(g->builder, err_ret_trace_ptr, (unsigned)addresses_field_index, ""); ZigType *slice_type = g->stack_trace_type->data.structure.fields[1].type_entry; size_t ptr_field_index = slice_type->data.structure.fields[slice_ptr_index].gen_index; LLVMValueRef ptr_field_ptr = LLVMBuildStructGEP(g->builder, addresses_field_ptr, (unsigned)ptr_field_index, ""); size_t len_field_index = slice_type->data.structure.fields[slice_len_index].gen_index; LLVMValueRef len_field_ptr = LLVMBuildStructGEP(g->builder, addresses_field_ptr, (unsigned)len_field_index, ""); LLVMValueRef len_value = gen_load_untyped(g, len_field_ptr, 0, false, ""); LLVMValueRef index_val = gen_load_untyped(g, index_field_ptr, 0, false, ""); LLVMValueRef len_val_minus_one = LLVMBuildSub(g->builder, len_value, LLVMConstInt(usize_type_ref, 1, false), ""); LLVMValueRef masked_val = LLVMBuildAnd(g->builder, index_val, len_val_minus_one, ""); LLVMValueRef address_indices[] = { masked_val, }; LLVMValueRef ptr_value = gen_load_untyped(g, ptr_field_ptr, 0, false, ""); LLVMValueRef address_slot = LLVMBuildInBoundsGEP(g->builder, ptr_value, address_indices, 1, ""); gen_store_untyped(g, address_value, address_slot, 0, false); // stack_trace.index += 1; LLVMValueRef index_plus_one_val = LLVMBuildNUWAdd(g->builder, index_val, LLVMConstInt(usize_type_ref, 1, false), ""); gen_store_untyped(g, index_plus_one_val, index_field_ptr, 0, false); // return; LLVMBuildRetVoid(g->builder); LLVMPositionBuilderAtEnd(g->builder, prev_block); LLVMSetCurrentDebugLocation(g->builder, prev_debug_location); g->add_error_return_trace_addr_fn_val = fn_val; return fn_val; } static LLVMValueRef get_merge_err_ret_traces_fn_val(CodeGen *g) { if (g->merge_err_ret_traces_fn_val) return g->merge_err_ret_traces_fn_val; assert(g->stack_trace_type != nullptr); LLVMTypeRef param_types[] = { get_llvm_type(g, get_ptr_to_stack_trace_type(g)), get_llvm_type(g, get_ptr_to_stack_trace_type(g)), }; LLVMTypeRef fn_type_ref = LLVMFunctionType(LLVMVoidType(), param_types, 2, false); Buf *fn_name = get_mangled_name(g, buf_create_from_str("__zig_merge_error_return_traces"), false); LLVMValueRef fn_val = LLVMAddFunction(g->module, buf_ptr(fn_name), fn_type_ref); LLVMSetLinkage(fn_val, LLVMInternalLinkage); LLVMSetFunctionCallConv(fn_val, get_llvm_cc(g, CallingConventionUnspecified)); addLLVMFnAttr(fn_val, "nounwind"); add_uwtable_attr(g, fn_val); // Error return trace memory is in the stack, which is impossible to be at address 0 // on any architecture. addLLVMArgAttr(fn_val, (unsigned)0, "nonnull"); addLLVMArgAttr(fn_val, (unsigned)0, "noalias"); addLLVMArgAttr(fn_val, (unsigned)0, "writeonly"); // Error return trace memory is in the stack, which is impossible to be at address 0 // on any architecture. addLLVMArgAttr(fn_val, (unsigned)1, "nonnull"); addLLVMArgAttr(fn_val, (unsigned)1, "noalias"); addLLVMArgAttr(fn_val, (unsigned)1, "readonly"); if (g->build_mode == BuildModeDebug) { ZigLLVMAddFunctionAttr(fn_val, "no-frame-pointer-elim", "true"); ZigLLVMAddFunctionAttr(fn_val, "no-frame-pointer-elim-non-leaf", nullptr); } // this is above the ZigLLVMClearCurrentDebugLocation LLVMValueRef add_error_return_trace_addr_fn_val = get_add_error_return_trace_addr_fn(g); LLVMBasicBlockRef entry_block = LLVMAppendBasicBlock(fn_val, "Entry"); LLVMBasicBlockRef prev_block = LLVMGetInsertBlock(g->builder); LLVMValueRef prev_debug_location = LLVMGetCurrentDebugLocation(g->builder); LLVMPositionBuilderAtEnd(g->builder, entry_block); ZigLLVMClearCurrentDebugLocation(g->builder); // var frame_index: usize = undefined; // var frames_left: usize = undefined; // if (src_stack_trace.index < src_stack_trace.instruction_addresses.len) { // frame_index = 0; // frames_left = src_stack_trace.index; // if (frames_left == 0) return; // } else { // frame_index = (src_stack_trace.index + 1) % src_stack_trace.instruction_addresses.len; // frames_left = src_stack_trace.instruction_addresses.len; // } // while (true) { // __zig_add_err_ret_trace_addr(dest_stack_trace, src_stack_trace.instruction_addresses[frame_index]); // frames_left -= 1; // if (frames_left == 0) return; // frame_index = (frame_index + 1) % src_stack_trace.instruction_addresses.len; // } LLVMBasicBlockRef return_block = LLVMAppendBasicBlock(fn_val, "Return"); LLVMValueRef frame_index_ptr = LLVMBuildAlloca(g->builder, g->builtin_types.entry_usize->llvm_type, "frame_index"); LLVMValueRef frames_left_ptr = LLVMBuildAlloca(g->builder, g->builtin_types.entry_usize->llvm_type, "frames_left"); LLVMValueRef dest_stack_trace_ptr = LLVMGetParam(fn_val, 0); LLVMValueRef src_stack_trace_ptr = LLVMGetParam(fn_val, 1); size_t src_index_field_index = g->stack_trace_type->data.structure.fields[0].gen_index; size_t src_addresses_field_index = g->stack_trace_type->data.structure.fields[1].gen_index; LLVMValueRef src_index_field_ptr = LLVMBuildStructGEP(g->builder, src_stack_trace_ptr, (unsigned)src_index_field_index, ""); LLVMValueRef src_addresses_field_ptr = LLVMBuildStructGEP(g->builder, src_stack_trace_ptr, (unsigned)src_addresses_field_index, ""); ZigType *slice_type = g->stack_trace_type->data.structure.fields[1].type_entry; size_t ptr_field_index = slice_type->data.structure.fields[slice_ptr_index].gen_index; LLVMValueRef src_ptr_field_ptr = LLVMBuildStructGEP(g->builder, src_addresses_field_ptr, (unsigned)ptr_field_index, ""); size_t len_field_index = slice_type->data.structure.fields[slice_len_index].gen_index; LLVMValueRef src_len_field_ptr = LLVMBuildStructGEP(g->builder, src_addresses_field_ptr, (unsigned)len_field_index, ""); LLVMValueRef src_index_val = LLVMBuildLoad(g->builder, src_index_field_ptr, ""); LLVMValueRef src_ptr_val = LLVMBuildLoad(g->builder, src_ptr_field_ptr, ""); LLVMValueRef src_len_val = LLVMBuildLoad(g->builder, src_len_field_ptr, ""); LLVMValueRef no_wrap_bit = LLVMBuildICmp(g->builder, LLVMIntULT, src_index_val, src_len_val, ""); LLVMBasicBlockRef no_wrap_block = LLVMAppendBasicBlock(fn_val, "NoWrap"); LLVMBasicBlockRef yes_wrap_block = LLVMAppendBasicBlock(fn_val, "YesWrap"); LLVMBasicBlockRef loop_block = LLVMAppendBasicBlock(fn_val, "Loop"); LLVMBuildCondBr(g->builder, no_wrap_bit, no_wrap_block, yes_wrap_block); LLVMPositionBuilderAtEnd(g->builder, no_wrap_block); LLVMValueRef usize_zero = LLVMConstNull(g->builtin_types.entry_usize->llvm_type); LLVMBuildStore(g->builder, usize_zero, frame_index_ptr); LLVMBuildStore(g->builder, src_index_val, frames_left_ptr); LLVMValueRef frames_left_eq_zero_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, src_index_val, usize_zero, ""); LLVMBuildCondBr(g->builder, frames_left_eq_zero_bit, return_block, loop_block); LLVMPositionBuilderAtEnd(g->builder, yes_wrap_block); LLVMValueRef usize_one = LLVMConstInt(g->builtin_types.entry_usize->llvm_type, 1, false); LLVMValueRef plus_one = LLVMBuildNUWAdd(g->builder, src_index_val, usize_one, ""); LLVMValueRef mod_len = LLVMBuildURem(g->builder, plus_one, src_len_val, ""); LLVMBuildStore(g->builder, mod_len, frame_index_ptr); LLVMBuildStore(g->builder, src_len_val, frames_left_ptr); LLVMBuildBr(g->builder, loop_block); LLVMPositionBuilderAtEnd(g->builder, loop_block); LLVMValueRef ptr_index = LLVMBuildLoad(g->builder, frame_index_ptr, ""); LLVMValueRef addr_ptr = LLVMBuildInBoundsGEP(g->builder, src_ptr_val, &ptr_index, 1, ""); LLVMValueRef this_addr_val = LLVMBuildLoad(g->builder, addr_ptr, ""); LLVMValueRef args[] = {dest_stack_trace_ptr, this_addr_val}; ZigLLVMBuildCall(g->builder, add_error_return_trace_addr_fn_val, args, 2, get_llvm_cc(g, CallingConventionUnspecified), ZigLLVM_FnInlineAlways, ""); LLVMValueRef prev_frames_left = LLVMBuildLoad(g->builder, frames_left_ptr, ""); LLVMValueRef new_frames_left = LLVMBuildNUWSub(g->builder, prev_frames_left, usize_one, ""); LLVMValueRef done_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, new_frames_left, usize_zero, ""); LLVMBasicBlockRef continue_block = LLVMAppendBasicBlock(fn_val, "Continue"); LLVMBuildCondBr(g->builder, done_bit, return_block, continue_block); LLVMPositionBuilderAtEnd(g->builder, return_block); LLVMBuildRetVoid(g->builder); LLVMPositionBuilderAtEnd(g->builder, continue_block); LLVMBuildStore(g->builder, new_frames_left, frames_left_ptr); LLVMValueRef prev_index = LLVMBuildLoad(g->builder, frame_index_ptr, ""); LLVMValueRef index_plus_one = LLVMBuildNUWAdd(g->builder, prev_index, usize_one, ""); LLVMValueRef index_mod_len = LLVMBuildURem(g->builder, index_plus_one, src_len_val, ""); LLVMBuildStore(g->builder, index_mod_len, frame_index_ptr); LLVMBuildBr(g->builder, loop_block); LLVMPositionBuilderAtEnd(g->builder, prev_block); LLVMSetCurrentDebugLocation(g->builder, prev_debug_location); g->merge_err_ret_traces_fn_val = fn_val; return fn_val; } static LLVMValueRef get_return_err_fn(CodeGen *g) { if (g->return_err_fn != nullptr) return g->return_err_fn; assert(g->err_tag_type != nullptr); LLVMTypeRef arg_types[] = { // error return trace pointer get_llvm_type(g, get_ptr_to_stack_trace_type(g)), }; LLVMTypeRef fn_type_ref = LLVMFunctionType(LLVMVoidType(), arg_types, 1, false); Buf *fn_name = get_mangled_name(g, buf_create_from_str("__zig_return_error"), false); LLVMValueRef fn_val = LLVMAddFunction(g->module, buf_ptr(fn_name), fn_type_ref); addLLVMFnAttr(fn_val, "noinline"); // so that we can look at return address addLLVMFnAttr(fn_val, "cold"); LLVMSetLinkage(fn_val, LLVMInternalLinkage); LLVMSetFunctionCallConv(fn_val, get_llvm_cc(g, CallingConventionUnspecified)); addLLVMFnAttr(fn_val, "nounwind"); add_uwtable_attr(g, fn_val); // Error return trace memory is in the stack, which is impossible to be at address 0 // on any architecture. addLLVMArgAttr(fn_val, (unsigned)0, "nonnull"); if (g->build_mode == BuildModeDebug) { ZigLLVMAddFunctionAttr(fn_val, "no-frame-pointer-elim", "true"); ZigLLVMAddFunctionAttr(fn_val, "no-frame-pointer-elim-non-leaf", nullptr); } // this is above the ZigLLVMClearCurrentDebugLocation LLVMValueRef add_error_return_trace_addr_fn_val = get_add_error_return_trace_addr_fn(g); LLVMBasicBlockRef entry_block = LLVMAppendBasicBlock(fn_val, "Entry"); LLVMBasicBlockRef prev_block = LLVMGetInsertBlock(g->builder); LLVMValueRef prev_debug_location = LLVMGetCurrentDebugLocation(g->builder); LLVMPositionBuilderAtEnd(g->builder, entry_block); ZigLLVMClearCurrentDebugLocation(g->builder); LLVMValueRef err_ret_trace_ptr = LLVMGetParam(fn_val, 0); LLVMTypeRef usize_type_ref = g->builtin_types.entry_usize->llvm_type; LLVMValueRef zero = LLVMConstNull(get_llvm_type(g, g->builtin_types.entry_i32)); LLVMValueRef return_address_ptr = LLVMBuildCall(g->builder, get_return_address_fn_val(g), &zero, 1, ""); LLVMValueRef return_address = LLVMBuildPtrToInt(g->builder, return_address_ptr, usize_type_ref, ""); LLVMValueRef args[] = { err_ret_trace_ptr, return_address }; ZigLLVMBuildCall(g->builder, add_error_return_trace_addr_fn_val, args, 2, get_llvm_cc(g, CallingConventionUnspecified), ZigLLVM_FnInlineAlways, ""); LLVMBuildRetVoid(g->builder); LLVMPositionBuilderAtEnd(g->builder, prev_block); LLVMSetCurrentDebugLocation(g->builder, prev_debug_location); g->return_err_fn = fn_val; return fn_val; } static LLVMValueRef get_safety_crash_err_fn(CodeGen *g) { if (g->safety_crash_err_fn != nullptr) return g->safety_crash_err_fn; static const char *unwrap_err_msg_text = "attempt to unwrap error: "; g->generate_error_name_table = true; generate_error_name_table(g); assert(g->err_name_table != nullptr); size_t unwrap_err_msg_text_len = strlen(unwrap_err_msg_text); size_t err_buf_len = strlen(unwrap_err_msg_text) + g->largest_err_name_len; LLVMValueRef *err_buf_vals = allocate(err_buf_len); size_t i = 0; for (; i < unwrap_err_msg_text_len; i += 1) { err_buf_vals[i] = LLVMConstInt(LLVMInt8Type(), unwrap_err_msg_text[i], false); } for (; i < err_buf_len; i += 1) { err_buf_vals[i] = LLVMGetUndef(LLVMInt8Type()); } uint32_t u8_align_bytes = get_abi_alignment(g, g->builtin_types.entry_u8); LLVMValueRef init_value = LLVMConstArray(LLVMInt8Type(), err_buf_vals, err_buf_len); LLVMValueRef global_array = LLVMAddGlobal(g->module, LLVMTypeOf(init_value), ""); LLVMSetInitializer(global_array, init_value); LLVMSetLinkage(global_array, LLVMInternalLinkage); LLVMSetGlobalConstant(global_array, false); LLVMSetUnnamedAddr(global_array, true); LLVMSetAlignment(global_array, u8_align_bytes); ZigType *usize = g->builtin_types.entry_usize; LLVMValueRef full_buf_ptr_indices[] = { LLVMConstNull(usize->llvm_type), LLVMConstNull(usize->llvm_type), }; LLVMValueRef full_buf_ptr = LLVMConstInBoundsGEP(global_array, full_buf_ptr_indices, 2); ZigType *u8_ptr_type = get_pointer_to_type_extra(g, g->builtin_types.entry_u8, true, false, PtrLenUnknown, get_abi_alignment(g, g->builtin_types.entry_u8), 0, 0, false); ZigType *str_type = get_slice_type(g, u8_ptr_type); LLVMValueRef global_slice_fields[] = { full_buf_ptr, LLVMConstNull(usize->llvm_type), }; LLVMValueRef slice_init_value = LLVMConstNamedStruct(get_llvm_type(g, str_type), global_slice_fields, 2); LLVMValueRef global_slice = LLVMAddGlobal(g->module, LLVMTypeOf(slice_init_value), ""); LLVMSetInitializer(global_slice, slice_init_value); LLVMSetLinkage(global_slice, LLVMInternalLinkage); LLVMSetGlobalConstant(global_slice, false); LLVMSetUnnamedAddr(global_slice, true); LLVMSetAlignment(global_slice, get_abi_alignment(g, str_type)); LLVMValueRef offset_ptr_indices[] = { LLVMConstNull(usize->llvm_type), LLVMConstInt(usize->llvm_type, unwrap_err_msg_text_len, false), }; LLVMValueRef offset_buf_ptr = LLVMConstInBoundsGEP(global_array, offset_ptr_indices, 2); Buf *fn_name = get_mangled_name(g, buf_create_from_str("__zig_fail_unwrap"), false); LLVMTypeRef fn_type_ref; if (g->have_err_ret_tracing) { LLVMTypeRef arg_types[] = { get_llvm_type(g, g->ptr_to_stack_trace_type), get_llvm_type(g, g->err_tag_type), }; fn_type_ref = LLVMFunctionType(LLVMVoidType(), arg_types, 2, false); } else { LLVMTypeRef arg_types[] = { get_llvm_type(g, g->err_tag_type), }; fn_type_ref = LLVMFunctionType(LLVMVoidType(), arg_types, 1, false); } LLVMValueRef fn_val = LLVMAddFunction(g->module, buf_ptr(fn_name), fn_type_ref); addLLVMFnAttr(fn_val, "noreturn"); addLLVMFnAttr(fn_val, "cold"); LLVMSetLinkage(fn_val, LLVMInternalLinkage); LLVMSetFunctionCallConv(fn_val, get_llvm_cc(g, CallingConventionUnspecified)); addLLVMFnAttr(fn_val, "nounwind"); add_uwtable_attr(g, fn_val); if (g->build_mode == BuildModeDebug) { ZigLLVMAddFunctionAttr(fn_val, "no-frame-pointer-elim", "true"); ZigLLVMAddFunctionAttr(fn_val, "no-frame-pointer-elim-non-leaf", nullptr); } // Not setting alignment here. See the comment above about // "Cannot getTypeInfo() on a type that is unsized!" // assertion failure on Darwin. LLVMBasicBlockRef entry_block = LLVMAppendBasicBlock(fn_val, "Entry"); LLVMBasicBlockRef prev_block = LLVMGetInsertBlock(g->builder); LLVMValueRef prev_debug_location = LLVMGetCurrentDebugLocation(g->builder); LLVMPositionBuilderAtEnd(g->builder, entry_block); ZigLLVMClearCurrentDebugLocation(g->builder); LLVMValueRef err_ret_trace_arg; LLVMValueRef err_val; if (g->have_err_ret_tracing) { err_ret_trace_arg = LLVMGetParam(fn_val, 0); err_val = LLVMGetParam(fn_val, 1); } else { err_ret_trace_arg = nullptr; err_val = LLVMGetParam(fn_val, 0); } LLVMValueRef err_table_indices[] = { LLVMConstNull(g->builtin_types.entry_usize->llvm_type), err_val, }; LLVMValueRef err_name_val = LLVMBuildInBoundsGEP(g->builder, g->err_name_table, err_table_indices, 2, ""); LLVMValueRef ptr_field_ptr = LLVMBuildStructGEP(g->builder, err_name_val, slice_ptr_index, ""); LLVMValueRef err_name_ptr = gen_load_untyped(g, ptr_field_ptr, 0, false, ""); LLVMValueRef len_field_ptr = LLVMBuildStructGEP(g->builder, err_name_val, slice_len_index, ""); LLVMValueRef err_name_len = gen_load_untyped(g, len_field_ptr, 0, false, ""); ZigLLVMBuildMemCpy(g->builder, offset_buf_ptr, u8_align_bytes, err_name_ptr, u8_align_bytes, err_name_len, false); LLVMValueRef const_prefix_len = LLVMConstInt(LLVMTypeOf(err_name_len), strlen(unwrap_err_msg_text), false); LLVMValueRef full_buf_len = LLVMBuildNUWAdd(g->builder, const_prefix_len, err_name_len, ""); LLVMValueRef global_slice_len_field_ptr = LLVMBuildStructGEP(g->builder, global_slice, slice_len_index, ""); gen_store(g, full_buf_len, global_slice_len_field_ptr, u8_ptr_type); gen_panic(g, global_slice, err_ret_trace_arg); LLVMPositionBuilderAtEnd(g->builder, prev_block); LLVMSetCurrentDebugLocation(g->builder, prev_debug_location); g->safety_crash_err_fn = fn_val; return fn_val; } static bool is_coro_prelude_scope(Scope *scope) { while (scope != nullptr) { if (scope->id == ScopeIdCoroPrelude) { return true; } else if (scope->id == ScopeIdFnDef) { break; } scope = scope->parent; } return false; } static LLVMValueRef get_cur_err_ret_trace_val(CodeGen *g, Scope *scope) { if (!g->have_err_ret_tracing) { return nullptr; } if (g->cur_fn->type_entry->data.fn.fn_type_id.cc == CallingConventionAsync) { return is_coro_prelude_scope(scope) ? g->cur_err_ret_trace_val_arg : g->cur_err_ret_trace_val_stack; } if (g->cur_err_ret_trace_val_stack != nullptr) { return g->cur_err_ret_trace_val_stack; } return g->cur_err_ret_trace_val_arg; } static void gen_safety_crash_for_err(CodeGen *g, LLVMValueRef err_val, Scope *scope) { LLVMValueRef safety_crash_err_fn = get_safety_crash_err_fn(g); LLVMValueRef call_instruction; if (g->have_err_ret_tracing) { LLVMValueRef err_ret_trace_val = get_cur_err_ret_trace_val(g, scope); if (err_ret_trace_val == nullptr) { ZigType *ptr_to_stack_trace_type = get_ptr_to_stack_trace_type(g); err_ret_trace_val = LLVMConstNull(get_llvm_type(g, ptr_to_stack_trace_type)); } LLVMValueRef args[] = { err_ret_trace_val, err_val, }; call_instruction = ZigLLVMBuildCall(g->builder, safety_crash_err_fn, args, 2, get_llvm_cc(g, CallingConventionUnspecified), ZigLLVM_FnInlineAuto, ""); } else { LLVMValueRef args[] = { err_val, }; call_instruction = ZigLLVMBuildCall(g->builder, safety_crash_err_fn, args, 1, get_llvm_cc(g, CallingConventionUnspecified), ZigLLVM_FnInlineAuto, ""); } LLVMSetTailCall(call_instruction, true); LLVMBuildUnreachable(g->builder); } static void add_bounds_check(CodeGen *g, LLVMValueRef target_val, LLVMIntPredicate lower_pred, LLVMValueRef lower_value, LLVMIntPredicate upper_pred, LLVMValueRef upper_value) { if (!lower_value && !upper_value) { return; } if (upper_value && !lower_value) { lower_value = upper_value; lower_pred = upper_pred; upper_value = nullptr; } LLVMBasicBlockRef bounds_check_fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "BoundsCheckFail"); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "BoundsCheckOk"); LLVMBasicBlockRef lower_ok_block = upper_value ? LLVMAppendBasicBlock(g->cur_fn_val, "FirstBoundsCheckOk") : ok_block; LLVMValueRef lower_ok_val = LLVMBuildICmp(g->builder, lower_pred, target_val, lower_value, ""); LLVMBuildCondBr(g->builder, lower_ok_val, lower_ok_block, bounds_check_fail_block); LLVMPositionBuilderAtEnd(g->builder, bounds_check_fail_block); gen_safety_crash(g, PanicMsgIdBoundsCheckFailure); if (upper_value) { LLVMPositionBuilderAtEnd(g->builder, lower_ok_block); LLVMValueRef upper_ok_val = LLVMBuildICmp(g->builder, upper_pred, target_val, upper_value, ""); LLVMBuildCondBr(g->builder, upper_ok_val, ok_block, bounds_check_fail_block); } LLVMPositionBuilderAtEnd(g->builder, ok_block); } static LLVMValueRef gen_assert_zero(CodeGen *g, LLVMValueRef expr_val, ZigType *int_type) { LLVMValueRef zero = LLVMConstNull(get_llvm_type(g, int_type)); LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, expr_val, zero, ""); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "CastShortenOk"); LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "CastShortenFail"); LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block); LLVMPositionBuilderAtEnd(g->builder, fail_block); gen_safety_crash(g, PanicMsgIdCastTruncatedData); LLVMPositionBuilderAtEnd(g->builder, ok_block); return nullptr; } static LLVMValueRef gen_widen_or_shorten(CodeGen *g, bool want_runtime_safety, ZigType *actual_type, ZigType *wanted_type, LLVMValueRef expr_val) { assert(actual_type->id == wanted_type->id); assert(expr_val != nullptr); uint64_t actual_bits; uint64_t wanted_bits; if (actual_type->id == ZigTypeIdFloat) { actual_bits = actual_type->data.floating.bit_count; wanted_bits = wanted_type->data.floating.bit_count; } else if (actual_type->id == ZigTypeIdInt) { actual_bits = actual_type->data.integral.bit_count; wanted_bits = wanted_type->data.integral.bit_count; } else { zig_unreachable(); } if (actual_type->id == ZigTypeIdInt && !wanted_type->data.integral.is_signed && actual_type->data.integral.is_signed && want_runtime_safety) { LLVMValueRef zero = LLVMConstNull(get_llvm_type(g, actual_type)); LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntSGE, expr_val, zero, ""); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "SignCastOk"); LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "SignCastFail"); LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block); LLVMPositionBuilderAtEnd(g->builder, fail_block); gen_safety_crash(g, PanicMsgIdCastNegativeToUnsigned); LLVMPositionBuilderAtEnd(g->builder, ok_block); } if (actual_bits == wanted_bits) { return expr_val; } else if (actual_bits < wanted_bits) { if (actual_type->id == ZigTypeIdFloat) { return LLVMBuildFPExt(g->builder, expr_val, get_llvm_type(g, wanted_type), ""); } else if (actual_type->id == ZigTypeIdInt) { if (actual_type->data.integral.is_signed) { return LLVMBuildSExt(g->builder, expr_val, get_llvm_type(g, wanted_type), ""); } else { return LLVMBuildZExt(g->builder, expr_val, get_llvm_type(g, wanted_type), ""); } } else { zig_unreachable(); } } else if (actual_bits > wanted_bits) { if (actual_type->id == ZigTypeIdFloat) { return LLVMBuildFPTrunc(g->builder, expr_val, get_llvm_type(g, wanted_type), ""); } else if (actual_type->id == ZigTypeIdInt) { if (wanted_bits == 0) { if (!want_runtime_safety) return nullptr; return gen_assert_zero(g, expr_val, actual_type); } LLVMValueRef trunc_val = LLVMBuildTrunc(g->builder, expr_val, get_llvm_type(g, wanted_type), ""); if (!want_runtime_safety) { return trunc_val; } LLVMValueRef orig_val; if (wanted_type->data.integral.is_signed) { orig_val = LLVMBuildSExt(g->builder, trunc_val, get_llvm_type(g, actual_type), ""); } else { orig_val = LLVMBuildZExt(g->builder, trunc_val, get_llvm_type(g, actual_type), ""); } LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, expr_val, orig_val, ""); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "CastShortenOk"); LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "CastShortenFail"); LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block); LLVMPositionBuilderAtEnd(g->builder, fail_block); gen_safety_crash(g, PanicMsgIdCastTruncatedData); LLVMPositionBuilderAtEnd(g->builder, ok_block); return trunc_val; } else { zig_unreachable(); } } else { zig_unreachable(); } } typedef LLVMValueRef (*BuildBinOpFunc)(LLVMBuilderRef, LLVMValueRef, LLVMValueRef, const char *); // These are lookup table using the AddSubMul enum as the lookup. // If AddSubMul ever changes, then these tables will be out of // date. static const BuildBinOpFunc float_op[3] = { LLVMBuildFAdd, LLVMBuildFSub, LLVMBuildFMul }; static const BuildBinOpFunc wrap_op[3] = { LLVMBuildAdd, LLVMBuildSub, LLVMBuildMul }; static const BuildBinOpFunc signed_op[3] = { LLVMBuildNSWAdd, LLVMBuildNSWSub, LLVMBuildNSWMul }; static const BuildBinOpFunc unsigned_op[3] = { LLVMBuildNUWAdd, LLVMBuildNUWSub, LLVMBuildNUWMul }; static LLVMValueRef gen_overflow_op(CodeGen *g, ZigType *operand_type, AddSubMul op, LLVMValueRef val1, LLVMValueRef val2) { LLVMValueRef overflow_bit; LLVMValueRef result; if (operand_type->id == ZigTypeIdVector) { ZigType *int_type = operand_type->data.vector.elem_type; assert(int_type->id == ZigTypeIdInt); LLVMTypeRef one_more_bit_int = LLVMIntType(int_type->data.integral.bit_count + 1); LLVMTypeRef one_more_bit_int_vector = LLVMVectorType(one_more_bit_int, operand_type->data.vector.len); const auto buildExtFn = int_type->data.integral.is_signed ? LLVMBuildSExt : LLVMBuildZExt; LLVMValueRef extended1 = buildExtFn(g->builder, val1, one_more_bit_int_vector, ""); LLVMValueRef extended2 = buildExtFn(g->builder, val2, one_more_bit_int_vector, ""); LLVMValueRef extended_result = wrap_op[op](g->builder, extended1, extended2, ""); result = LLVMBuildTrunc(g->builder, extended_result, get_llvm_type(g, operand_type), ""); LLVMValueRef re_extended_result = buildExtFn(g->builder, result, one_more_bit_int_vector, ""); LLVMValueRef overflow_vector = LLVMBuildICmp(g->builder, LLVMIntNE, extended_result, re_extended_result, ""); LLVMTypeRef bitcast_int_type = LLVMIntType(operand_type->data.vector.len); LLVMValueRef bitcasted_overflow = LLVMBuildBitCast(g->builder, overflow_vector, bitcast_int_type, ""); LLVMValueRef zero = LLVMConstNull(bitcast_int_type); overflow_bit = LLVMBuildICmp(g->builder, LLVMIntNE, bitcasted_overflow, zero, ""); } else { LLVMValueRef fn_val = get_int_overflow_fn(g, operand_type, op); LLVMValueRef params[] = { val1, val2, }; LLVMValueRef result_struct = LLVMBuildCall(g->builder, fn_val, params, 2, ""); result = LLVMBuildExtractValue(g->builder, result_struct, 0, ""); overflow_bit = LLVMBuildExtractValue(g->builder, result_struct, 1, ""); } LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "OverflowFail"); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "OverflowOk"); LLVMBuildCondBr(g->builder, overflow_bit, fail_block, ok_block); LLVMPositionBuilderAtEnd(g->builder, fail_block); gen_safety_crash(g, PanicMsgIdIntegerOverflow); LLVMPositionBuilderAtEnd(g->builder, ok_block); return result; } static LLVMIntPredicate cmp_op_to_int_predicate(IrBinOp cmp_op, bool is_signed) { switch (cmp_op) { case IrBinOpCmpEq: return LLVMIntEQ; case IrBinOpCmpNotEq: return LLVMIntNE; case IrBinOpCmpLessThan: return is_signed ? LLVMIntSLT : LLVMIntULT; case IrBinOpCmpGreaterThan: return is_signed ? LLVMIntSGT : LLVMIntUGT; case IrBinOpCmpLessOrEq: return is_signed ? LLVMIntSLE : LLVMIntULE; case IrBinOpCmpGreaterOrEq: return is_signed ? LLVMIntSGE : LLVMIntUGE; default: zig_unreachable(); } } static LLVMRealPredicate cmp_op_to_real_predicate(IrBinOp cmp_op) { switch (cmp_op) { case IrBinOpCmpEq: return LLVMRealOEQ; case IrBinOpCmpNotEq: return LLVMRealUNE; case IrBinOpCmpLessThan: return LLVMRealOLT; case IrBinOpCmpGreaterThan: return LLVMRealOGT; case IrBinOpCmpLessOrEq: return LLVMRealOLE; case IrBinOpCmpGreaterOrEq: return LLVMRealOGE; default: zig_unreachable(); } } static LLVMValueRef gen_assign_raw(CodeGen *g, LLVMValueRef ptr, ZigType *ptr_type, LLVMValueRef value) { assert(ptr_type->id == ZigTypeIdPointer); ZigType *child_type = ptr_type->data.pointer.child_type; if (!type_has_bits(child_type)) return nullptr; if (handle_is_ptr(child_type)) { assert(LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMPointerTypeKind); assert(LLVMGetTypeKind(LLVMTypeOf(ptr)) == LLVMPointerTypeKind); LLVMTypeRef ptr_u8 = LLVMPointerType(LLVMInt8Type(), 0); LLVMValueRef src_ptr = LLVMBuildBitCast(g->builder, value, ptr_u8, ""); LLVMValueRef dest_ptr = LLVMBuildBitCast(g->builder, ptr, ptr_u8, ""); ZigType *usize = g->builtin_types.entry_usize; uint64_t size_bytes = LLVMStoreSizeOfType(g->target_data_ref, get_llvm_type(g, child_type)); uint64_t align_bytes = get_ptr_align(g, ptr_type); assert(size_bytes > 0); assert(align_bytes > 0); ZigLLVMBuildMemCpy(g->builder, dest_ptr, align_bytes, src_ptr, align_bytes, LLVMConstInt(usize->llvm_type, size_bytes, false), ptr_type->data.pointer.is_volatile); return nullptr; } uint32_t host_int_bytes = ptr_type->data.pointer.host_int_bytes; if (host_int_bytes == 0) { gen_store(g, value, ptr, ptr_type); return nullptr; } bool big_endian = g->is_big_endian; LLVMValueRef containing_int = gen_load(g, ptr, ptr_type, ""); uint32_t host_bit_count = LLVMGetIntTypeWidth(LLVMTypeOf(containing_int)); assert(host_bit_count == host_int_bytes * 8); uint32_t size_in_bits = type_size_bits(g, child_type); uint32_t bit_offset = ptr_type->data.pointer.bit_offset_in_host; uint32_t shift_amt = big_endian ? host_bit_count - bit_offset - size_in_bits : bit_offset; LLVMValueRef shift_amt_val = LLVMConstInt(LLVMTypeOf(containing_int), shift_amt, false); // Convert to equally-sized integer type in order to perform the bit // operations on the value to store LLVMTypeRef value_bits_type = LLVMIntType(size_in_bits); LLVMValueRef value_bits = LLVMBuildBitCast(g->builder, value, value_bits_type, ""); LLVMValueRef mask_val = LLVMConstAllOnes(value_bits_type); mask_val = LLVMConstZExt(mask_val, LLVMTypeOf(containing_int)); mask_val = LLVMConstShl(mask_val, shift_amt_val); mask_val = LLVMConstNot(mask_val); LLVMValueRef anded_containing_int = LLVMBuildAnd(g->builder, containing_int, mask_val, ""); LLVMValueRef extended_value = LLVMBuildZExt(g->builder, value_bits, LLVMTypeOf(containing_int), ""); LLVMValueRef shifted_value = LLVMBuildShl(g->builder, extended_value, shift_amt_val, ""); LLVMValueRef ored_value = LLVMBuildOr(g->builder, shifted_value, anded_containing_int, ""); gen_store(g, ored_value, ptr, ptr_type); return nullptr; } static void gen_var_debug_decl(CodeGen *g, ZigVar *var) { assert(var->di_loc_var != nullptr); AstNode *source_node = var->decl_node; ZigLLVMDILocation *debug_loc = ZigLLVMGetDebugLoc((unsigned)source_node->line + 1, (unsigned)source_node->column + 1, get_di_scope(g, var->parent_scope)); ZigLLVMInsertDeclareAtEnd(g->dbuilder, var->value_ref, var->di_loc_var, debug_loc, LLVMGetInsertBlock(g->builder)); } static LLVMValueRef ir_llvm_value(CodeGen *g, IrInstruction *instruction) { if (!type_has_bits(instruction->value.type)) return nullptr; if (!instruction->llvm_value) { assert(instruction->value.special != ConstValSpecialRuntime); assert(instruction->value.type); render_const_val(g, &instruction->value, ""); // we might have to do some pointer casting here due to the way union // values are rendered with a type other than the one we expect if (handle_is_ptr(instruction->value.type)) { render_const_val_global(g, &instruction->value, ""); ZigType *ptr_type = get_pointer_to_type(g, instruction->value.type, true); instruction->llvm_value = LLVMBuildBitCast(g->builder, instruction->value.global_refs->llvm_global, get_llvm_type(g, ptr_type), ""); } else if (instruction->value.type->id == ZigTypeIdPointer) { instruction->llvm_value = LLVMBuildBitCast(g->builder, instruction->value.global_refs->llvm_value, get_llvm_type(g, instruction->value.type), ""); } else { instruction->llvm_value = instruction->value.global_refs->llvm_value; } assert(instruction->llvm_value); } return instruction->llvm_value; } ATTRIBUTE_NORETURN static void report_errors_and_exit(CodeGen *g) { assert(g->errors.length != 0); for (size_t i = 0; i < g->errors.length; i += 1) { ErrorMsg *err = g->errors.at(i); print_err_msg(err, g->err_color); } exit(1); } static void report_errors_and_maybe_exit(CodeGen *g) { if (g->errors.length != 0) { report_errors_and_exit(g); } } ATTRIBUTE_NORETURN static void give_up_with_c_abi_error(CodeGen *g, AstNode *source_node) { ErrorMsg *msg = add_node_error(g, source_node, buf_sprintf("TODO: support C ABI for more targets. https://github.com/ziglang/zig/issues/1481")); add_error_note(g, msg, source_node, buf_sprintf("pointers, integers, floats, bools, and enums work on all targets")); report_errors_and_exit(g); } static LLVMValueRef build_alloca(CodeGen *g, ZigType *type_entry, const char *name, uint32_t alignment) { LLVMValueRef result = LLVMBuildAlloca(g->builder, get_llvm_type(g, type_entry), name); LLVMSetAlignment(result, (alignment == 0) ? get_abi_alignment(g, type_entry) : alignment); return result; } static bool iter_function_params_c_abi(CodeGen *g, ZigType *fn_type, FnWalk *fn_walk, size_t src_i) { // Initialized from the type for some walks, but because of C var args, // initialized based on callsite instructions for that one. FnTypeParamInfo *param_info = nullptr; ZigType *ty; ZigType *dest_ty = nullptr; AstNode *source_node = nullptr; LLVMValueRef val; LLVMValueRef llvm_fn; unsigned di_arg_index; ZigVar *var; switch (fn_walk->id) { case FnWalkIdAttrs: if (src_i >= fn_type->data.fn.fn_type_id.param_count) return false; param_info = &fn_type->data.fn.fn_type_id.param_info[src_i]; ty = param_info->type; source_node = fn_walk->data.attrs.fn->proto_node; llvm_fn = fn_walk->data.attrs.fn->llvm_value; break; case FnWalkIdCall: { if (src_i >= fn_walk->data.call.inst->arg_count) return false; IrInstruction *arg = fn_walk->data.call.inst->args[src_i]; ty = arg->value.type; source_node = arg->source_node; val = ir_llvm_value(g, arg); break; } case FnWalkIdTypes: if (src_i >= fn_type->data.fn.fn_type_id.param_count) return false; param_info = &fn_type->data.fn.fn_type_id.param_info[src_i]; ty = param_info->type; break; case FnWalkIdVars: assert(src_i < fn_type->data.fn.fn_type_id.param_count); param_info = &fn_type->data.fn.fn_type_id.param_info[src_i]; ty = param_info->type; var = fn_walk->data.vars.var; source_node = var->decl_node; llvm_fn = fn_walk->data.vars.llvm_fn; break; case FnWalkIdInits: if (src_i >= fn_type->data.fn.fn_type_id.param_count) return false; param_info = &fn_type->data.fn.fn_type_id.param_info[src_i]; ty = param_info->type; var = fn_walk->data.inits.fn->variable_list.at(src_i); source_node = fn_walk->data.inits.fn->proto_node; llvm_fn = fn_walk->data.inits.llvm_fn; break; } if (type_is_c_abi_int(g, ty) || ty->id == ZigTypeIdFloat || ty->id == ZigTypeIdVector || ty->id == ZigTypeIdInt // TODO investigate if we need to change this ) { switch (fn_walk->id) { case FnWalkIdAttrs: { ZigType *ptr_type = get_codegen_ptr_type(ty); if (ptr_type != nullptr) { if (type_is_nonnull_ptr(ty)) { addLLVMArgAttr(llvm_fn, fn_walk->data.attrs.gen_i, "nonnull"); } if (ptr_type->data.pointer.is_const) { addLLVMArgAttr(llvm_fn, fn_walk->data.attrs.gen_i, "readonly"); } if (param_info->is_noalias) { addLLVMArgAttr(llvm_fn, fn_walk->data.attrs.gen_i, "noalias"); } } fn_walk->data.attrs.gen_i += 1; break; } case FnWalkIdCall: fn_walk->data.call.gen_param_values->append(val); break; case FnWalkIdTypes: fn_walk->data.types.gen_param_types->append(get_llvm_type(g, ty)); fn_walk->data.types.param_di_types->append(get_llvm_di_type(g, ty)); break; case FnWalkIdVars: { var->value_ref = build_alloca(g, ty, buf_ptr(&var->name), var->align_bytes); di_arg_index = fn_walk->data.vars.gen_i; fn_walk->data.vars.gen_i += 1; dest_ty = ty; goto var_ok; } case FnWalkIdInits: clear_debug_source_node(g); gen_store_untyped(g, LLVMGetParam(llvm_fn, fn_walk->data.inits.gen_i), var->value_ref, var->align_bytes, false); if (var->decl_node) { gen_var_debug_decl(g, var); } fn_walk->data.inits.gen_i += 1; break; } return true; } // Arrays are just pointers if (ty->id == ZigTypeIdArray) { assert(handle_is_ptr(ty)); switch (fn_walk->id) { case FnWalkIdAttrs: // arrays passed to C ABI functions may not be at address 0 addLLVMArgAttr(llvm_fn, fn_walk->data.attrs.gen_i, "nonnull"); addLLVMArgAttrInt(llvm_fn, fn_walk->data.attrs.gen_i, "align", get_abi_alignment(g, ty)); fn_walk->data.attrs.gen_i += 1; break; case FnWalkIdCall: fn_walk->data.call.gen_param_values->append(val); break; case FnWalkIdTypes: { ZigType *gen_type = get_pointer_to_type(g, ty, true); fn_walk->data.types.gen_param_types->append(get_llvm_type(g, gen_type)); fn_walk->data.types.param_di_types->append(get_llvm_di_type(g, gen_type)); break; } case FnWalkIdVars: { var->value_ref = LLVMGetParam(llvm_fn, fn_walk->data.vars.gen_i); di_arg_index = fn_walk->data.vars.gen_i; dest_ty = get_pointer_to_type(g, ty, false); fn_walk->data.vars.gen_i += 1; goto var_ok; } case FnWalkIdInits: if (var->decl_node) { gen_var_debug_decl(g, var); } fn_walk->data.inits.gen_i += 1; break; } return true; } if (g->zig_target->arch == ZigLLVM_x86_64) { X64CABIClass abi_class = type_c_abi_x86_64_class(g, ty); size_t ty_size = type_size(g, ty); if (abi_class == X64CABIClass_MEMORY) { assert(handle_is_ptr(ty)); switch (fn_walk->id) { case FnWalkIdAttrs: addLLVMArgAttr(llvm_fn, fn_walk->data.attrs.gen_i, "byval"); addLLVMArgAttrInt(llvm_fn, fn_walk->data.attrs.gen_i, "align", get_abi_alignment(g, ty)); // Byvalue parameters must not have address 0 addLLVMArgAttr(llvm_fn, fn_walk->data.attrs.gen_i, "nonnull"); fn_walk->data.attrs.gen_i += 1; break; case FnWalkIdCall: fn_walk->data.call.gen_param_values->append(val); break; case FnWalkIdTypes: { ZigType *gen_type = get_pointer_to_type(g, ty, true); fn_walk->data.types.gen_param_types->append(get_llvm_type(g, gen_type)); fn_walk->data.types.param_di_types->append(get_llvm_di_type(g, gen_type)); break; } case FnWalkIdVars: { di_arg_index = fn_walk->data.vars.gen_i; var->value_ref = LLVMGetParam(llvm_fn, fn_walk->data.vars.gen_i); dest_ty = get_pointer_to_type(g, ty, false); fn_walk->data.vars.gen_i += 1; goto var_ok; } case FnWalkIdInits: if (var->decl_node) { gen_var_debug_decl(g, var); } fn_walk->data.inits.gen_i += 1; break; } return true; } else if (abi_class == X64CABIClass_INTEGER) { switch (fn_walk->id) { case FnWalkIdAttrs: fn_walk->data.attrs.gen_i += 1; break; case FnWalkIdCall: { LLVMTypeRef ptr_to_int_type_ref = LLVMPointerType(LLVMIntType((unsigned)ty_size * 8), 0); LLVMValueRef bitcasted = LLVMBuildBitCast(g->builder, val, ptr_to_int_type_ref, ""); LLVMValueRef loaded = LLVMBuildLoad(g->builder, bitcasted, ""); fn_walk->data.call.gen_param_values->append(loaded); break; } case FnWalkIdTypes: { ZigType *gen_type = get_int_type(g, false, ty_size * 8); fn_walk->data.types.gen_param_types->append(get_llvm_type(g, gen_type)); fn_walk->data.types.param_di_types->append(get_llvm_di_type(g, gen_type)); break; } case FnWalkIdVars: { di_arg_index = fn_walk->data.vars.gen_i; var->value_ref = build_alloca(g, ty, buf_ptr(&var->name), var->align_bytes); fn_walk->data.vars.gen_i += 1; dest_ty = ty; goto var_ok; } case FnWalkIdInits: { clear_debug_source_node(g); LLVMValueRef arg = LLVMGetParam(llvm_fn, fn_walk->data.inits.gen_i); LLVMTypeRef ptr_to_int_type_ref = LLVMPointerType(LLVMIntType((unsigned)ty_size * 8), 0); LLVMValueRef bitcasted = LLVMBuildBitCast(g->builder, var->value_ref, ptr_to_int_type_ref, ""); gen_store_untyped(g, arg, bitcasted, var->align_bytes, false); if (var->decl_node) { gen_var_debug_decl(g, var); } fn_walk->data.inits.gen_i += 1; break; } } return true; } } if (source_node != nullptr) { give_up_with_c_abi_error(g, source_node); } // otherwise allow codegen code to report a compile error return false; var_ok: if (dest_ty != nullptr && var->decl_node) { // arg index + 1 because the 0 index is return value var->di_loc_var = ZigLLVMCreateParameterVariable(g->dbuilder, get_di_scope(g, var->parent_scope), buf_ptr(&var->name), fn_walk->data.vars.import->data.structure.root_struct->di_file, (unsigned)(var->decl_node->line + 1), get_llvm_di_type(g, dest_ty), !g->strip_debug_symbols, 0, di_arg_index + 1); } return true; } void walk_function_params(CodeGen *g, ZigType *fn_type, FnWalk *fn_walk) { CallingConvention cc = fn_type->data.fn.fn_type_id.cc; if (cc == CallingConventionC) { size_t src_i = 0; for (;;) { if (!iter_function_params_c_abi(g, fn_type, fn_walk, src_i)) break; src_i += 1; } return; } if (fn_walk->id == FnWalkIdCall) { IrInstructionCall *instruction = fn_walk->data.call.inst; bool is_var_args = fn_walk->data.call.is_var_args; for (size_t call_i = 0; call_i < instruction->arg_count; call_i += 1) { IrInstruction *param_instruction = instruction->args[call_i]; ZigType *param_type = param_instruction->value.type; if (is_var_args || type_has_bits(param_type)) { LLVMValueRef param_value = ir_llvm_value(g, param_instruction); assert(param_value); fn_walk->data.call.gen_param_values->append(param_value); } } return; } size_t next_var_i = 0; for (size_t param_i = 0; param_i < fn_type->data.fn.fn_type_id.param_count; param_i += 1) { FnGenParamInfo *gen_info = &fn_type->data.fn.gen_param_info[param_i]; size_t gen_index = gen_info->gen_index; if (gen_index == SIZE_MAX) { continue; } switch (fn_walk->id) { case FnWalkIdAttrs: { LLVMValueRef llvm_fn = fn_walk->data.attrs.fn->llvm_value; bool is_byval = gen_info->is_byval; FnTypeParamInfo *param_info = &fn_type->data.fn.fn_type_id.param_info[param_i]; ZigType *param_type = gen_info->type; if (param_info->is_noalias) { addLLVMArgAttr(llvm_fn, (unsigned)gen_index, "noalias"); } if ((param_type->id == ZigTypeIdPointer && param_type->data.pointer.is_const) || is_byval) { addLLVMArgAttr(llvm_fn, (unsigned)gen_index, "readonly"); } if (get_codegen_ptr_type(param_type) != nullptr) { addLLVMArgAttrInt(llvm_fn, (unsigned)gen_index, "align", get_ptr_align(g, param_type)); } if (type_is_nonnull_ptr(param_type)) { addLLVMArgAttr(llvm_fn, (unsigned)gen_index, "nonnull"); } break; } case FnWalkIdInits: { ZigFn *fn_table_entry = fn_walk->data.inits.fn; LLVMValueRef llvm_fn = fn_table_entry->llvm_value; ZigVar *variable = fn_table_entry->variable_list.at(next_var_i); assert(variable->src_arg_index != SIZE_MAX); next_var_i += 1; assert(variable); assert(variable->value_ref); if (!handle_is_ptr(variable->var_type)) { clear_debug_source_node(g); ZigType *fn_type = fn_table_entry->type_entry; unsigned gen_arg_index = fn_type->data.fn.gen_param_info[variable->src_arg_index].gen_index; gen_store_untyped(g, LLVMGetParam(llvm_fn, gen_arg_index), variable->value_ref, variable->align_bytes, false); } if (variable->decl_node) { gen_var_debug_decl(g, variable); } break; } case FnWalkIdCall: // handled before for loop zig_unreachable(); case FnWalkIdTypes: // Not called for non-c-abi zig_unreachable(); case FnWalkIdVars: // iter_function_params_c_abi is called directly for this one zig_unreachable(); } } } static LLVMValueRef ir_render_save_err_ret_addr(CodeGen *g, IrExecutable *executable, IrInstructionSaveErrRetAddr *save_err_ret_addr_instruction) { assert(g->have_err_ret_tracing); LLVMValueRef return_err_fn = get_return_err_fn(g); LLVMValueRef args[] = { get_cur_err_ret_trace_val(g, save_err_ret_addr_instruction->base.scope), }; LLVMValueRef call_instruction = ZigLLVMBuildCall(g->builder, return_err_fn, args, 1, get_llvm_cc(g, CallingConventionUnspecified), ZigLLVM_FnInlineAuto, ""); return call_instruction; } static LLVMValueRef ir_render_return(CodeGen *g, IrExecutable *executable, IrInstructionReturn *return_instruction) { LLVMValueRef value = ir_llvm_value(g, return_instruction->value); ZigType *return_type = return_instruction->value->value.type; if (want_first_arg_sret(g, &g->cur_fn->type_entry->data.fn.fn_type_id)) { assert(g->cur_ret_ptr); gen_assign_raw(g, g->cur_ret_ptr, get_pointer_to_type(g, return_type, false), value); LLVMBuildRetVoid(g->builder); } else if (handle_is_ptr(return_type)) { LLVMValueRef by_val_value = gen_load_untyped(g, value, 0, false, ""); LLVMBuildRet(g->builder, by_val_value); } else { LLVMBuildRet(g->builder, value); } return nullptr; } static LLVMValueRef gen_overflow_shl_op(CodeGen *g, ZigType *type_entry, LLVMValueRef val1, LLVMValueRef val2) { // for unsigned left shifting, we do the lossy shift, then logically shift // right the same number of bits // if the values don't match, we have an overflow // for signed left shifting we do the same except arithmetic shift right assert(type_entry->id == ZigTypeIdInt); LLVMValueRef result = LLVMBuildShl(g->builder, val1, val2, ""); LLVMValueRef orig_val; if (type_entry->data.integral.is_signed) { orig_val = LLVMBuildAShr(g->builder, result, val2, ""); } else { orig_val = LLVMBuildLShr(g->builder, result, val2, ""); } LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, val1, orig_val, ""); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "OverflowOk"); LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "OverflowFail"); LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block); LLVMPositionBuilderAtEnd(g->builder, fail_block); gen_safety_crash(g, PanicMsgIdShlOverflowedBits); LLVMPositionBuilderAtEnd(g->builder, ok_block); return result; } static LLVMValueRef gen_overflow_shr_op(CodeGen *g, ZigType *type_entry, LLVMValueRef val1, LLVMValueRef val2) { assert(type_entry->id == ZigTypeIdInt); LLVMValueRef result; if (type_entry->data.integral.is_signed) { result = LLVMBuildAShr(g->builder, val1, val2, ""); } else { result = LLVMBuildLShr(g->builder, val1, val2, ""); } LLVMValueRef orig_val = LLVMBuildShl(g->builder, result, val2, ""); LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, val1, orig_val, ""); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "OverflowOk"); LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "OverflowFail"); LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block); LLVMPositionBuilderAtEnd(g->builder, fail_block); gen_safety_crash(g, PanicMsgIdShrOverflowedBits); LLVMPositionBuilderAtEnd(g->builder, ok_block); return result; } static LLVMValueRef gen_floor(CodeGen *g, LLVMValueRef val, ZigType *type_entry) { if (type_entry->id == ZigTypeIdInt) return val; LLVMValueRef floor_fn = get_float_fn(g, type_entry, ZigLLVMFnIdFloor); return LLVMBuildCall(g->builder, floor_fn, &val, 1, ""); } static LLVMValueRef gen_ceil(CodeGen *g, LLVMValueRef val, ZigType *type_entry) { if (type_entry->id == ZigTypeIdInt) return val; LLVMValueRef ceil_fn = get_float_fn(g, type_entry, ZigLLVMFnIdCeil); return LLVMBuildCall(g->builder, ceil_fn, &val, 1, ""); } enum DivKind { DivKindFloat, DivKindTrunc, DivKindFloor, DivKindExact, }; static LLVMValueRef bigint_to_llvm_const(LLVMTypeRef type_ref, BigInt *bigint) { if (bigint->digit_count == 0) { return LLVMConstNull(type_ref); } LLVMValueRef unsigned_val; if (bigint->digit_count == 1) { unsigned_val = LLVMConstInt(type_ref, bigint_ptr(bigint)[0], false); } else { unsigned_val = LLVMConstIntOfArbitraryPrecision(type_ref, bigint->digit_count, bigint_ptr(bigint)); } if (bigint->is_negative) { return LLVMConstNeg(unsigned_val); } else { return unsigned_val; } } static LLVMValueRef gen_div(CodeGen *g, bool want_runtime_safety, bool want_fast_math, LLVMValueRef val1, LLVMValueRef val2, ZigType *type_entry, DivKind div_kind) { ZigLLVMSetFastMath(g->builder, want_fast_math); LLVMValueRef zero = LLVMConstNull(get_llvm_type(g, type_entry)); if (want_runtime_safety && (want_fast_math || type_entry->id != ZigTypeIdFloat)) { LLVMValueRef is_zero_bit; if (type_entry->id == ZigTypeIdInt) { is_zero_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, val2, zero, ""); } else if (type_entry->id == ZigTypeIdFloat) { is_zero_bit = LLVMBuildFCmp(g->builder, LLVMRealOEQ, val2, zero, ""); } else { zig_unreachable(); } LLVMBasicBlockRef div_zero_fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivZeroFail"); LLVMBasicBlockRef div_zero_ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivZeroOk"); LLVMBuildCondBr(g->builder, is_zero_bit, div_zero_fail_block, div_zero_ok_block); LLVMPositionBuilderAtEnd(g->builder, div_zero_fail_block); gen_safety_crash(g, PanicMsgIdDivisionByZero); LLVMPositionBuilderAtEnd(g->builder, div_zero_ok_block); if (type_entry->id == ZigTypeIdInt && type_entry->data.integral.is_signed) { LLVMValueRef neg_1_value = LLVMConstInt(get_llvm_type(g, type_entry), -1, true); BigInt int_min_bi = {0}; eval_min_max_value_int(g, type_entry, &int_min_bi, false); LLVMValueRef int_min_value = bigint_to_llvm_const(get_llvm_type(g, type_entry), &int_min_bi); LLVMBasicBlockRef overflow_fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivOverflowFail"); LLVMBasicBlockRef overflow_ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivOverflowOk"); LLVMValueRef num_is_int_min = LLVMBuildICmp(g->builder, LLVMIntEQ, val1, int_min_value, ""); LLVMValueRef den_is_neg_1 = LLVMBuildICmp(g->builder, LLVMIntEQ, val2, neg_1_value, ""); LLVMValueRef overflow_fail_bit = LLVMBuildAnd(g->builder, num_is_int_min, den_is_neg_1, ""); LLVMBuildCondBr(g->builder, overflow_fail_bit, overflow_fail_block, overflow_ok_block); LLVMPositionBuilderAtEnd(g->builder, overflow_fail_block); gen_safety_crash(g, PanicMsgIdIntegerOverflow); LLVMPositionBuilderAtEnd(g->builder, overflow_ok_block); } } if (type_entry->id == ZigTypeIdFloat) { LLVMValueRef result = LLVMBuildFDiv(g->builder, val1, val2, ""); switch (div_kind) { case DivKindFloat: return result; case DivKindExact: if (want_runtime_safety) { LLVMValueRef floored = gen_floor(g, result, type_entry); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivExactOk"); LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivExactFail"); LLVMValueRef ok_bit = LLVMBuildFCmp(g->builder, LLVMRealOEQ, floored, result, ""); LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block); LLVMPositionBuilderAtEnd(g->builder, fail_block); gen_safety_crash(g, PanicMsgIdExactDivisionRemainder); LLVMPositionBuilderAtEnd(g->builder, ok_block); } return result; case DivKindTrunc: { LLVMBasicBlockRef ltz_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivTruncLTZero"); LLVMBasicBlockRef gez_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivTruncGEZero"); LLVMBasicBlockRef end_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivTruncEnd"); LLVMValueRef ltz = LLVMBuildFCmp(g->builder, LLVMRealOLT, val1, zero, ""); LLVMBuildCondBr(g->builder, ltz, ltz_block, gez_block); LLVMPositionBuilderAtEnd(g->builder, ltz_block); LLVMValueRef ceiled = gen_ceil(g, result, type_entry); LLVMBasicBlockRef ceiled_end_block = LLVMGetInsertBlock(g->builder); LLVMBuildBr(g->builder, end_block); LLVMPositionBuilderAtEnd(g->builder, gez_block); LLVMValueRef floored = gen_floor(g, result, type_entry); LLVMBasicBlockRef floored_end_block = LLVMGetInsertBlock(g->builder); LLVMBuildBr(g->builder, end_block); LLVMPositionBuilderAtEnd(g->builder, end_block); LLVMValueRef phi = LLVMBuildPhi(g->builder, get_llvm_type(g, type_entry), ""); LLVMValueRef incoming_values[] = { ceiled, floored }; LLVMBasicBlockRef incoming_blocks[] = { ceiled_end_block, floored_end_block }; LLVMAddIncoming(phi, incoming_values, incoming_blocks, 2); return phi; } case DivKindFloor: return gen_floor(g, result, type_entry); } zig_unreachable(); } assert(type_entry->id == ZigTypeIdInt); switch (div_kind) { case DivKindFloat: zig_unreachable(); case DivKindTrunc: if (type_entry->data.integral.is_signed) { return LLVMBuildSDiv(g->builder, val1, val2, ""); } else { return LLVMBuildUDiv(g->builder, val1, val2, ""); } case DivKindExact: if (want_runtime_safety) { LLVMValueRef remainder_val; if (type_entry->data.integral.is_signed) { remainder_val = LLVMBuildSRem(g->builder, val1, val2, ""); } else { remainder_val = LLVMBuildURem(g->builder, val1, val2, ""); } LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, remainder_val, zero, ""); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivExactOk"); LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivExactFail"); LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block); LLVMPositionBuilderAtEnd(g->builder, fail_block); gen_safety_crash(g, PanicMsgIdExactDivisionRemainder); LLVMPositionBuilderAtEnd(g->builder, ok_block); } if (type_entry->data.integral.is_signed) { return LLVMBuildExactSDiv(g->builder, val1, val2, ""); } else { return LLVMBuildExactUDiv(g->builder, val1, val2, ""); } case DivKindFloor: { if (!type_entry->data.integral.is_signed) { return LLVMBuildUDiv(g->builder, val1, val2, ""); } // const d = @divTrunc(a, b); // const r = @rem(a, b); // return if (r == 0) d else d - ((a < 0) ^ (b < 0)); LLVMValueRef div_trunc = LLVMBuildSDiv(g->builder, val1, val2, ""); LLVMValueRef rem = LLVMBuildSRem(g->builder, val1, val2, ""); LLVMValueRef rem_eq_0 = LLVMBuildICmp(g->builder, LLVMIntEQ, rem, zero, ""); LLVMValueRef a_lt_0 = LLVMBuildICmp(g->builder, LLVMIntSLT, val1, zero, ""); LLVMValueRef b_lt_0 = LLVMBuildICmp(g->builder, LLVMIntSLT, val2, zero, ""); LLVMValueRef a_b_xor = LLVMBuildXor(g->builder, a_lt_0, b_lt_0, ""); LLVMValueRef a_b_xor_ext = LLVMBuildZExt(g->builder, a_b_xor, LLVMTypeOf(div_trunc), ""); LLVMValueRef d_sub_xor = LLVMBuildSub(g->builder, div_trunc, a_b_xor_ext, ""); return LLVMBuildSelect(g->builder, rem_eq_0, div_trunc, d_sub_xor, ""); } } zig_unreachable(); } enum RemKind { RemKindRem, RemKindMod, }; static LLVMValueRef gen_rem(CodeGen *g, bool want_runtime_safety, bool want_fast_math, LLVMValueRef val1, LLVMValueRef val2, ZigType *type_entry, RemKind rem_kind) { ZigLLVMSetFastMath(g->builder, want_fast_math); LLVMValueRef zero = LLVMConstNull(get_llvm_type(g, type_entry)); if (want_runtime_safety) { LLVMValueRef is_zero_bit; if (type_entry->id == ZigTypeIdInt) { LLVMIntPredicate pred = type_entry->data.integral.is_signed ? LLVMIntSLE : LLVMIntEQ; is_zero_bit = LLVMBuildICmp(g->builder, pred, val2, zero, ""); } else if (type_entry->id == ZigTypeIdFloat) { is_zero_bit = LLVMBuildFCmp(g->builder, LLVMRealOEQ, val2, zero, ""); } else { zig_unreachable(); } LLVMBasicBlockRef rem_zero_ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "RemZeroOk"); LLVMBasicBlockRef rem_zero_fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "RemZeroFail"); LLVMBuildCondBr(g->builder, is_zero_bit, rem_zero_fail_block, rem_zero_ok_block); LLVMPositionBuilderAtEnd(g->builder, rem_zero_fail_block); gen_safety_crash(g, PanicMsgIdRemainderDivisionByZero); LLVMPositionBuilderAtEnd(g->builder, rem_zero_ok_block); } if (type_entry->id == ZigTypeIdFloat) { if (rem_kind == RemKindRem) { return LLVMBuildFRem(g->builder, val1, val2, ""); } else { LLVMValueRef a = LLVMBuildFRem(g->builder, val1, val2, ""); LLVMValueRef b = LLVMBuildFAdd(g->builder, a, val2, ""); LLVMValueRef c = LLVMBuildFRem(g->builder, b, val2, ""); LLVMValueRef ltz = LLVMBuildFCmp(g->builder, LLVMRealOLT, val1, zero, ""); return LLVMBuildSelect(g->builder, ltz, c, a, ""); } } else { assert(type_entry->id == ZigTypeIdInt); if (type_entry->data.integral.is_signed) { if (rem_kind == RemKindRem) { return LLVMBuildSRem(g->builder, val1, val2, ""); } else { LLVMValueRef a = LLVMBuildSRem(g->builder, val1, val2, ""); LLVMValueRef b = LLVMBuildNSWAdd(g->builder, a, val2, ""); LLVMValueRef c = LLVMBuildSRem(g->builder, b, val2, ""); LLVMValueRef ltz = LLVMBuildICmp(g->builder, LLVMIntSLT, val1, zero, ""); return LLVMBuildSelect(g->builder, ltz, c, a, ""); } } else { return LLVMBuildURem(g->builder, val1, val2, ""); } } } static LLVMValueRef ir_render_bin_op(CodeGen *g, IrExecutable *executable, IrInstructionBinOp *bin_op_instruction) { IrBinOp op_id = bin_op_instruction->op_id; IrInstruction *op1 = bin_op_instruction->op1; IrInstruction *op2 = bin_op_instruction->op2; assert(op1->value.type == op2->value.type || op_id == IrBinOpBitShiftLeftLossy || op_id == IrBinOpBitShiftLeftExact || op_id == IrBinOpBitShiftRightLossy || op_id == IrBinOpBitShiftRightExact || (op1->value.type->id == ZigTypeIdErrorSet && op2->value.type->id == ZigTypeIdErrorSet) || (op1->value.type->id == ZigTypeIdPointer && (op_id == IrBinOpAdd || op_id == IrBinOpSub) && op1->value.type->data.pointer.ptr_len != PtrLenSingle) ); ZigType *operand_type = op1->value.type; ZigType *scalar_type = (operand_type->id == ZigTypeIdVector) ? operand_type->data.vector.elem_type : operand_type; bool want_runtime_safety = bin_op_instruction->safety_check_on && ir_want_runtime_safety(g, &bin_op_instruction->base); LLVMValueRef op1_value = ir_llvm_value(g, op1); LLVMValueRef op2_value = ir_llvm_value(g, op2); switch (op_id) { case IrBinOpInvalid: case IrBinOpArrayCat: case IrBinOpArrayMult: case IrBinOpRemUnspecified: case IrBinOpMergeErrorSets: zig_unreachable(); case IrBinOpBoolOr: return LLVMBuildOr(g->builder, op1_value, op2_value, ""); case IrBinOpBoolAnd: return LLVMBuildAnd(g->builder, op1_value, op2_value, ""); case IrBinOpCmpEq: case IrBinOpCmpNotEq: case IrBinOpCmpLessThan: case IrBinOpCmpGreaterThan: case IrBinOpCmpLessOrEq: case IrBinOpCmpGreaterOrEq: if (scalar_type->id == ZigTypeIdFloat) { ZigLLVMSetFastMath(g->builder, ir_want_fast_math(g, &bin_op_instruction->base)); LLVMRealPredicate pred = cmp_op_to_real_predicate(op_id); return LLVMBuildFCmp(g->builder, pred, op1_value, op2_value, ""); } else if (scalar_type->id == ZigTypeIdInt) { LLVMIntPredicate pred = cmp_op_to_int_predicate(op_id, scalar_type->data.integral.is_signed); return LLVMBuildICmp(g->builder, pred, op1_value, op2_value, ""); } else if (scalar_type->id == ZigTypeIdEnum || scalar_type->id == ZigTypeIdErrorSet || scalar_type->id == ZigTypeIdBool || get_codegen_ptr_type(scalar_type) != nullptr) { LLVMIntPredicate pred = cmp_op_to_int_predicate(op_id, false); return LLVMBuildICmp(g->builder, pred, op1_value, op2_value, ""); } else { zig_unreachable(); } case IrBinOpMult: case IrBinOpMultWrap: case IrBinOpAdd: case IrBinOpAddWrap: case IrBinOpSub: case IrBinOpSubWrap: { bool is_wrapping = (op_id == IrBinOpSubWrap || op_id == IrBinOpAddWrap || op_id == IrBinOpMultWrap); AddSubMul add_sub_mul = op_id == IrBinOpAdd || op_id == IrBinOpAddWrap ? AddSubMulAdd : op_id == IrBinOpSub || op_id == IrBinOpSubWrap ? AddSubMulSub : AddSubMulMul; if (scalar_type->id == ZigTypeIdPointer) { assert(scalar_type->data.pointer.ptr_len != PtrLenSingle); LLVMValueRef subscript_value; if (operand_type->id == ZigTypeIdVector) zig_panic("TODO: Implement vector operations on pointers."); switch (add_sub_mul) { case AddSubMulAdd: subscript_value = op2_value; break; case AddSubMulSub: subscript_value = LLVMBuildNeg(g->builder, op2_value, ""); break; case AddSubMulMul: zig_unreachable(); } // TODO runtime safety return LLVMBuildInBoundsGEP(g->builder, op1_value, &subscript_value, 1, ""); } else if (scalar_type->id == ZigTypeIdFloat) { ZigLLVMSetFastMath(g->builder, ir_want_fast_math(g, &bin_op_instruction->base)); return float_op[add_sub_mul](g->builder, op1_value, op2_value, ""); } else if (scalar_type->id == ZigTypeIdInt) { if (is_wrapping) { return wrap_op[add_sub_mul](g->builder, op1_value, op2_value, ""); } else if (want_runtime_safety) { return gen_overflow_op(g, operand_type, add_sub_mul, op1_value, op2_value); } else if (scalar_type->data.integral.is_signed) { return signed_op[add_sub_mul](g->builder, op1_value, op2_value, ""); } else { return unsigned_op[add_sub_mul](g->builder, op1_value, op2_value, ""); } } else { zig_unreachable(); } } case IrBinOpBinOr: return LLVMBuildOr(g->builder, op1_value, op2_value, ""); case IrBinOpBinXor: return LLVMBuildXor(g->builder, op1_value, op2_value, ""); case IrBinOpBinAnd: return LLVMBuildAnd(g->builder, op1_value, op2_value, ""); case IrBinOpBitShiftLeftLossy: case IrBinOpBitShiftLeftExact: { assert(scalar_type->id == ZigTypeIdInt); LLVMValueRef op2_casted = gen_widen_or_shorten(g, false, op2->value.type, scalar_type, op2_value); bool is_sloppy = (op_id == IrBinOpBitShiftLeftLossy); if (is_sloppy) { return LLVMBuildShl(g->builder, op1_value, op2_casted, ""); } else if (want_runtime_safety) { return gen_overflow_shl_op(g, scalar_type, op1_value, op2_casted); } else if (scalar_type->data.integral.is_signed) { return ZigLLVMBuildNSWShl(g->builder, op1_value, op2_casted, ""); } else { return ZigLLVMBuildNUWShl(g->builder, op1_value, op2_casted, ""); } } case IrBinOpBitShiftRightLossy: case IrBinOpBitShiftRightExact: { assert(scalar_type->id == ZigTypeIdInt); LLVMValueRef op2_casted = gen_widen_or_shorten(g, false, op2->value.type, scalar_type, op2_value); bool is_sloppy = (op_id == IrBinOpBitShiftRightLossy); if (is_sloppy) { if (scalar_type->data.integral.is_signed) { return LLVMBuildAShr(g->builder, op1_value, op2_casted, ""); } else { return LLVMBuildLShr(g->builder, op1_value, op2_casted, ""); } } else if (want_runtime_safety) { return gen_overflow_shr_op(g, scalar_type, op1_value, op2_casted); } else if (scalar_type->data.integral.is_signed) { return ZigLLVMBuildAShrExact(g->builder, op1_value, op2_casted, ""); } else { return ZigLLVMBuildLShrExact(g->builder, op1_value, op2_casted, ""); } } case IrBinOpDivUnspecified: return gen_div(g, want_runtime_safety, ir_want_fast_math(g, &bin_op_instruction->base), op1_value, op2_value, scalar_type, DivKindFloat); case IrBinOpDivExact: return gen_div(g, want_runtime_safety, ir_want_fast_math(g, &bin_op_instruction->base), op1_value, op2_value, scalar_type, DivKindExact); case IrBinOpDivTrunc: return gen_div(g, want_runtime_safety, ir_want_fast_math(g, &bin_op_instruction->base), op1_value, op2_value, scalar_type, DivKindTrunc); case IrBinOpDivFloor: return gen_div(g, want_runtime_safety, ir_want_fast_math(g, &bin_op_instruction->base), op1_value, op2_value, scalar_type, DivKindFloor); case IrBinOpRemRem: return gen_rem(g, want_runtime_safety, ir_want_fast_math(g, &bin_op_instruction->base), op1_value, op2_value, scalar_type, RemKindRem); case IrBinOpRemMod: return gen_rem(g, want_runtime_safety, ir_want_fast_math(g, &bin_op_instruction->base), op1_value, op2_value, scalar_type, RemKindMod); } zig_unreachable(); } static void add_error_range_check(CodeGen *g, ZigType *err_set_type, ZigType *int_type, LLVMValueRef target_val) { assert(err_set_type->id == ZigTypeIdErrorSet); if (type_is_global_error_set(err_set_type)) { LLVMValueRef zero = LLVMConstNull(get_llvm_type(g, int_type)); LLVMValueRef neq_zero_bit = LLVMBuildICmp(g->builder, LLVMIntNE, target_val, zero, ""); LLVMValueRef ok_bit; BigInt biggest_possible_err_val = {0}; eval_min_max_value_int(g, int_type, &biggest_possible_err_val, true); if (bigint_fits_in_bits(&biggest_possible_err_val, 64, false) && bigint_as_unsigned(&biggest_possible_err_val) < g->errors_by_index.length) { ok_bit = neq_zero_bit; } else { LLVMValueRef error_value_count = LLVMConstInt(get_llvm_type(g, int_type), g->errors_by_index.length, false); LLVMValueRef in_bounds_bit = LLVMBuildICmp(g->builder, LLVMIntULT, target_val, error_value_count, ""); ok_bit = LLVMBuildAnd(g->builder, neq_zero_bit, in_bounds_bit, ""); } LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "IntToErrOk"); LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "IntToErrFail"); LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block); LLVMPositionBuilderAtEnd(g->builder, fail_block); gen_safety_crash(g, PanicMsgIdInvalidErrorCode); LLVMPositionBuilderAtEnd(g->builder, ok_block); } else { LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "IntToErrOk"); LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "IntToErrFail"); uint32_t err_count = err_set_type->data.error_set.err_count; LLVMValueRef switch_instr = LLVMBuildSwitch(g->builder, target_val, fail_block, err_count); for (uint32_t i = 0; i < err_count; i += 1) { LLVMValueRef case_value = LLVMConstInt(get_llvm_type(g, g->err_tag_type), err_set_type->data.error_set.errors[i]->value, false); LLVMAddCase(switch_instr, case_value, ok_block); } LLVMPositionBuilderAtEnd(g->builder, fail_block); gen_safety_crash(g, PanicMsgIdInvalidErrorCode); LLVMPositionBuilderAtEnd(g->builder, ok_block); } } static LLVMValueRef ir_render_resize_slice(CodeGen *g, IrExecutable *executable, IrInstructionResizeSlice *instruction) { ZigType *actual_type = instruction->operand->value.type; ZigType *wanted_type = instruction->base.value.type; LLVMValueRef expr_val = ir_llvm_value(g, instruction->operand); assert(expr_val); assert(instruction->tmp_ptr); assert(wanted_type->id == ZigTypeIdStruct); assert(wanted_type->data.structure.is_slice); assert(actual_type->id == ZigTypeIdStruct); assert(actual_type->data.structure.is_slice); ZigType *actual_pointer_type = actual_type->data.structure.fields[0].type_entry; ZigType *actual_child_type = actual_pointer_type->data.pointer.child_type; ZigType *wanted_pointer_type = wanted_type->data.structure.fields[0].type_entry; ZigType *wanted_child_type = wanted_pointer_type->data.pointer.child_type; size_t actual_ptr_index = actual_type->data.structure.fields[slice_ptr_index].gen_index; size_t actual_len_index = actual_type->data.structure.fields[slice_len_index].gen_index; size_t wanted_ptr_index = wanted_type->data.structure.fields[slice_ptr_index].gen_index; size_t wanted_len_index = wanted_type->data.structure.fields[slice_len_index].gen_index; LLVMValueRef src_ptr_ptr = LLVMBuildStructGEP(g->builder, expr_val, (unsigned)actual_ptr_index, ""); LLVMValueRef src_ptr = gen_load_untyped(g, src_ptr_ptr, 0, false, ""); LLVMValueRef src_ptr_casted = LLVMBuildBitCast(g->builder, src_ptr, get_llvm_type(g, wanted_type->data.structure.fields[0].type_entry), ""); LLVMValueRef dest_ptr_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, (unsigned)wanted_ptr_index, ""); gen_store_untyped(g, src_ptr_casted, dest_ptr_ptr, 0, false); LLVMValueRef src_len_ptr = LLVMBuildStructGEP(g->builder, expr_val, (unsigned)actual_len_index, ""); LLVMValueRef src_len = gen_load_untyped(g, src_len_ptr, 0, false, ""); uint64_t src_size = type_size(g, actual_child_type); uint64_t dest_size = type_size(g, wanted_child_type); LLVMValueRef new_len; if (dest_size == 1) { LLVMValueRef src_size_val = LLVMConstInt(g->builtin_types.entry_usize->llvm_type, src_size, false); new_len = LLVMBuildMul(g->builder, src_len, src_size_val, ""); } else if (src_size == 1) { LLVMValueRef dest_size_val = LLVMConstInt(g->builtin_types.entry_usize->llvm_type, dest_size, false); if (ir_want_runtime_safety(g, &instruction->base)) { LLVMValueRef remainder_val = LLVMBuildURem(g->builder, src_len, dest_size_val, ""); LLVMValueRef zero = LLVMConstNull(g->builtin_types.entry_usize->llvm_type); LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, remainder_val, zero, ""); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "SliceWidenOk"); LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "SliceWidenFail"); LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block); LLVMPositionBuilderAtEnd(g->builder, fail_block); gen_safety_crash(g, PanicMsgIdSliceWidenRemainder); LLVMPositionBuilderAtEnd(g->builder, ok_block); } new_len = LLVMBuildExactUDiv(g->builder, src_len, dest_size_val, ""); } else { zig_unreachable(); } LLVMValueRef dest_len_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, (unsigned)wanted_len_index, ""); gen_store_untyped(g, new_len, dest_len_ptr, 0, false); return instruction->tmp_ptr; } static LLVMValueRef ir_render_cast(CodeGen *g, IrExecutable *executable, IrInstructionCast *cast_instruction) { ZigType *actual_type = cast_instruction->value->value.type; ZigType *wanted_type = cast_instruction->base.value.type; LLVMValueRef expr_val = ir_llvm_value(g, cast_instruction->value); assert(expr_val); switch (cast_instruction->cast_op) { case CastOpNoCast: case CastOpNumLitToConcrete: zig_unreachable(); case CastOpNoop: return expr_val; case CastOpIntToFloat: assert(actual_type->id == ZigTypeIdInt); if (actual_type->data.integral.is_signed) { return LLVMBuildSIToFP(g->builder, expr_val, get_llvm_type(g, wanted_type), ""); } else { return LLVMBuildUIToFP(g->builder, expr_val, get_llvm_type(g, wanted_type), ""); } case CastOpFloatToInt: { assert(wanted_type->id == ZigTypeIdInt); ZigLLVMSetFastMath(g->builder, ir_want_fast_math(g, &cast_instruction->base)); bool want_safety = ir_want_runtime_safety(g, &cast_instruction->base); LLVMValueRef result; if (wanted_type->data.integral.is_signed) { result = LLVMBuildFPToSI(g->builder, expr_val, get_llvm_type(g, wanted_type), ""); } else { result = LLVMBuildFPToUI(g->builder, expr_val, get_llvm_type(g, wanted_type), ""); } if (want_safety) { LLVMValueRef back_to_float; if (wanted_type->data.integral.is_signed) { back_to_float = LLVMBuildSIToFP(g->builder, result, LLVMTypeOf(expr_val), ""); } else { back_to_float = LLVMBuildUIToFP(g->builder, result, LLVMTypeOf(expr_val), ""); } LLVMValueRef difference = LLVMBuildFSub(g->builder, expr_val, back_to_float, ""); LLVMValueRef one_pos = LLVMConstReal(LLVMTypeOf(expr_val), 1.0f); LLVMValueRef one_neg = LLVMConstReal(LLVMTypeOf(expr_val), -1.0f); LLVMValueRef ok_bit_pos = LLVMBuildFCmp(g->builder, LLVMRealOLT, difference, one_pos, ""); LLVMValueRef ok_bit_neg = LLVMBuildFCmp(g->builder, LLVMRealOGT, difference, one_neg, ""); LLVMValueRef ok_bit = LLVMBuildAnd(g->builder, ok_bit_pos, ok_bit_neg, ""); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "FloatCheckOk"); LLVMBasicBlockRef bad_block = LLVMAppendBasicBlock(g->cur_fn_val, "FloatCheckFail"); LLVMBuildCondBr(g->builder, ok_bit, ok_block, bad_block); LLVMPositionBuilderAtEnd(g->builder, bad_block); gen_safety_crash(g, PanicMsgIdFloatToInt); LLVMPositionBuilderAtEnd(g->builder, ok_block); } return result; } case CastOpBoolToInt: assert(wanted_type->id == ZigTypeIdInt); assert(actual_type->id == ZigTypeIdBool); return LLVMBuildZExt(g->builder, expr_val, get_llvm_type(g, wanted_type), ""); case CastOpErrSet: if (ir_want_runtime_safety(g, &cast_instruction->base)) { add_error_range_check(g, wanted_type, g->err_tag_type, expr_val); } return expr_val; case CastOpBitCast: return LLVMBuildBitCast(g->builder, expr_val, get_llvm_type(g, wanted_type), ""); case CastOpPtrOfArrayToSlice: { assert(cast_instruction->tmp_ptr); assert(actual_type->id == ZigTypeIdPointer); ZigType *array_type = actual_type->data.pointer.child_type; assert(array_type->id == ZigTypeIdArray); LLVMValueRef ptr_field_ptr = LLVMBuildStructGEP(g->builder, cast_instruction->tmp_ptr, slice_ptr_index, ""); LLVMValueRef indices[] = { LLVMConstNull(g->builtin_types.entry_usize->llvm_type), LLVMConstInt(g->builtin_types.entry_usize->llvm_type, 0, false), }; LLVMValueRef slice_start_ptr = LLVMBuildInBoundsGEP(g->builder, expr_val, indices, 2, ""); gen_store_untyped(g, slice_start_ptr, ptr_field_ptr, 0, false); LLVMValueRef len_field_ptr = LLVMBuildStructGEP(g->builder, cast_instruction->tmp_ptr, slice_len_index, ""); LLVMValueRef len_value = LLVMConstInt(g->builtin_types.entry_usize->llvm_type, array_type->data.array.len, false); gen_store_untyped(g, len_value, len_field_ptr, 0, false); return cast_instruction->tmp_ptr; } } zig_unreachable(); } static LLVMValueRef ir_render_ptr_cast(CodeGen *g, IrExecutable *executable, IrInstructionPtrCastGen *instruction) { ZigType *wanted_type = instruction->base.value.type; if (!type_has_bits(wanted_type)) { return nullptr; } LLVMValueRef ptr = ir_llvm_value(g, instruction->ptr); LLVMValueRef result_ptr = LLVMBuildBitCast(g->builder, ptr, get_llvm_type(g, wanted_type), ""); bool want_safety_check = instruction->safety_check_on && ir_want_runtime_safety(g, &instruction->base); if (!want_safety_check || ptr_allows_addr_zero(wanted_type)) return result_ptr; LLVMValueRef zero = LLVMConstNull(LLVMTypeOf(result_ptr)); LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntNE, result_ptr, zero, ""); LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "PtrCastFail"); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "PtrCastOk"); LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block); LLVMPositionBuilderAtEnd(g->builder, fail_block); gen_safety_crash(g, PanicMsgIdPtrCastNull); LLVMPositionBuilderAtEnd(g->builder, ok_block); return result_ptr; } static LLVMValueRef ir_render_bit_cast(CodeGen *g, IrExecutable *executable, IrInstructionBitCastGen *instruction) { ZigType *wanted_type = instruction->base.value.type; ZigType *actual_type = instruction->operand->value.type; LLVMValueRef value = ir_llvm_value(g, instruction->operand); bool wanted_is_ptr = handle_is_ptr(wanted_type); bool actual_is_ptr = handle_is_ptr(actual_type); if (wanted_is_ptr == actual_is_ptr) { // We either bitcast the value directly or bitcast the pointer which does a pointer cast LLVMTypeRef wanted_type_ref = wanted_is_ptr ? LLVMPointerType(get_llvm_type(g, wanted_type), 0) : get_llvm_type(g, wanted_type); return LLVMBuildBitCast(g->builder, value, wanted_type_ref, ""); } else if (actual_is_ptr) { LLVMTypeRef wanted_ptr_type_ref = LLVMPointerType(get_llvm_type(g, wanted_type), 0); LLVMValueRef bitcasted_ptr = LLVMBuildBitCast(g->builder, value, wanted_ptr_type_ref, ""); uint32_t alignment = get_abi_alignment(g, actual_type); return gen_load_untyped(g, bitcasted_ptr, alignment, false, ""); } else { assert(instruction->tmp_ptr != nullptr); LLVMTypeRef wanted_ptr_type_ref = LLVMPointerType(get_llvm_type(g, actual_type), 0); LLVMValueRef bitcasted_ptr = LLVMBuildBitCast(g->builder, instruction->tmp_ptr, wanted_ptr_type_ref, ""); uint32_t alignment = get_abi_alignment(g, wanted_type); gen_store_untyped(g, value, bitcasted_ptr, alignment, false); return instruction->tmp_ptr; } } static LLVMValueRef ir_render_widen_or_shorten(CodeGen *g, IrExecutable *executable, IrInstructionWidenOrShorten *instruction) { ZigType *actual_type = instruction->target->value.type; // TODO instead of this logic, use the Noop instruction to change the type from // enum_tag to the underlying int type ZigType *int_type; if (actual_type->id == ZigTypeIdEnum) { int_type = actual_type->data.enumeration.tag_int_type; } else { int_type = actual_type; } LLVMValueRef target_val = ir_llvm_value(g, instruction->target); return gen_widen_or_shorten(g, ir_want_runtime_safety(g, &instruction->base), int_type, instruction->base.value.type, target_val); } static LLVMValueRef ir_render_int_to_ptr(CodeGen *g, IrExecutable *executable, IrInstructionIntToPtr *instruction) { ZigType *wanted_type = instruction->base.value.type; LLVMValueRef target_val = ir_llvm_value(g, instruction->target); if (!ptr_allows_addr_zero(wanted_type) && ir_want_runtime_safety(g, &instruction->base)) { LLVMValueRef zero = LLVMConstNull(LLVMTypeOf(target_val)); LLVMValueRef is_zero_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, target_val, zero, ""); LLVMBasicBlockRef bad_block = LLVMAppendBasicBlock(g->cur_fn_val, "PtrToIntBad"); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "PtrToIntOk"); LLVMBuildCondBr(g->builder, is_zero_bit, bad_block, ok_block); LLVMPositionBuilderAtEnd(g->builder, bad_block); gen_safety_crash(g, PanicMsgIdPtrCastNull); LLVMPositionBuilderAtEnd(g->builder, ok_block); } return LLVMBuildIntToPtr(g->builder, target_val, get_llvm_type(g, wanted_type), ""); } static LLVMValueRef ir_render_ptr_to_int(CodeGen *g, IrExecutable *executable, IrInstructionPtrToInt *instruction) { ZigType *wanted_type = instruction->base.value.type; LLVMValueRef target_val = ir_llvm_value(g, instruction->target); return LLVMBuildPtrToInt(g->builder, target_val, get_llvm_type(g, wanted_type), ""); } static LLVMValueRef ir_render_int_to_enum(CodeGen *g, IrExecutable *executable, IrInstructionIntToEnum *instruction) { ZigType *wanted_type = instruction->base.value.type; assert(wanted_type->id == ZigTypeIdEnum); ZigType *tag_int_type = wanted_type->data.enumeration.tag_int_type; LLVMValueRef target_val = ir_llvm_value(g, instruction->target); LLVMValueRef tag_int_value = gen_widen_or_shorten(g, ir_want_runtime_safety(g, &instruction->base), instruction->target->value.type, tag_int_type, target_val); if (ir_want_runtime_safety(g, &instruction->base)) { LLVMBasicBlockRef bad_value_block = LLVMAppendBasicBlock(g->cur_fn_val, "BadValue"); LLVMBasicBlockRef ok_value_block = LLVMAppendBasicBlock(g->cur_fn_val, "OkValue"); size_t field_count = wanted_type->data.enumeration.src_field_count; LLVMValueRef switch_instr = LLVMBuildSwitch(g->builder, tag_int_value, bad_value_block, field_count); for (size_t field_i = 0; field_i < field_count; field_i += 1) { LLVMValueRef this_tag_int_value = bigint_to_llvm_const(get_llvm_type(g, tag_int_type), &wanted_type->data.enumeration.fields[field_i].value); LLVMAddCase(switch_instr, this_tag_int_value, ok_value_block); } LLVMPositionBuilderAtEnd(g->builder, bad_value_block); gen_safety_crash(g, PanicMsgIdBadEnumValue); LLVMPositionBuilderAtEnd(g->builder, ok_value_block); } return tag_int_value; } static LLVMValueRef ir_render_int_to_err(CodeGen *g, IrExecutable *executable, IrInstructionIntToErr *instruction) { ZigType *wanted_type = instruction->base.value.type; assert(wanted_type->id == ZigTypeIdErrorSet); ZigType *actual_type = instruction->target->value.type; assert(actual_type->id == ZigTypeIdInt); assert(!actual_type->data.integral.is_signed); LLVMValueRef target_val = ir_llvm_value(g, instruction->target); if (ir_want_runtime_safety(g, &instruction->base)) { add_error_range_check(g, wanted_type, actual_type, target_val); } return gen_widen_or_shorten(g, false, actual_type, g->err_tag_type, target_val); } static LLVMValueRef ir_render_err_to_int(CodeGen *g, IrExecutable *executable, IrInstructionErrToInt *instruction) { ZigType *wanted_type = instruction->base.value.type; assert(wanted_type->id == ZigTypeIdInt); assert(!wanted_type->data.integral.is_signed); ZigType *actual_type = instruction->target->value.type; LLVMValueRef target_val = ir_llvm_value(g, instruction->target); if (actual_type->id == ZigTypeIdErrorSet) { return gen_widen_or_shorten(g, ir_want_runtime_safety(g, &instruction->base), g->err_tag_type, wanted_type, target_val); } else if (actual_type->id == ZigTypeIdErrorUnion) { // this should have been a compile time constant assert(type_has_bits(actual_type->data.error_union.err_set_type)); if (!type_has_bits(actual_type->data.error_union.payload_type)) { return gen_widen_or_shorten(g, ir_want_runtime_safety(g, &instruction->base), g->err_tag_type, wanted_type, target_val); } else { zig_panic("TODO err to int when error union payload type not void"); } } else { zig_unreachable(); } } static LLVMValueRef ir_render_unreachable(CodeGen *g, IrExecutable *executable, IrInstructionUnreachable *unreachable_instruction) { if (ir_want_runtime_safety(g, &unreachable_instruction->base)) { gen_safety_crash(g, PanicMsgIdUnreachable); } else { LLVMBuildUnreachable(g->builder); } return nullptr; } static LLVMValueRef ir_render_cond_br(CodeGen *g, IrExecutable *executable, IrInstructionCondBr *cond_br_instruction) { LLVMBuildCondBr(g->builder, ir_llvm_value(g, cond_br_instruction->condition), cond_br_instruction->then_block->llvm_block, cond_br_instruction->else_block->llvm_block); return nullptr; } static LLVMValueRef ir_render_br(CodeGen *g, IrExecutable *executable, IrInstructionBr *br_instruction) { LLVMBuildBr(g->builder, br_instruction->dest_block->llvm_block); return nullptr; } static LLVMValueRef ir_render_un_op(CodeGen *g, IrExecutable *executable, IrInstructionUnOp *un_op_instruction) { IrUnOp op_id = un_op_instruction->op_id; LLVMValueRef expr = ir_llvm_value(g, un_op_instruction->value); ZigType *operand_type = un_op_instruction->value->value.type; ZigType *scalar_type = (operand_type->id == ZigTypeIdVector) ? operand_type->data.vector.elem_type : operand_type; switch (op_id) { case IrUnOpInvalid: case IrUnOpOptional: case IrUnOpDereference: zig_unreachable(); case IrUnOpNegation: case IrUnOpNegationWrap: { if (scalar_type->id == ZigTypeIdFloat) { ZigLLVMSetFastMath(g->builder, ir_want_fast_math(g, &un_op_instruction->base)); return LLVMBuildFNeg(g->builder, expr, ""); } else if (scalar_type->id == ZigTypeIdInt) { if (op_id == IrUnOpNegationWrap) { return LLVMBuildNeg(g->builder, expr, ""); } else if (ir_want_runtime_safety(g, &un_op_instruction->base)) { LLVMValueRef zero = LLVMConstNull(LLVMTypeOf(expr)); return gen_overflow_op(g, operand_type, AddSubMulSub, zero, expr); } else if (scalar_type->data.integral.is_signed) { return LLVMBuildNSWNeg(g->builder, expr, ""); } else { return LLVMBuildNUWNeg(g->builder, expr, ""); } } else { zig_unreachable(); } } case IrUnOpBinNot: return LLVMBuildNot(g->builder, expr, ""); } zig_unreachable(); } static LLVMValueRef ir_render_bool_not(CodeGen *g, IrExecutable *executable, IrInstructionBoolNot *instruction) { LLVMValueRef value = ir_llvm_value(g, instruction->value); LLVMValueRef zero = LLVMConstNull(LLVMTypeOf(value)); return LLVMBuildICmp(g->builder, LLVMIntEQ, value, zero, ""); } static LLVMValueRef ir_render_decl_var(CodeGen *g, IrExecutable *executable, IrInstructionDeclVarGen *decl_var_instruction) { ZigVar *var = decl_var_instruction->var; if (!type_has_bits(var->var_type)) return nullptr; if (var->ref_count == 0 && g->build_mode != BuildModeDebug) return nullptr; IrInstruction *init_value = decl_var_instruction->init_value; bool have_init_expr = !value_is_all_undef(&init_value->value); if (have_init_expr) { ZigType *var_ptr_type = get_pointer_to_type_extra(g, var->var_type, false, false, PtrLenSingle, var->align_bytes, 0, 0, false); LLVMValueRef llvm_init_val = ir_llvm_value(g, init_value); gen_assign_raw(g, var->value_ref, var_ptr_type, llvm_init_val); } else if (ir_want_runtime_safety(g, &decl_var_instruction->base)) { uint32_t align_bytes = (var->align_bytes == 0) ? get_abi_alignment(g, var->var_type) : var->align_bytes; gen_undef_init(g, align_bytes, var->var_type, var->value_ref); } gen_var_debug_decl(g, var); return nullptr; } static LLVMValueRef ir_render_load_ptr(CodeGen *g, IrExecutable *executable, IrInstructionLoadPtrGen *instruction) { ZigType *child_type = instruction->base.value.type; if (!type_has_bits(child_type)) return nullptr; LLVMValueRef ptr = ir_llvm_value(g, instruction->ptr); ZigType *ptr_type = instruction->ptr->value.type; assert(ptr_type->id == ZigTypeIdPointer); uint32_t host_int_bytes = ptr_type->data.pointer.host_int_bytes; if (host_int_bytes == 0) return get_handle_value(g, ptr, child_type, ptr_type); bool big_endian = g->is_big_endian; LLVMValueRef containing_int = gen_load(g, ptr, ptr_type, ""); uint32_t host_bit_count = LLVMGetIntTypeWidth(LLVMTypeOf(containing_int)); assert(host_bit_count == host_int_bytes * 8); uint32_t size_in_bits = type_size_bits(g, child_type); uint32_t bit_offset = ptr_type->data.pointer.bit_offset_in_host; uint32_t shift_amt = big_endian ? host_bit_count - bit_offset - size_in_bits : bit_offset; LLVMValueRef shift_amt_val = LLVMConstInt(LLVMTypeOf(containing_int), shift_amt, false); LLVMValueRef shifted_value = LLVMBuildLShr(g->builder, containing_int, shift_amt_val, ""); if (handle_is_ptr(child_type)) { assert(instruction->tmp_ptr != nullptr); LLVMTypeRef same_size_int = LLVMIntType(size_in_bits); LLVMValueRef truncated_int = LLVMBuildTrunc(g->builder, shifted_value, same_size_int, ""); LLVMValueRef bitcasted_ptr = LLVMBuildBitCast(g->builder, instruction->tmp_ptr, LLVMPointerType(same_size_int, 0), ""); LLVMBuildStore(g->builder, truncated_int, bitcasted_ptr); return instruction->tmp_ptr; } if (child_type->id == ZigTypeIdFloat) { LLVMTypeRef same_size_int = LLVMIntType(size_in_bits); LLVMValueRef truncated_int = LLVMBuildTrunc(g->builder, shifted_value, same_size_int, ""); return LLVMBuildBitCast(g->builder, truncated_int, get_llvm_type(g, child_type), ""); } return LLVMBuildTrunc(g->builder, shifted_value, get_llvm_type(g, child_type), ""); } static bool value_is_all_undef_array(ConstExprValue *const_val, size_t len) { switch (const_val->data.x_array.special) { case ConstArraySpecialUndef: return true; case ConstArraySpecialBuf: return false; case ConstArraySpecialNone: for (size_t i = 0; i < len; i += 1) { if (!value_is_all_undef(&const_val->data.x_array.data.s_none.elements[i])) return false; } return true; } zig_unreachable(); } static bool value_is_all_undef(ConstExprValue *const_val) { switch (const_val->special) { case ConstValSpecialRuntime: return false; case ConstValSpecialUndef: return true; case ConstValSpecialStatic: if (const_val->type->id == ZigTypeIdStruct) { for (size_t i = 0; i < const_val->type->data.structure.src_field_count; i += 1) { if (!value_is_all_undef(&const_val->data.x_struct.fields[i])) return false; } return true; } else if (const_val->type->id == ZigTypeIdArray) { return value_is_all_undef_array(const_val, const_val->type->data.array.len); } else if (const_val->type->id == ZigTypeIdVector) { return value_is_all_undef_array(const_val, const_val->type->data.vector.len); } else { return false; } } zig_unreachable(); } static LLVMValueRef gen_valgrind_client_request(CodeGen *g, LLVMValueRef default_value, LLVMValueRef request, LLVMValueRef a1, LLVMValueRef a2, LLVMValueRef a3, LLVMValueRef a4, LLVMValueRef a5) { if (!target_has_valgrind_support(g->zig_target)) { return default_value; } LLVMTypeRef usize_type_ref = g->builtin_types.entry_usize->llvm_type; bool asm_has_side_effects = true; bool asm_is_alignstack = false; if (g->zig_target->arch == ZigLLVM_x86_64) { if (g->zig_target->os == OsLinux || target_os_is_darwin(g->zig_target->os) || g->zig_target->os == OsSolaris || (g->zig_target->os == OsWindows && g->zig_target->abi != ZigLLVM_MSVC)) { if (g->cur_fn->valgrind_client_request_array == nullptr) { LLVMBasicBlockRef prev_block = LLVMGetInsertBlock(g->builder); LLVMBasicBlockRef entry_block = LLVMGetEntryBasicBlock(g->cur_fn->llvm_value); LLVMValueRef first_inst = LLVMGetFirstInstruction(entry_block); LLVMPositionBuilderBefore(g->builder, first_inst); LLVMTypeRef array_type_ref = LLVMArrayType(usize_type_ref, 6); g->cur_fn->valgrind_client_request_array = LLVMBuildAlloca(g->builder, array_type_ref, ""); LLVMPositionBuilderAtEnd(g->builder, prev_block); } LLVMValueRef array_ptr = g->cur_fn->valgrind_client_request_array; LLVMValueRef array_elements[] = {request, a1, a2, a3, a4, a5}; LLVMValueRef zero = LLVMConstInt(usize_type_ref, 0, false); for (unsigned i = 0; i < 6; i += 1) { LLVMValueRef indexes[] = { zero, LLVMConstInt(usize_type_ref, i, false), }; LLVMValueRef elem_ptr = LLVMBuildInBoundsGEP(g->builder, array_ptr, indexes, 2, ""); LLVMBuildStore(g->builder, array_elements[i], elem_ptr); } Buf *asm_template = buf_create_from_str( "rolq $$3, %rdi ; rolq $$13, %rdi\n" "rolq $$61, %rdi ; rolq $$51, %rdi\n" "xchgq %rbx,%rbx\n" ); Buf *asm_constraints = buf_create_from_str( "={rdx},{rax},0,~{cc},~{memory}" ); unsigned input_and_output_count = 2; LLVMValueRef array_ptr_as_usize = LLVMBuildPtrToInt(g->builder, array_ptr, usize_type_ref, ""); LLVMValueRef param_values[] = { array_ptr_as_usize, default_value }; LLVMTypeRef param_types[] = {usize_type_ref, usize_type_ref}; LLVMTypeRef function_type = LLVMFunctionType(usize_type_ref, param_types, input_and_output_count, false); LLVMValueRef asm_fn = LLVMGetInlineAsm(function_type, buf_ptr(asm_template), buf_len(asm_template), buf_ptr(asm_constraints), buf_len(asm_constraints), asm_has_side_effects, asm_is_alignstack, LLVMInlineAsmDialectATT); return LLVMBuildCall(g->builder, asm_fn, param_values, input_and_output_count, ""); } } zig_unreachable(); } static bool want_valgrind_support(CodeGen *g) { if (!target_has_valgrind_support(g->zig_target)) return false; switch (g->valgrind_support) { case ValgrindSupportDisabled: return false; case ValgrindSupportEnabled: return true; case ValgrindSupportAuto: return g->build_mode == BuildModeDebug; } zig_unreachable(); } static void gen_valgrind_undef(CodeGen *g, LLVMValueRef dest_ptr, LLVMValueRef byte_count) { static const uint32_t VG_USERREQ__MAKE_MEM_UNDEFINED = 1296236545; ZigType *usize = g->builtin_types.entry_usize; LLVMValueRef zero = LLVMConstInt(usize->llvm_type, 0, false); LLVMValueRef req = LLVMConstInt(usize->llvm_type, VG_USERREQ__MAKE_MEM_UNDEFINED, false); LLVMValueRef ptr_as_usize = LLVMBuildPtrToInt(g->builder, dest_ptr, usize->llvm_type, ""); gen_valgrind_client_request(g, zero, req, ptr_as_usize, byte_count, zero, zero, zero); } static void gen_undef_init(CodeGen *g, uint32_t ptr_align_bytes, ZigType *value_type, LLVMValueRef ptr) { assert(type_has_bits(value_type)); uint64_t size_bytes = LLVMStoreSizeOfType(g->target_data_ref, get_llvm_type(g, value_type)); assert(size_bytes > 0); assert(ptr_align_bytes > 0); // memset uninitialized memory to 0xaa LLVMTypeRef ptr_u8 = LLVMPointerType(LLVMInt8Type(), 0); LLVMValueRef fill_char = LLVMConstInt(LLVMInt8Type(), 0xaa, false); LLVMValueRef dest_ptr = LLVMBuildBitCast(g->builder, ptr, ptr_u8, ""); ZigType *usize = g->builtin_types.entry_usize; LLVMValueRef byte_count = LLVMConstInt(usize->llvm_type, size_bytes, false); ZigLLVMBuildMemSet(g->builder, dest_ptr, fill_char, byte_count, ptr_align_bytes, false); // then tell valgrind that the memory is undefined even though we just memset it if (want_valgrind_support(g)) { gen_valgrind_undef(g, dest_ptr, byte_count); } } static LLVMValueRef ir_render_store_ptr(CodeGen *g, IrExecutable *executable, IrInstructionStorePtr *instruction) { ZigType *ptr_type = instruction->ptr->value.type; assert(ptr_type->id == ZigTypeIdPointer); if (!type_has_bits(ptr_type)) return nullptr; bool have_init_expr = !value_is_all_undef(&instruction->value->value); if (have_init_expr) { LLVMValueRef ptr = ir_llvm_value(g, instruction->ptr); LLVMValueRef value = ir_llvm_value(g, instruction->value); gen_assign_raw(g, ptr, ptr_type, value); } else if (ir_want_runtime_safety(g, &instruction->base)) { gen_undef_init(g, get_ptr_align(g, ptr_type), instruction->value->value.type, ir_llvm_value(g, instruction->ptr)); } return nullptr; } static LLVMValueRef ir_render_var_ptr(CodeGen *g, IrExecutable *executable, IrInstructionVarPtr *instruction) { ZigVar *var = instruction->var; if (type_has_bits(var->var_type)) { assert(var->value_ref); return var->value_ref; } else { return nullptr; } } static LLVMValueRef ir_render_elem_ptr(CodeGen *g, IrExecutable *executable, IrInstructionElemPtr *instruction) { LLVMValueRef array_ptr_ptr = ir_llvm_value(g, instruction->array_ptr); ZigType *array_ptr_type = instruction->array_ptr->value.type; assert(array_ptr_type->id == ZigTypeIdPointer); ZigType *array_type = array_ptr_type->data.pointer.child_type; LLVMValueRef array_ptr = get_handle_value(g, array_ptr_ptr, array_type, array_ptr_type); LLVMValueRef subscript_value = ir_llvm_value(g, instruction->elem_index); assert(subscript_value); if (!type_has_bits(array_type)) return nullptr; bool safety_check_on = ir_want_runtime_safety(g, &instruction->base) && instruction->safety_check_on; if (array_type->id == ZigTypeIdArray || (array_type->id == ZigTypeIdPointer && array_type->data.pointer.ptr_len == PtrLenSingle)) { if (array_type->id == ZigTypeIdPointer) { assert(array_type->data.pointer.child_type->id == ZigTypeIdArray); array_type = array_type->data.pointer.child_type; } if (safety_check_on) { LLVMValueRef end = LLVMConstInt(g->builtin_types.entry_usize->llvm_type, array_type->data.array.len, false); add_bounds_check(g, subscript_value, LLVMIntEQ, nullptr, LLVMIntULT, end); } if (array_ptr_type->data.pointer.host_int_bytes != 0) { return array_ptr_ptr; } ZigType *child_type = array_type->data.array.child_type; if (child_type->id == ZigTypeIdStruct && child_type->data.structure.layout == ContainerLayoutPacked) { ZigType *ptr_type = instruction->base.value.type; size_t host_int_bytes = ptr_type->data.pointer.host_int_bytes; if (host_int_bytes != 0) { uint32_t size_in_bits = type_size_bits(g, ptr_type->data.pointer.child_type); LLVMTypeRef ptr_u8_type_ref = LLVMPointerType(LLVMInt8Type(), 0); LLVMValueRef u8_array_ptr = LLVMBuildBitCast(g->builder, array_ptr, ptr_u8_type_ref, ""); assert(size_in_bits % 8 == 0); LLVMValueRef elem_size_bytes = LLVMConstInt(g->builtin_types.entry_usize->llvm_type, size_in_bits / 8, false); LLVMValueRef byte_offset = LLVMBuildNUWMul(g->builder, subscript_value, elem_size_bytes, ""); LLVMValueRef indices[] = { byte_offset }; LLVMValueRef elem_byte_ptr = LLVMBuildInBoundsGEP(g->builder, u8_array_ptr, indices, 1, ""); return LLVMBuildBitCast(g->builder, elem_byte_ptr, LLVMPointerType(get_llvm_type(g, child_type), 0), ""); } } LLVMValueRef indices[] = { LLVMConstNull(g->builtin_types.entry_usize->llvm_type), subscript_value }; return LLVMBuildInBoundsGEP(g->builder, array_ptr, indices, 2, ""); } else if (array_type->id == ZigTypeIdPointer) { assert(LLVMGetTypeKind(LLVMTypeOf(array_ptr)) == LLVMPointerTypeKind); LLVMValueRef indices[] = { subscript_value }; return LLVMBuildInBoundsGEP(g->builder, array_ptr, indices, 1, ""); } else if (array_type->id == ZigTypeIdStruct) { assert(array_type->data.structure.is_slice); ZigType *ptr_type = instruction->base.value.type; if (!type_has_bits(ptr_type)) { if (safety_check_on) { assert(LLVMGetTypeKind(LLVMTypeOf(array_ptr)) == LLVMIntegerTypeKind); add_bounds_check(g, subscript_value, LLVMIntEQ, nullptr, LLVMIntULT, array_ptr); } return nullptr; } assert(LLVMGetTypeKind(LLVMTypeOf(array_ptr)) == LLVMPointerTypeKind); assert(LLVMGetTypeKind(LLVMGetElementType(LLVMTypeOf(array_ptr))) == LLVMStructTypeKind); if (safety_check_on) { size_t len_index = array_type->data.structure.fields[slice_len_index].gen_index; assert(len_index != SIZE_MAX); LLVMValueRef len_ptr = LLVMBuildStructGEP(g->builder, array_ptr, (unsigned)len_index, ""); LLVMValueRef len = gen_load_untyped(g, len_ptr, 0, false, ""); add_bounds_check(g, subscript_value, LLVMIntEQ, nullptr, LLVMIntULT, len); } size_t ptr_index = array_type->data.structure.fields[slice_ptr_index].gen_index; assert(ptr_index != SIZE_MAX); LLVMValueRef ptr_ptr = LLVMBuildStructGEP(g->builder, array_ptr, (unsigned)ptr_index, ""); LLVMValueRef ptr = gen_load_untyped(g, ptr_ptr, 0, false, ""); return LLVMBuildInBoundsGEP(g->builder, ptr, &subscript_value, 1, ""); } else { zig_unreachable(); } } static bool get_prefix_arg_err_ret_stack(CodeGen *g, FnTypeId *fn_type_id) { return g->have_err_ret_tracing && (fn_type_id->return_type->id == ZigTypeIdErrorUnion || fn_type_id->return_type->id == ZigTypeIdErrorSet || fn_type_id->cc == CallingConventionAsync); } static size_t get_async_allocator_arg_index(CodeGen *g, FnTypeId *fn_type_id) { // 0 1 2 3 // err_ret_stack allocator_ptr err_code other_args... return get_prefix_arg_err_ret_stack(g, fn_type_id) ? 1 : 0; } static size_t get_async_err_code_arg_index(CodeGen *g, FnTypeId *fn_type_id) { // 0 1 2 3 // err_ret_stack allocator_ptr err_code other_args... return 1 + get_async_allocator_arg_index(g, fn_type_id); } static LLVMValueRef get_new_stack_addr(CodeGen *g, LLVMValueRef new_stack) { LLVMValueRef ptr_field_ptr = LLVMBuildStructGEP(g->builder, new_stack, (unsigned)slice_ptr_index, ""); LLVMValueRef len_field_ptr = LLVMBuildStructGEP(g->builder, new_stack, (unsigned)slice_len_index, ""); LLVMValueRef ptr_value = gen_load_untyped(g, ptr_field_ptr, 0, false, ""); LLVMValueRef len_value = gen_load_untyped(g, len_field_ptr, 0, false, ""); LLVMValueRef ptr_addr = LLVMBuildPtrToInt(g->builder, ptr_value, LLVMTypeOf(len_value), ""); LLVMValueRef end_addr = LLVMBuildNUWAdd(g->builder, ptr_addr, len_value, ""); LLVMValueRef align_amt = LLVMConstInt(LLVMTypeOf(end_addr), get_abi_alignment(g, g->builtin_types.entry_usize), false); LLVMValueRef align_adj = LLVMBuildURem(g->builder, end_addr, align_amt, ""); return LLVMBuildNUWSub(g->builder, end_addr, align_adj, ""); } static void gen_set_stack_pointer(CodeGen *g, LLVMValueRef aligned_end_addr) { LLVMValueRef write_register_fn_val = get_write_register_fn_val(g); if (g->sp_md_node == nullptr) { Buf *sp_reg_name = buf_create_from_str(arch_stack_pointer_register_name(g->zig_target->arch)); LLVMValueRef str_node = LLVMMDString(buf_ptr(sp_reg_name), buf_len(sp_reg_name) + 1); g->sp_md_node = LLVMMDNode(&str_node, 1); } LLVMValueRef params[] = { g->sp_md_node, aligned_end_addr, }; LLVMBuildCall(g->builder, write_register_fn_val, params, 2, ""); } static void set_call_instr_sret(CodeGen *g, LLVMValueRef call_instr) { unsigned attr_kind_id = LLVMGetEnumAttributeKindForName("sret", 4); LLVMAttributeRef sret_attr = LLVMCreateEnumAttribute(LLVMGetGlobalContext(), attr_kind_id, 0); LLVMAddCallSiteAttribute(call_instr, 1, sret_attr); } static LLVMValueRef ir_render_call(CodeGen *g, IrExecutable *executable, IrInstructionCall *instruction) { LLVMValueRef fn_val; ZigType *fn_type; if (instruction->fn_entry) { fn_val = fn_llvm_value(g, instruction->fn_entry); fn_type = instruction->fn_entry->type_entry; } else { assert(instruction->fn_ref); fn_val = ir_llvm_value(g, instruction->fn_ref); fn_type = instruction->fn_ref->value.type; } FnTypeId *fn_type_id = &fn_type->data.fn.fn_type_id; ZigType *src_return_type = fn_type_id->return_type; bool ret_has_bits = type_has_bits(src_return_type); CallingConvention cc = fn_type->data.fn.fn_type_id.cc; bool first_arg_ret = ret_has_bits && want_first_arg_sret(g, fn_type_id); bool prefix_arg_err_ret_stack = get_prefix_arg_err_ret_stack(g, fn_type_id); bool is_var_args = fn_type_id->is_var_args; ZigList gen_param_values = {}; if (first_arg_ret) { gen_param_values.append(instruction->tmp_ptr); } if (prefix_arg_err_ret_stack) { gen_param_values.append(get_cur_err_ret_trace_val(g, instruction->base.scope)); } if (instruction->is_async) { gen_param_values.append(ir_llvm_value(g, instruction->async_allocator)); LLVMValueRef err_val_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, err_union_err_index, ""); gen_param_values.append(err_val_ptr); } FnWalk fn_walk = {}; fn_walk.id = FnWalkIdCall; fn_walk.data.call.inst = instruction; fn_walk.data.call.is_var_args = is_var_args; fn_walk.data.call.gen_param_values = &gen_param_values; walk_function_params(g, fn_type, &fn_walk); ZigLLVM_FnInline fn_inline; switch (instruction->fn_inline) { case FnInlineAuto: fn_inline = ZigLLVM_FnInlineAuto; break; case FnInlineAlways: fn_inline = (instruction->fn_entry == nullptr) ? ZigLLVM_FnInlineAuto : ZigLLVM_FnInlineAlways; break; case FnInlineNever: fn_inline = ZigLLVM_FnInlineNever; break; } LLVMCallConv llvm_cc = get_llvm_cc(g, cc); LLVMValueRef result; if (instruction->new_stack == nullptr) { result = ZigLLVMBuildCall(g->builder, fn_val, gen_param_values.items, (unsigned)gen_param_values.length, llvm_cc, fn_inline, ""); } else { LLVMValueRef stacksave_fn_val = get_stacksave_fn_val(g); LLVMValueRef stackrestore_fn_val = get_stackrestore_fn_val(g); LLVMValueRef new_stack_addr = get_new_stack_addr(g, ir_llvm_value(g, instruction->new_stack)); LLVMValueRef old_stack_ref = LLVMBuildCall(g->builder, stacksave_fn_val, nullptr, 0, ""); gen_set_stack_pointer(g, new_stack_addr); result = ZigLLVMBuildCall(g->builder, fn_val, gen_param_values.items, (unsigned)gen_param_values.length, llvm_cc, fn_inline, ""); LLVMBuildCall(g->builder, stackrestore_fn_val, &old_stack_ref, 1, ""); } if (instruction->is_async) { LLVMValueRef payload_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, err_union_payload_index, ""); LLVMBuildStore(g->builder, result, payload_ptr); return instruction->tmp_ptr; } if (src_return_type->id == ZigTypeIdUnreachable) { return LLVMBuildUnreachable(g->builder); } else if (!ret_has_bits) { return nullptr; } else if (first_arg_ret) { set_call_instr_sret(g, result); return instruction->tmp_ptr; } else if (handle_is_ptr(src_return_type)) { auto store_instr = LLVMBuildStore(g->builder, result, instruction->tmp_ptr); LLVMSetAlignment(store_instr, LLVMGetAlignment(instruction->tmp_ptr)); return instruction->tmp_ptr; } else { return result; } } static LLVMValueRef ir_render_struct_field_ptr(CodeGen *g, IrExecutable *executable, IrInstructionStructFieldPtr *instruction) { LLVMValueRef struct_ptr = ir_llvm_value(g, instruction->struct_ptr); // not necessarily a pointer. could be ZigTypeIdStruct ZigType *struct_ptr_type = instruction->struct_ptr->value.type; TypeStructField *field = instruction->field; if (!type_has_bits(field->type_entry)) return nullptr; if (struct_ptr_type->id == ZigTypeIdPointer && struct_ptr_type->data.pointer.host_int_bytes != 0) { return struct_ptr; } assert(field->gen_index != SIZE_MAX); return LLVMBuildStructGEP(g->builder, struct_ptr, (unsigned)field->gen_index, ""); } static LLVMValueRef ir_render_union_field_ptr(CodeGen *g, IrExecutable *executable, IrInstructionUnionFieldPtr *instruction) { ZigType *union_ptr_type = instruction->union_ptr->value.type; assert(union_ptr_type->id == ZigTypeIdPointer); ZigType *union_type = union_ptr_type->data.pointer.child_type; assert(union_type->id == ZigTypeIdUnion); TypeUnionField *field = instruction->field; if (!type_has_bits(field->type_entry)) return nullptr; LLVMValueRef union_ptr = ir_llvm_value(g, instruction->union_ptr); LLVMTypeRef field_type_ref = LLVMPointerType(get_llvm_type(g, field->type_entry), 0); if (union_type->data.unionation.gen_tag_index == SIZE_MAX) { LLVMValueRef union_field_ptr = LLVMBuildStructGEP(g->builder, union_ptr, 0, ""); LLVMValueRef bitcasted_union_field_ptr = LLVMBuildBitCast(g->builder, union_field_ptr, field_type_ref, ""); return bitcasted_union_field_ptr; } if (ir_want_runtime_safety(g, &instruction->base)) { LLVMValueRef tag_field_ptr = LLVMBuildStructGEP(g->builder, union_ptr, union_type->data.unionation.gen_tag_index, ""); LLVMValueRef tag_value = gen_load_untyped(g, tag_field_ptr, 0, false, ""); LLVMValueRef expected_tag_value = bigint_to_llvm_const(get_llvm_type(g, union_type->data.unionation.tag_type), &field->enum_field->value); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "UnionCheckOk"); LLVMBasicBlockRef bad_block = LLVMAppendBasicBlock(g->cur_fn_val, "UnionCheckFail"); LLVMValueRef ok_val = LLVMBuildICmp(g->builder, LLVMIntEQ, tag_value, expected_tag_value, ""); LLVMBuildCondBr(g->builder, ok_val, ok_block, bad_block); LLVMPositionBuilderAtEnd(g->builder, bad_block); gen_safety_crash(g, PanicMsgIdBadUnionField); LLVMPositionBuilderAtEnd(g->builder, ok_block); } LLVMValueRef union_field_ptr = LLVMBuildStructGEP(g->builder, union_ptr, union_type->data.unionation.gen_union_index, ""); LLVMValueRef bitcasted_union_field_ptr = LLVMBuildBitCast(g->builder, union_field_ptr, field_type_ref, ""); return bitcasted_union_field_ptr; } static size_t find_asm_index(CodeGen *g, AstNode *node, AsmToken *tok, Buf *src_template) { const char *ptr = buf_ptr(src_template) + tok->start + 2; size_t len = tok->end - tok->start - 2; size_t result = 0; for (size_t i = 0; i < node->data.asm_expr.output_list.length; i += 1, result += 1) { AsmOutput *asm_output = node->data.asm_expr.output_list.at(i); if (buf_eql_mem(asm_output->asm_symbolic_name, ptr, len)) { return result; } } for (size_t i = 0; i < node->data.asm_expr.input_list.length; i += 1, result += 1) { AsmInput *asm_input = node->data.asm_expr.input_list.at(i); if (buf_eql_mem(asm_input->asm_symbolic_name, ptr, len)) { return result; } } return SIZE_MAX; } static LLVMValueRef ir_render_asm(CodeGen *g, IrExecutable *executable, IrInstructionAsm *instruction) { AstNode *asm_node = instruction->base.source_node; assert(asm_node->type == NodeTypeAsmExpr); AstNodeAsmExpr *asm_expr = &asm_node->data.asm_expr; Buf *src_template = instruction->asm_template; Buf llvm_template = BUF_INIT; buf_resize(&llvm_template, 0); for (size_t token_i = 0; token_i < instruction->token_list_len; token_i += 1) { AsmToken *asm_token = &instruction->token_list[token_i]; switch (asm_token->id) { case AsmTokenIdTemplate: for (size_t offset = asm_token->start; offset < asm_token->end; offset += 1) { uint8_t c = *((uint8_t*)(buf_ptr(src_template) + offset)); if (c == '$') { buf_append_str(&llvm_template, "$$"); } else { buf_append_char(&llvm_template, c); } } break; case AsmTokenIdPercent: buf_append_char(&llvm_template, '%'); break; case AsmTokenIdVar: { size_t index = find_asm_index(g, asm_node, asm_token, src_template); assert(index < SIZE_MAX); buf_appendf(&llvm_template, "$%" ZIG_PRI_usize "", index); break; } case AsmTokenIdUniqueId: buf_append_str(&llvm_template, "${:uid}"); break; } } Buf constraint_buf = BUF_INIT; buf_resize(&constraint_buf, 0); assert(instruction->return_count == 0 || instruction->return_count == 1); size_t total_constraint_count = asm_expr->output_list.length + asm_expr->input_list.length + asm_expr->clobber_list.length; size_t input_and_output_count = asm_expr->output_list.length + asm_expr->input_list.length - instruction->return_count; size_t total_index = 0; size_t param_index = 0; LLVMTypeRef *param_types = allocate(input_and_output_count); LLVMValueRef *param_values = allocate(input_and_output_count); for (size_t i = 0; i < asm_expr->output_list.length; i += 1, total_index += 1) { AsmOutput *asm_output = asm_expr->output_list.at(i); bool is_return = (asm_output->return_type != nullptr); assert(*buf_ptr(asm_output->constraint) == '='); // LLVM uses commas internally to separate different constraints, // alternative constraints are achieved with pipes. // We still allow the user to use commas in a way that is similar // to GCC's inline assembly. // http://llvm.org/docs/LangRef.html#constraint-codes buf_replace(asm_output->constraint, ',', '|'); if (is_return) { buf_appendf(&constraint_buf, "=%s", buf_ptr(asm_output->constraint) + 1); } else { buf_appendf(&constraint_buf, "=*%s", buf_ptr(asm_output->constraint) + 1); } if (total_index + 1 < total_constraint_count) { buf_append_char(&constraint_buf, ','); } if (!is_return) { ZigVar *variable = instruction->output_vars[i]; assert(variable); param_types[param_index] = LLVMTypeOf(variable->value_ref); param_values[param_index] = variable->value_ref; param_index += 1; } } for (size_t i = 0; i < asm_expr->input_list.length; i += 1, total_index += 1, param_index += 1) { AsmInput *asm_input = asm_expr->input_list.at(i); buf_replace(asm_input->constraint, ',', '|'); IrInstruction *ir_input = instruction->input_list[i]; buf_append_buf(&constraint_buf, asm_input->constraint); if (total_index + 1 < total_constraint_count) { buf_append_char(&constraint_buf, ','); } ZigType *const type = ir_input->value.type; LLVMTypeRef type_ref = get_llvm_type(g, type); LLVMValueRef value_ref = ir_llvm_value(g, ir_input); // Handle integers of non pot bitsize by widening them. if (type->id == ZigTypeIdInt) { const size_t bitsize = type->data.integral.bit_count; if (bitsize < 8 || !is_power_of_2(bitsize)) { const bool is_signed = type->data.integral.is_signed; const size_t wider_bitsize = bitsize < 8 ? 8 : round_to_next_power_of_2(bitsize); ZigType *const wider_type = get_int_type(g, is_signed, wider_bitsize); type_ref = get_llvm_type(g, wider_type); value_ref = gen_widen_or_shorten(g, false, type, wider_type, value_ref); } } param_types[param_index] = type_ref; param_values[param_index] = value_ref; } for (size_t i = 0; i < asm_expr->clobber_list.length; i += 1, total_index += 1) { Buf *clobber_buf = asm_expr->clobber_list.at(i); buf_appendf(&constraint_buf, "~{%s}", buf_ptr(clobber_buf)); if (total_index + 1 < total_constraint_count) { buf_append_char(&constraint_buf, ','); } } LLVMTypeRef ret_type; if (instruction->return_count == 0) { ret_type = LLVMVoidType(); } else { ret_type = get_llvm_type(g, instruction->base.value.type); } LLVMTypeRef function_type = LLVMFunctionType(ret_type, param_types, (unsigned)input_and_output_count, false); bool is_volatile = instruction->has_side_effects || (asm_expr->output_list.length == 0); LLVMValueRef asm_fn = LLVMGetInlineAsm(function_type, buf_ptr(&llvm_template), buf_len(&llvm_template), buf_ptr(&constraint_buf), buf_len(&constraint_buf), is_volatile, false, LLVMInlineAsmDialectATT); return LLVMBuildCall(g->builder, asm_fn, param_values, (unsigned)input_and_output_count, ""); } static LLVMValueRef gen_non_null_bit(CodeGen *g, ZigType *maybe_type, LLVMValueRef maybe_handle) { assert(maybe_type->id == ZigTypeIdOptional || (maybe_type->id == ZigTypeIdPointer && maybe_type->data.pointer.allow_zero)); ZigType *child_type = maybe_type->data.maybe.child_type; if (!type_has_bits(child_type)) return maybe_handle; bool is_scalar = !handle_is_ptr(maybe_type); if (is_scalar) return LLVMBuildICmp(g->builder, LLVMIntNE, maybe_handle, LLVMConstNull(get_llvm_type(g, maybe_type)), ""); LLVMValueRef maybe_field_ptr = LLVMBuildStructGEP(g->builder, maybe_handle, maybe_null_index, ""); return gen_load_untyped(g, maybe_field_ptr, 0, false, ""); } static LLVMValueRef ir_render_test_non_null(CodeGen *g, IrExecutable *executable, IrInstructionTestNonNull *instruction) { return gen_non_null_bit(g, instruction->value->value.type, ir_llvm_value(g, instruction->value)); } static LLVMValueRef ir_render_optional_unwrap_ptr(CodeGen *g, IrExecutable *executable, IrInstructionOptionalUnwrapPtr *instruction) { ZigType *ptr_type = instruction->base_ptr->value.type; assert(ptr_type->id == ZigTypeIdPointer); ZigType *maybe_type = ptr_type->data.pointer.child_type; assert(maybe_type->id == ZigTypeIdOptional); ZigType *child_type = maybe_type->data.maybe.child_type; LLVMValueRef maybe_ptr = ir_llvm_value(g, instruction->base_ptr); if (ir_want_runtime_safety(g, &instruction->base) && instruction->safety_check_on) { LLVMValueRef maybe_handle = get_handle_value(g, maybe_ptr, maybe_type, ptr_type); LLVMValueRef non_null_bit = gen_non_null_bit(g, maybe_type, maybe_handle); LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "UnwrapOptionalFail"); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "UnwrapOptionalOk"); LLVMBuildCondBr(g->builder, non_null_bit, ok_block, fail_block); LLVMPositionBuilderAtEnd(g->builder, fail_block); gen_safety_crash(g, PanicMsgIdUnwrapOptionalFail); LLVMPositionBuilderAtEnd(g->builder, ok_block); } if (!type_has_bits(child_type)) { return nullptr; } else { bool is_scalar = !handle_is_ptr(maybe_type); if (is_scalar) { return maybe_ptr; } else { LLVMValueRef maybe_struct_ref = get_handle_value(g, maybe_ptr, maybe_type, ptr_type); return LLVMBuildStructGEP(g->builder, maybe_struct_ref, maybe_child_index, ""); } } } static LLVMValueRef get_int_builtin_fn(CodeGen *g, ZigType *int_type, BuiltinFnId fn_id) { ZigLLVMFnKey key = {}; const char *fn_name; uint32_t n_args; if (fn_id == BuiltinFnIdCtz) { fn_name = "cttz"; n_args = 2; key.id = ZigLLVMFnIdCtz; key.data.ctz.bit_count = (uint32_t)int_type->data.integral.bit_count; } else if (fn_id == BuiltinFnIdClz) { fn_name = "ctlz"; n_args = 2; key.id = ZigLLVMFnIdClz; key.data.clz.bit_count = (uint32_t)int_type->data.integral.bit_count; } else if (fn_id == BuiltinFnIdPopCount) { fn_name = "ctpop"; n_args = 1; key.id = ZigLLVMFnIdPopCount; key.data.pop_count.bit_count = (uint32_t)int_type->data.integral.bit_count; } else if (fn_id == BuiltinFnIdBswap) { fn_name = "bswap"; n_args = 1; key.id = ZigLLVMFnIdBswap; key.data.bswap.bit_count = (uint32_t)int_type->data.integral.bit_count; } else if (fn_id == BuiltinFnIdBitReverse) { fn_name = "bitreverse"; n_args = 1; key.id = ZigLLVMFnIdBitReverse; key.data.bit_reverse.bit_count = (uint32_t)int_type->data.integral.bit_count; } else { zig_unreachable(); } auto existing_entry = g->llvm_fn_table.maybe_get(key); if (existing_entry) return existing_entry->value; char llvm_name[64]; sprintf(llvm_name, "llvm.%s.i%" PRIu32, fn_name, int_type->data.integral.bit_count); LLVMTypeRef param_types[] = { get_llvm_type(g, int_type), LLVMInt1Type(), }; LLVMTypeRef fn_type = LLVMFunctionType(get_llvm_type(g, int_type), param_types, n_args, false); LLVMValueRef fn_val = LLVMAddFunction(g->module, llvm_name, fn_type); assert(LLVMGetIntrinsicID(fn_val)); g->llvm_fn_table.put(key, fn_val); return fn_val; } static LLVMValueRef ir_render_clz(CodeGen *g, IrExecutable *executable, IrInstructionClz *instruction) { ZigType *int_type = instruction->op->value.type; LLVMValueRef fn_val = get_int_builtin_fn(g, int_type, BuiltinFnIdClz); LLVMValueRef operand = ir_llvm_value(g, instruction->op); LLVMValueRef params[] { operand, LLVMConstNull(LLVMInt1Type()), }; LLVMValueRef wrong_size_int = LLVMBuildCall(g->builder, fn_val, params, 2, ""); return gen_widen_or_shorten(g, false, int_type, instruction->base.value.type, wrong_size_int); } static LLVMValueRef ir_render_ctz(CodeGen *g, IrExecutable *executable, IrInstructionCtz *instruction) { ZigType *int_type = instruction->op->value.type; LLVMValueRef fn_val = get_int_builtin_fn(g, int_type, BuiltinFnIdCtz); LLVMValueRef operand = ir_llvm_value(g, instruction->op); LLVMValueRef params[] { operand, LLVMConstNull(LLVMInt1Type()), }; LLVMValueRef wrong_size_int = LLVMBuildCall(g->builder, fn_val, params, 2, ""); return gen_widen_or_shorten(g, false, int_type, instruction->base.value.type, wrong_size_int); } static LLVMValueRef ir_render_pop_count(CodeGen *g, IrExecutable *executable, IrInstructionPopCount *instruction) { ZigType *int_type = instruction->op->value.type; LLVMValueRef fn_val = get_int_builtin_fn(g, int_type, BuiltinFnIdPopCount); LLVMValueRef operand = ir_llvm_value(g, instruction->op); LLVMValueRef wrong_size_int = LLVMBuildCall(g->builder, fn_val, &operand, 1, ""); return gen_widen_or_shorten(g, false, int_type, instruction->base.value.type, wrong_size_int); } static LLVMValueRef ir_render_switch_br(CodeGen *g, IrExecutable *executable, IrInstructionSwitchBr *instruction) { LLVMValueRef target_value = ir_llvm_value(g, instruction->target_value); LLVMBasicBlockRef else_block = instruction->else_block->llvm_block; LLVMValueRef switch_instr = LLVMBuildSwitch(g->builder, target_value, else_block, (unsigned)instruction->case_count); for (size_t i = 0; i < instruction->case_count; i += 1) { IrInstructionSwitchBrCase *this_case = &instruction->cases[i]; LLVMAddCase(switch_instr, ir_llvm_value(g, this_case->value), this_case->block->llvm_block); } return nullptr; } static LLVMValueRef ir_render_phi(CodeGen *g, IrExecutable *executable, IrInstructionPhi *instruction) { if (!type_has_bits(instruction->base.value.type)) return nullptr; LLVMTypeRef phi_type; if (handle_is_ptr(instruction->base.value.type)) { phi_type = LLVMPointerType(get_llvm_type(g,instruction->base.value.type), 0); } else { phi_type = get_llvm_type(g, instruction->base.value.type); } LLVMValueRef phi = LLVMBuildPhi(g->builder, phi_type, ""); LLVMValueRef *incoming_values = allocate(instruction->incoming_count); LLVMBasicBlockRef *incoming_blocks = allocate(instruction->incoming_count); for (size_t i = 0; i < instruction->incoming_count; i += 1) { incoming_values[i] = ir_llvm_value(g, instruction->incoming_values[i]); incoming_blocks[i] = instruction->incoming_blocks[i]->llvm_exit_block; } LLVMAddIncoming(phi, incoming_values, incoming_blocks, (unsigned)instruction->incoming_count); return phi; } static LLVMValueRef ir_render_ref(CodeGen *g, IrExecutable *executable, IrInstructionRef *instruction) { if (!type_has_bits(instruction->base.value.type)) { return nullptr; } LLVMValueRef value = ir_llvm_value(g, instruction->value); if (handle_is_ptr(instruction->value->value.type)) { return value; } else { assert(instruction->tmp_ptr); gen_store_untyped(g, value, instruction->tmp_ptr, 0, false); return instruction->tmp_ptr; } } static LLVMValueRef ir_render_err_name(CodeGen *g, IrExecutable *executable, IrInstructionErrName *instruction) { assert(g->generate_error_name_table); if (g->errors_by_index.length == 1) { LLVMBuildUnreachable(g->builder); return nullptr; } LLVMValueRef err_val = ir_llvm_value(g, instruction->value); if (ir_want_runtime_safety(g, &instruction->base)) { LLVMValueRef zero = LLVMConstNull(LLVMTypeOf(err_val)); LLVMValueRef end_val = LLVMConstInt(LLVMTypeOf(err_val), g->errors_by_index.length, false); add_bounds_check(g, err_val, LLVMIntNE, zero, LLVMIntULT, end_val); } LLVMValueRef indices[] = { LLVMConstNull(g->builtin_types.entry_usize->llvm_type), err_val, }; return LLVMBuildInBoundsGEP(g->builder, g->err_name_table, indices, 2, ""); } static LLVMValueRef get_enum_tag_name_function(CodeGen *g, ZigType *enum_type) { assert(enum_type->id == ZigTypeIdEnum); if (enum_type->data.enumeration.name_function) return enum_type->data.enumeration.name_function; ZigType *u8_ptr_type = get_pointer_to_type_extra(g, g->builtin_types.entry_u8, false, false, PtrLenUnknown, get_abi_alignment(g, g->builtin_types.entry_u8), 0, 0, false); ZigType *u8_slice_type = get_slice_type(g, u8_ptr_type); ZigType *tag_int_type = enum_type->data.enumeration.tag_int_type; LLVMTypeRef tag_int_llvm_type = get_llvm_type(g, tag_int_type); LLVMTypeRef fn_type_ref = LLVMFunctionType(LLVMPointerType(get_llvm_type(g, u8_slice_type), 0), &tag_int_llvm_type, 1, false); Buf *fn_name = get_mangled_name(g, buf_sprintf("__zig_tag_name_%s", buf_ptr(&enum_type->name)), false); LLVMValueRef fn_val = LLVMAddFunction(g->module, buf_ptr(fn_name), fn_type_ref); LLVMSetLinkage(fn_val, LLVMInternalLinkage); LLVMSetFunctionCallConv(fn_val, get_llvm_cc(g, CallingConventionUnspecified)); addLLVMFnAttr(fn_val, "nounwind"); add_uwtable_attr(g, fn_val); if (g->build_mode == BuildModeDebug) { ZigLLVMAddFunctionAttr(fn_val, "no-frame-pointer-elim", "true"); ZigLLVMAddFunctionAttr(fn_val, "no-frame-pointer-elim-non-leaf", nullptr); } LLVMBasicBlockRef prev_block = LLVMGetInsertBlock(g->builder); LLVMValueRef prev_debug_location = LLVMGetCurrentDebugLocation(g->builder); ZigFn *prev_cur_fn = g->cur_fn; LLVMValueRef prev_cur_fn_val = g->cur_fn_val; LLVMBasicBlockRef entry_block = LLVMAppendBasicBlock(fn_val, "Entry"); LLVMPositionBuilderAtEnd(g->builder, entry_block); ZigLLVMClearCurrentDebugLocation(g->builder); g->cur_fn = nullptr; g->cur_fn_val = fn_val; size_t field_count = enum_type->data.enumeration.src_field_count; LLVMBasicBlockRef bad_value_block = LLVMAppendBasicBlock(g->cur_fn_val, "BadValue"); LLVMValueRef tag_int_value = LLVMGetParam(fn_val, 0); LLVMValueRef switch_instr = LLVMBuildSwitch(g->builder, tag_int_value, bad_value_block, field_count); ZigType *usize = g->builtin_types.entry_usize; LLVMValueRef array_ptr_indices[] = { LLVMConstNull(usize->llvm_type), LLVMConstNull(usize->llvm_type), }; for (size_t field_i = 0; field_i < field_count; field_i += 1) { Buf *name = enum_type->data.enumeration.fields[field_i].name; LLVMValueRef str_init = LLVMConstString(buf_ptr(name), (unsigned)buf_len(name), true); LLVMValueRef str_global = LLVMAddGlobal(g->module, LLVMTypeOf(str_init), ""); LLVMSetInitializer(str_global, str_init); LLVMSetLinkage(str_global, LLVMPrivateLinkage); LLVMSetGlobalConstant(str_global, true); LLVMSetUnnamedAddr(str_global, true); LLVMSetAlignment(str_global, LLVMABIAlignmentOfType(g->target_data_ref, LLVMTypeOf(str_init))); LLVMValueRef fields[] = { LLVMConstGEP(str_global, array_ptr_indices, 2), LLVMConstInt(g->builtin_types.entry_usize->llvm_type, buf_len(name), false), }; LLVMValueRef slice_init_value = LLVMConstNamedStruct(get_llvm_type(g, u8_slice_type), fields, 2); LLVMValueRef slice_global = LLVMAddGlobal(g->module, LLVMTypeOf(slice_init_value), ""); LLVMSetInitializer(slice_global, slice_init_value); LLVMSetLinkage(slice_global, LLVMPrivateLinkage); LLVMSetGlobalConstant(slice_global, true); LLVMSetUnnamedAddr(slice_global, true); LLVMSetAlignment(slice_global, LLVMABIAlignmentOfType(g->target_data_ref, LLVMTypeOf(slice_init_value))); LLVMBasicBlockRef return_block = LLVMAppendBasicBlock(g->cur_fn_val, "Name"); LLVMValueRef this_tag_int_value = bigint_to_llvm_const(get_llvm_type(g, tag_int_type), &enum_type->data.enumeration.fields[field_i].value); LLVMAddCase(switch_instr, this_tag_int_value, return_block); LLVMPositionBuilderAtEnd(g->builder, return_block); LLVMBuildRet(g->builder, slice_global); } LLVMPositionBuilderAtEnd(g->builder, bad_value_block); if (g->build_mode == BuildModeDebug || g->build_mode == BuildModeSafeRelease) { gen_safety_crash(g, PanicMsgIdBadEnumValue); } else { LLVMBuildUnreachable(g->builder); } g->cur_fn = prev_cur_fn; g->cur_fn_val = prev_cur_fn_val; LLVMPositionBuilderAtEnd(g->builder, prev_block); LLVMSetCurrentDebugLocation(g->builder, prev_debug_location); enum_type->data.enumeration.name_function = fn_val; return fn_val; } static LLVMValueRef ir_render_enum_tag_name(CodeGen *g, IrExecutable *executable, IrInstructionTagName *instruction) { ZigType *enum_type = instruction->target->value.type; assert(enum_type->id == ZigTypeIdEnum); LLVMValueRef enum_name_function = get_enum_tag_name_function(g, enum_type); LLVMValueRef enum_tag_value = ir_llvm_value(g, instruction->target); return ZigLLVMBuildCall(g->builder, enum_name_function, &enum_tag_value, 1, get_llvm_cc(g, CallingConventionUnspecified), ZigLLVM_FnInlineAuto, ""); } static LLVMValueRef ir_render_field_parent_ptr(CodeGen *g, IrExecutable *executable, IrInstructionFieldParentPtr *instruction) { ZigType *container_ptr_type = instruction->base.value.type; assert(container_ptr_type->id == ZigTypeIdPointer); ZigType *container_type = container_ptr_type->data.pointer.child_type; size_t byte_offset = LLVMOffsetOfElement(g->target_data_ref, get_llvm_type(g, container_type), instruction->field->gen_index); LLVMValueRef field_ptr_val = ir_llvm_value(g, instruction->field_ptr); if (byte_offset == 0) { return LLVMBuildBitCast(g->builder, field_ptr_val, get_llvm_type(g, container_ptr_type), ""); } else { ZigType *usize = g->builtin_types.entry_usize; LLVMValueRef field_ptr_int = LLVMBuildPtrToInt(g->builder, field_ptr_val, usize->llvm_type, ""); LLVMValueRef base_ptr_int = LLVMBuildNUWSub(g->builder, field_ptr_int, LLVMConstInt(usize->llvm_type, byte_offset, false), ""); return LLVMBuildIntToPtr(g->builder, base_ptr_int, get_llvm_type(g, container_ptr_type), ""); } } static LLVMValueRef ir_render_align_cast(CodeGen *g, IrExecutable *executable, IrInstructionAlignCast *instruction) { LLVMValueRef target_val = ir_llvm_value(g, instruction->target); assert(target_val); bool want_runtime_safety = ir_want_runtime_safety(g, &instruction->base); if (!want_runtime_safety) { return target_val; } ZigType *target_type = instruction->base.value.type; uint32_t align_bytes; LLVMValueRef ptr_val; if (target_type->id == ZigTypeIdPointer) { align_bytes = get_ptr_align(g, target_type); ptr_val = target_val; } else if (target_type->id == ZigTypeIdFn) { align_bytes = target_type->data.fn.fn_type_id.alignment; ptr_val = target_val; } else if (target_type->id == ZigTypeIdOptional && target_type->data.maybe.child_type->id == ZigTypeIdPointer) { align_bytes = get_ptr_align(g, target_type->data.maybe.child_type); ptr_val = target_val; } else if (target_type->id == ZigTypeIdOptional && target_type->data.maybe.child_type->id == ZigTypeIdFn) { align_bytes = target_type->data.maybe.child_type->data.fn.fn_type_id.alignment; ptr_val = target_val; } else if (target_type->id == ZigTypeIdOptional && target_type->data.maybe.child_type->id == ZigTypeIdPromise) { zig_panic("TODO audit this function"); } else if (target_type->id == ZigTypeIdStruct && target_type->data.structure.is_slice) { ZigType *slice_ptr_type = target_type->data.structure.fields[slice_ptr_index].type_entry; align_bytes = get_ptr_align(g, slice_ptr_type); size_t ptr_index = target_type->data.structure.fields[slice_ptr_index].gen_index; LLVMValueRef ptr_val_ptr = LLVMBuildStructGEP(g->builder, target_val, (unsigned)ptr_index, ""); ptr_val = gen_load_untyped(g, ptr_val_ptr, 0, false, ""); } else { zig_unreachable(); } assert(align_bytes != 1); ZigType *usize = g->builtin_types.entry_usize; LLVMValueRef ptr_as_int_val = LLVMBuildPtrToInt(g->builder, ptr_val, usize->llvm_type, ""); LLVMValueRef alignment_minus_1 = LLVMConstInt(usize->llvm_type, align_bytes - 1, false); LLVMValueRef anded_val = LLVMBuildAnd(g->builder, ptr_as_int_val, alignment_minus_1, ""); LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, anded_val, LLVMConstNull(usize->llvm_type), ""); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "AlignCastOk"); LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "AlignCastFail"); LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block); LLVMPositionBuilderAtEnd(g->builder, fail_block); gen_safety_crash(g, PanicMsgIdIncorrectAlignment); LLVMPositionBuilderAtEnd(g->builder, ok_block); return target_val; } static LLVMValueRef ir_render_error_return_trace(CodeGen *g, IrExecutable *executable, IrInstructionErrorReturnTrace *instruction) { LLVMValueRef cur_err_ret_trace_val = get_cur_err_ret_trace_val(g, instruction->base.scope); if (cur_err_ret_trace_val == nullptr) { ZigType *ptr_to_stack_trace_type = get_ptr_to_stack_trace_type(g); return LLVMConstNull(get_llvm_type(g, ptr_to_stack_trace_type)); } return cur_err_ret_trace_val; } static LLVMValueRef ir_render_cancel(CodeGen *g, IrExecutable *executable, IrInstructionCancel *instruction) { LLVMValueRef target_handle = ir_llvm_value(g, instruction->target); LLVMBuildCall(g->builder, get_coro_destroy_fn_val(g), &target_handle, 1, ""); return nullptr; } static LLVMValueRef ir_render_get_implicit_allocator(CodeGen *g, IrExecutable *executable, IrInstructionGetImplicitAllocator *instruction) { assert(instruction->id == ImplicitAllocatorIdArg); size_t allocator_arg_index = get_async_allocator_arg_index(g, &g->cur_fn->type_entry->data.fn.fn_type_id); return LLVMGetParam(g->cur_fn_val, allocator_arg_index); } static LLVMAtomicOrdering to_LLVMAtomicOrdering(AtomicOrder atomic_order) { switch (atomic_order) { case AtomicOrderUnordered: return LLVMAtomicOrderingUnordered; case AtomicOrderMonotonic: return LLVMAtomicOrderingMonotonic; case AtomicOrderAcquire: return LLVMAtomicOrderingAcquire; case AtomicOrderRelease: return LLVMAtomicOrderingRelease; case AtomicOrderAcqRel: return LLVMAtomicOrderingAcquireRelease; case AtomicOrderSeqCst: return LLVMAtomicOrderingSequentiallyConsistent; } zig_unreachable(); } static LLVMAtomicRMWBinOp to_LLVMAtomicRMWBinOp(AtomicRmwOp op, bool is_signed) { switch (op) { case AtomicRmwOp_xchg: return LLVMAtomicRMWBinOpXchg; case AtomicRmwOp_add: return LLVMAtomicRMWBinOpAdd; case AtomicRmwOp_sub: return LLVMAtomicRMWBinOpSub; case AtomicRmwOp_and: return LLVMAtomicRMWBinOpAnd; case AtomicRmwOp_nand: return LLVMAtomicRMWBinOpNand; case AtomicRmwOp_or: return LLVMAtomicRMWBinOpOr; case AtomicRmwOp_xor: return LLVMAtomicRMWBinOpXor; case AtomicRmwOp_max: return is_signed ? LLVMAtomicRMWBinOpMax : LLVMAtomicRMWBinOpUMax; case AtomicRmwOp_min: return is_signed ? LLVMAtomicRMWBinOpMin : LLVMAtomicRMWBinOpUMin; } zig_unreachable(); } static LLVMValueRef ir_render_cmpxchg(CodeGen *g, IrExecutable *executable, IrInstructionCmpxchgGen *instruction) { LLVMValueRef ptr_val = ir_llvm_value(g, instruction->ptr); LLVMValueRef cmp_val = ir_llvm_value(g, instruction->cmp_value); LLVMValueRef new_val = ir_llvm_value(g, instruction->new_value); LLVMAtomicOrdering success_order = to_LLVMAtomicOrdering(instruction->success_order); LLVMAtomicOrdering failure_order = to_LLVMAtomicOrdering(instruction->failure_order); LLVMValueRef result_val = ZigLLVMBuildCmpXchg(g->builder, ptr_val, cmp_val, new_val, success_order, failure_order, instruction->is_weak); ZigType *maybe_type = instruction->base.value.type; assert(maybe_type->id == ZigTypeIdOptional); ZigType *child_type = maybe_type->data.maybe.child_type; if (!handle_is_ptr(maybe_type)) { LLVMValueRef payload_val = LLVMBuildExtractValue(g->builder, result_val, 0, ""); LLVMValueRef success_bit = LLVMBuildExtractValue(g->builder, result_val, 1, ""); return LLVMBuildSelect(g->builder, success_bit, LLVMConstNull(get_llvm_type(g, child_type)), payload_val, ""); } assert(instruction->tmp_ptr != nullptr); assert(type_has_bits(child_type)); LLVMValueRef payload_val = LLVMBuildExtractValue(g->builder, result_val, 0, ""); LLVMValueRef val_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, maybe_child_index, ""); gen_assign_raw(g, val_ptr, get_pointer_to_type(g, child_type, false), payload_val); LLVMValueRef success_bit = LLVMBuildExtractValue(g->builder, result_val, 1, ""); LLVMValueRef nonnull_bit = LLVMBuildNot(g->builder, success_bit, ""); LLVMValueRef maybe_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, maybe_null_index, ""); gen_store_untyped(g, nonnull_bit, maybe_ptr, 0, false); return instruction->tmp_ptr; } static LLVMValueRef ir_render_fence(CodeGen *g, IrExecutable *executable, IrInstructionFence *instruction) { LLVMAtomicOrdering atomic_order = to_LLVMAtomicOrdering(instruction->order); LLVMBuildFence(g->builder, atomic_order, false, ""); return nullptr; } static LLVMValueRef ir_render_truncate(CodeGen *g, IrExecutable *executable, IrInstructionTruncate *instruction) { LLVMValueRef target_val = ir_llvm_value(g, instruction->target); ZigType *dest_type = instruction->base.value.type; ZigType *src_type = instruction->target->value.type; if (dest_type == src_type) { // no-op return target_val; } if (src_type->data.integral.bit_count == dest_type->data.integral.bit_count) { return LLVMBuildBitCast(g->builder, target_val, get_llvm_type(g, dest_type), ""); } else { LLVMValueRef target_val = ir_llvm_value(g, instruction->target); return LLVMBuildTrunc(g->builder, target_val, get_llvm_type(g, dest_type), ""); } } static LLVMValueRef ir_render_memset(CodeGen *g, IrExecutable *executable, IrInstructionMemset *instruction) { LLVMValueRef dest_ptr = ir_llvm_value(g, instruction->dest_ptr); LLVMValueRef len_val = ir_llvm_value(g, instruction->count); LLVMTypeRef ptr_u8 = LLVMPointerType(LLVMInt8Type(), 0); LLVMValueRef dest_ptr_casted = LLVMBuildBitCast(g->builder, dest_ptr, ptr_u8, ""); ZigType *ptr_type = instruction->dest_ptr->value.type; assert(ptr_type->id == ZigTypeIdPointer); bool val_is_undef = value_is_all_undef(&instruction->byte->value); LLVMValueRef fill_char; if (val_is_undef) { fill_char = LLVMConstInt(LLVMInt8Type(), 0xaa, false); } else { fill_char = ir_llvm_value(g, instruction->byte); } ZigLLVMBuildMemSet(g->builder, dest_ptr_casted, fill_char, len_val, get_ptr_align(g, ptr_type), ptr_type->data.pointer.is_volatile); if (val_is_undef && want_valgrind_support(g)) { gen_valgrind_undef(g, dest_ptr_casted, len_val); } return nullptr; } static LLVMValueRef ir_render_memcpy(CodeGen *g, IrExecutable *executable, IrInstructionMemcpy *instruction) { LLVMValueRef dest_ptr = ir_llvm_value(g, instruction->dest_ptr); LLVMValueRef src_ptr = ir_llvm_value(g, instruction->src_ptr); LLVMValueRef len_val = ir_llvm_value(g, instruction->count); LLVMTypeRef ptr_u8 = LLVMPointerType(LLVMInt8Type(), 0); LLVMValueRef dest_ptr_casted = LLVMBuildBitCast(g->builder, dest_ptr, ptr_u8, ""); LLVMValueRef src_ptr_casted = LLVMBuildBitCast(g->builder, src_ptr, ptr_u8, ""); ZigType *dest_ptr_type = instruction->dest_ptr->value.type; ZigType *src_ptr_type = instruction->src_ptr->value.type; assert(dest_ptr_type->id == ZigTypeIdPointer); assert(src_ptr_type->id == ZigTypeIdPointer); bool is_volatile = (dest_ptr_type->data.pointer.is_volatile || src_ptr_type->data.pointer.is_volatile); ZigLLVMBuildMemCpy(g->builder, dest_ptr_casted, get_ptr_align(g, dest_ptr_type), src_ptr_casted, get_ptr_align(g, src_ptr_type), len_val, is_volatile); return nullptr; } static LLVMValueRef ir_render_slice(CodeGen *g, IrExecutable *executable, IrInstructionSlice *instruction) { assert(instruction->tmp_ptr); LLVMValueRef array_ptr_ptr = ir_llvm_value(g, instruction->ptr); ZigType *array_ptr_type = instruction->ptr->value.type; assert(array_ptr_type->id == ZigTypeIdPointer); ZigType *array_type = array_ptr_type->data.pointer.child_type; LLVMValueRef array_ptr = get_handle_value(g, array_ptr_ptr, array_type, array_ptr_type); LLVMValueRef tmp_struct_ptr = instruction->tmp_ptr; bool want_runtime_safety = instruction->safety_check_on && ir_want_runtime_safety(g, &instruction->base); if (array_type->id == ZigTypeIdArray || (array_type->id == ZigTypeIdPointer && array_type->data.pointer.ptr_len == PtrLenSingle)) { if (array_type->id == ZigTypeIdPointer) { array_type = array_type->data.pointer.child_type; } LLVMValueRef start_val = ir_llvm_value(g, instruction->start); LLVMValueRef end_val; if (instruction->end) { end_val = ir_llvm_value(g, instruction->end); } else { end_val = LLVMConstInt(g->builtin_types.entry_usize->llvm_type, array_type->data.array.len, false); } if (want_runtime_safety) { add_bounds_check(g, start_val, LLVMIntEQ, nullptr, LLVMIntULE, end_val); if (instruction->end) { LLVMValueRef array_end = LLVMConstInt(g->builtin_types.entry_usize->llvm_type, array_type->data.array.len, false); add_bounds_check(g, end_val, LLVMIntEQ, nullptr, LLVMIntULE, array_end); } } if (!type_has_bits(array_type)) { LLVMValueRef len_field_ptr = LLVMBuildStructGEP(g->builder, tmp_struct_ptr, slice_len_index, ""); // TODO if runtime safety is on, store 0xaaaaaaa in ptr field LLVMValueRef len_value = LLVMBuildNSWSub(g->builder, end_val, start_val, ""); gen_store_untyped(g, len_value, len_field_ptr, 0, false); return tmp_struct_ptr; } LLVMValueRef ptr_field_ptr = LLVMBuildStructGEP(g->builder, tmp_struct_ptr, slice_ptr_index, ""); LLVMValueRef indices[] = { LLVMConstNull(g->builtin_types.entry_usize->llvm_type), start_val, }; LLVMValueRef slice_start_ptr = LLVMBuildInBoundsGEP(g->builder, array_ptr, indices, 2, ""); gen_store_untyped(g, slice_start_ptr, ptr_field_ptr, 0, false); LLVMValueRef len_field_ptr = LLVMBuildStructGEP(g->builder, tmp_struct_ptr, slice_len_index, ""); LLVMValueRef len_value = LLVMBuildNSWSub(g->builder, end_val, start_val, ""); gen_store_untyped(g, len_value, len_field_ptr, 0, false); return tmp_struct_ptr; } else if (array_type->id == ZigTypeIdPointer) { assert(array_type->data.pointer.ptr_len != PtrLenSingle); LLVMValueRef start_val = ir_llvm_value(g, instruction->start); LLVMValueRef end_val = ir_llvm_value(g, instruction->end); if (want_runtime_safety) { add_bounds_check(g, start_val, LLVMIntEQ, nullptr, LLVMIntULE, end_val); } if (type_has_bits(array_type)) { size_t gen_ptr_index = instruction->base.value.type->data.structure.fields[slice_ptr_index].gen_index; LLVMValueRef ptr_field_ptr = LLVMBuildStructGEP(g->builder, tmp_struct_ptr, gen_ptr_index, ""); LLVMValueRef slice_start_ptr = LLVMBuildInBoundsGEP(g->builder, array_ptr, &start_val, 1, ""); gen_store_untyped(g, slice_start_ptr, ptr_field_ptr, 0, false); } size_t gen_len_index = instruction->base.value.type->data.structure.fields[slice_len_index].gen_index; LLVMValueRef len_field_ptr = LLVMBuildStructGEP(g->builder, tmp_struct_ptr, gen_len_index, ""); LLVMValueRef len_value = LLVMBuildNSWSub(g->builder, end_val, start_val, ""); gen_store_untyped(g, len_value, len_field_ptr, 0, false); return tmp_struct_ptr; } else if (array_type->id == ZigTypeIdStruct) { assert(array_type->data.structure.is_slice); assert(LLVMGetTypeKind(LLVMTypeOf(array_ptr)) == LLVMPointerTypeKind); assert(LLVMGetTypeKind(LLVMGetElementType(LLVMTypeOf(array_ptr))) == LLVMStructTypeKind); assert(LLVMGetTypeKind(LLVMGetElementType(LLVMTypeOf(tmp_struct_ptr))) == LLVMStructTypeKind); size_t ptr_index = array_type->data.structure.fields[slice_ptr_index].gen_index; assert(ptr_index != SIZE_MAX); size_t len_index = array_type->data.structure.fields[slice_len_index].gen_index; assert(len_index != SIZE_MAX); LLVMValueRef prev_end = nullptr; if (!instruction->end || want_runtime_safety) { LLVMValueRef src_len_ptr = LLVMBuildStructGEP(g->builder, array_ptr, (unsigned)len_index, ""); prev_end = gen_load_untyped(g, src_len_ptr, 0, false, ""); } LLVMValueRef start_val = ir_llvm_value(g, instruction->start); LLVMValueRef end_val; if (instruction->end) { end_val = ir_llvm_value(g, instruction->end); } else { end_val = prev_end; } if (want_runtime_safety) { assert(prev_end); add_bounds_check(g, start_val, LLVMIntEQ, nullptr, LLVMIntULE, end_val); if (instruction->end) { add_bounds_check(g, end_val, LLVMIntEQ, nullptr, LLVMIntULE, prev_end); } } LLVMValueRef src_ptr_ptr = LLVMBuildStructGEP(g->builder, array_ptr, (unsigned)ptr_index, ""); LLVMValueRef src_ptr = gen_load_untyped(g, src_ptr_ptr, 0, false, ""); LLVMValueRef ptr_field_ptr = LLVMBuildStructGEP(g->builder, tmp_struct_ptr, (unsigned)ptr_index, ""); LLVMValueRef slice_start_ptr = LLVMBuildInBoundsGEP(g->builder, src_ptr, &start_val, (unsigned)len_index, ""); gen_store_untyped(g, slice_start_ptr, ptr_field_ptr, 0, false); LLVMValueRef len_field_ptr = LLVMBuildStructGEP(g->builder, tmp_struct_ptr, (unsigned)len_index, ""); LLVMValueRef len_value = LLVMBuildNSWSub(g->builder, end_val, start_val, ""); gen_store_untyped(g, len_value, len_field_ptr, 0, false); return tmp_struct_ptr; } else { zig_unreachable(); } } static LLVMValueRef get_trap_fn_val(CodeGen *g) { if (g->trap_fn_val) return g->trap_fn_val; LLVMTypeRef fn_type = LLVMFunctionType(LLVMVoidType(), nullptr, 0, false); g->trap_fn_val = LLVMAddFunction(g->module, "llvm.debugtrap", fn_type); assert(LLVMGetIntrinsicID(g->trap_fn_val)); return g->trap_fn_val; } static LLVMValueRef ir_render_breakpoint(CodeGen *g, IrExecutable *executable, IrInstructionBreakpoint *instruction) { LLVMBuildCall(g->builder, get_trap_fn_val(g), nullptr, 0, ""); return nullptr; } static LLVMValueRef ir_render_return_address(CodeGen *g, IrExecutable *executable, IrInstructionReturnAddress *instruction) { LLVMValueRef zero = LLVMConstNull(g->builtin_types.entry_i32->llvm_type); LLVMValueRef ptr_val = LLVMBuildCall(g->builder, get_return_address_fn_val(g), &zero, 1, ""); return LLVMBuildPtrToInt(g->builder, ptr_val, g->builtin_types.entry_usize->llvm_type, ""); } static LLVMValueRef get_frame_address_fn_val(CodeGen *g) { if (g->frame_address_fn_val) return g->frame_address_fn_val; ZigType *return_type = get_pointer_to_type(g, g->builtin_types.entry_u8, true); LLVMTypeRef fn_type = LLVMFunctionType(get_llvm_type(g, return_type), &g->builtin_types.entry_i32->llvm_type, 1, false); g->frame_address_fn_val = LLVMAddFunction(g->module, "llvm.frameaddress", fn_type); assert(LLVMGetIntrinsicID(g->frame_address_fn_val)); return g->frame_address_fn_val; } static LLVMValueRef ir_render_frame_address(CodeGen *g, IrExecutable *executable, IrInstructionFrameAddress *instruction) { LLVMValueRef zero = LLVMConstNull(g->builtin_types.entry_i32->llvm_type); LLVMValueRef ptr_val = LLVMBuildCall(g->builder, get_frame_address_fn_val(g), &zero, 1, ""); return LLVMBuildPtrToInt(g->builder, ptr_val, g->builtin_types.entry_usize->llvm_type, ""); } static LLVMValueRef get_handle_fn_val(CodeGen *g) { if (g->coro_frame_fn_val) return g->coro_frame_fn_val; LLVMTypeRef fn_type = LLVMFunctionType( LLVMPointerType(LLVMInt8Type(), 0) , nullptr, 0, false); Buf *name = buf_sprintf("llvm.coro.frame"); g->coro_frame_fn_val = LLVMAddFunction(g->module, buf_ptr(name), fn_type); assert(LLVMGetIntrinsicID(g->coro_frame_fn_val)); return g->coro_frame_fn_val; } static LLVMValueRef ir_render_handle(CodeGen *g, IrExecutable *executable, IrInstructionHandle *instruction) { LLVMValueRef zero = LLVMConstNull(get_llvm_type(g, g->builtin_types.entry_promise)); return LLVMBuildCall(g->builder, get_handle_fn_val(g), &zero, 0, ""); } static LLVMValueRef render_shl_with_overflow(CodeGen *g, IrInstructionOverflowOp *instruction) { ZigType *int_type = instruction->result_ptr_type; assert(int_type->id == ZigTypeIdInt); LLVMValueRef op1 = ir_llvm_value(g, instruction->op1); LLVMValueRef op2 = ir_llvm_value(g, instruction->op2); LLVMValueRef ptr_result = ir_llvm_value(g, instruction->result_ptr); LLVMValueRef op2_casted = gen_widen_or_shorten(g, false, instruction->op2->value.type, instruction->op1->value.type, op2); LLVMValueRef result = LLVMBuildShl(g->builder, op1, op2_casted, ""); LLVMValueRef orig_val; if (int_type->data.integral.is_signed) { orig_val = LLVMBuildAShr(g->builder, result, op2_casted, ""); } else { orig_val = LLVMBuildLShr(g->builder, result, op2_casted, ""); } LLVMValueRef overflow_bit = LLVMBuildICmp(g->builder, LLVMIntNE, op1, orig_val, ""); gen_store(g, result, ptr_result, instruction->result_ptr->value.type); return overflow_bit; } static LLVMValueRef ir_render_overflow_op(CodeGen *g, IrExecutable *executable, IrInstructionOverflowOp *instruction) { AddSubMul add_sub_mul; switch (instruction->op) { case IrOverflowOpAdd: add_sub_mul = AddSubMulAdd; break; case IrOverflowOpSub: add_sub_mul = AddSubMulSub; break; case IrOverflowOpMul: add_sub_mul = AddSubMulMul; break; case IrOverflowOpShl: return render_shl_with_overflow(g, instruction); } ZigType *int_type = instruction->result_ptr_type; assert(int_type->id == ZigTypeIdInt); LLVMValueRef fn_val = get_int_overflow_fn(g, int_type, add_sub_mul); LLVMValueRef op1 = ir_llvm_value(g, instruction->op1); LLVMValueRef op2 = ir_llvm_value(g, instruction->op2); LLVMValueRef ptr_result = ir_llvm_value(g, instruction->result_ptr); LLVMValueRef params[] = { op1, op2, }; LLVMValueRef result_struct = LLVMBuildCall(g->builder, fn_val, params, 2, ""); LLVMValueRef result = LLVMBuildExtractValue(g->builder, result_struct, 0, ""); LLVMValueRef overflow_bit = LLVMBuildExtractValue(g->builder, result_struct, 1, ""); gen_store(g, result, ptr_result, instruction->result_ptr->value.type); return overflow_bit; } static LLVMValueRef ir_render_test_err(CodeGen *g, IrExecutable *executable, IrInstructionTestErr *instruction) { ZigType *err_union_type = instruction->value->value.type; ZigType *payload_type = err_union_type->data.error_union.payload_type; LLVMValueRef err_union_handle = ir_llvm_value(g, instruction->value); LLVMValueRef err_val; if (type_has_bits(payload_type)) { LLVMValueRef err_val_ptr = LLVMBuildStructGEP(g->builder, err_union_handle, err_union_err_index, ""); err_val = gen_load_untyped(g, err_val_ptr, 0, false, ""); } else { err_val = err_union_handle; } LLVMValueRef zero = LLVMConstNull(get_llvm_type(g, g->err_tag_type)); return LLVMBuildICmp(g->builder, LLVMIntNE, err_val, zero, ""); } static LLVMValueRef ir_render_unwrap_err_code(CodeGen *g, IrExecutable *executable, IrInstructionUnwrapErrCode *instruction) { ZigType *ptr_type = instruction->err_union->value.type; assert(ptr_type->id == ZigTypeIdPointer); ZigType *err_union_type = ptr_type->data.pointer.child_type; ZigType *payload_type = err_union_type->data.error_union.payload_type; LLVMValueRef err_union_ptr = ir_llvm_value(g, instruction->err_union); LLVMValueRef err_union_handle = get_handle_value(g, err_union_ptr, err_union_type, ptr_type); if (type_has_bits(payload_type)) { LLVMValueRef err_val_ptr = LLVMBuildStructGEP(g->builder, err_union_handle, err_union_err_index, ""); return gen_load_untyped(g, err_val_ptr, 0, false, ""); } else { return err_union_handle; } } static LLVMValueRef ir_render_unwrap_err_payload(CodeGen *g, IrExecutable *executable, IrInstructionUnwrapErrPayload *instruction) { bool want_safety = ir_want_runtime_safety(g, &instruction->base) && instruction->safety_check_on && g->errors_by_index.length > 1; if (!want_safety && !type_has_bits(instruction->base.value.type)) return nullptr; ZigType *ptr_type = instruction->value->value.type; assert(ptr_type->id == ZigTypeIdPointer); ZigType *err_union_type = ptr_type->data.pointer.child_type; ZigType *payload_type = err_union_type->data.error_union.payload_type; LLVMValueRef err_union_ptr = ir_llvm_value(g, instruction->value); LLVMValueRef err_union_handle = get_handle_value(g, err_union_ptr, err_union_type, ptr_type); if (!type_has_bits(err_union_type->data.error_union.err_set_type)) { return err_union_handle; } if (want_safety) { LLVMValueRef err_val; if (type_has_bits(payload_type)) { LLVMValueRef err_val_ptr = LLVMBuildStructGEP(g->builder, err_union_handle, err_union_err_index, ""); err_val = gen_load_untyped(g, err_val_ptr, 0, false, ""); } else { err_val = err_union_handle; } LLVMValueRef zero = LLVMConstNull(get_llvm_type(g, g->err_tag_type)); LLVMValueRef cond_val = LLVMBuildICmp(g->builder, LLVMIntEQ, err_val, zero, ""); LLVMBasicBlockRef err_block = LLVMAppendBasicBlock(g->cur_fn_val, "UnwrapErrError"); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "UnwrapErrOk"); LLVMBuildCondBr(g->builder, cond_val, ok_block, err_block); LLVMPositionBuilderAtEnd(g->builder, err_block); gen_safety_crash_for_err(g, err_val, instruction->base.scope); LLVMPositionBuilderAtEnd(g->builder, ok_block); } if (type_has_bits(payload_type)) { return LLVMBuildStructGEP(g->builder, err_union_handle, err_union_payload_index, ""); } else { return nullptr; } } static LLVMValueRef ir_render_maybe_wrap(CodeGen *g, IrExecutable *executable, IrInstructionOptionalWrap *instruction) { ZigType *wanted_type = instruction->base.value.type; assert(wanted_type->id == ZigTypeIdOptional); ZigType *child_type = wanted_type->data.maybe.child_type; if (!type_has_bits(child_type)) { return LLVMConstInt(LLVMInt1Type(), 1, false); } LLVMValueRef payload_val = ir_llvm_value(g, instruction->value); if (!handle_is_ptr(wanted_type)) { return payload_val; } assert(instruction->tmp_ptr); LLVMValueRef val_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, maybe_child_index, ""); // child_type and instruction->value->value.type may differ by constness gen_assign_raw(g, val_ptr, get_pointer_to_type(g, child_type, false), payload_val); LLVMValueRef maybe_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, maybe_null_index, ""); gen_store_untyped(g, LLVMConstAllOnes(LLVMInt1Type()), maybe_ptr, 0, false); return instruction->tmp_ptr; } static LLVMValueRef ir_render_err_wrap_code(CodeGen *g, IrExecutable *executable, IrInstructionErrWrapCode *instruction) { ZigType *wanted_type = instruction->base.value.type; assert(wanted_type->id == ZigTypeIdErrorUnion); ZigType *payload_type = wanted_type->data.error_union.payload_type; ZigType *err_set_type = wanted_type->data.error_union.err_set_type; LLVMValueRef err_val = ir_llvm_value(g, instruction->value); if (!type_has_bits(payload_type) || !type_has_bits(err_set_type)) return err_val; assert(instruction->tmp_ptr); LLVMValueRef err_tag_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, err_union_err_index, ""); gen_store_untyped(g, err_val, err_tag_ptr, 0, false); return instruction->tmp_ptr; } static LLVMValueRef ir_render_err_wrap_payload(CodeGen *g, IrExecutable *executable, IrInstructionErrWrapPayload *instruction) { ZigType *wanted_type = instruction->base.value.type; assert(wanted_type->id == ZigTypeIdErrorUnion); ZigType *payload_type = wanted_type->data.error_union.payload_type; ZigType *err_set_type = wanted_type->data.error_union.err_set_type; if (!type_has_bits(err_set_type)) { return ir_llvm_value(g, instruction->value); } LLVMValueRef ok_err_val = LLVMConstNull(get_llvm_type(g, g->err_tag_type)); if (!type_has_bits(payload_type)) return ok_err_val; assert(instruction->tmp_ptr); LLVMValueRef payload_val = ir_llvm_value(g, instruction->value); LLVMValueRef err_tag_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, err_union_err_index, ""); gen_store_untyped(g, ok_err_val, err_tag_ptr, 0, false); LLVMValueRef payload_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, err_union_payload_index, ""); gen_assign_raw(g, payload_ptr, get_pointer_to_type(g, payload_type, false), payload_val); return instruction->tmp_ptr; } static LLVMValueRef ir_render_union_tag(CodeGen *g, IrExecutable *executable, IrInstructionUnionTag *instruction) { ZigType *union_type = instruction->value->value.type; ZigType *tag_type = union_type->data.unionation.tag_type; if (!type_has_bits(tag_type)) return nullptr; LLVMValueRef union_val = ir_llvm_value(g, instruction->value); if (union_type->data.unionation.gen_field_count == 0) return union_val; assert(union_type->data.unionation.gen_tag_index != SIZE_MAX); LLVMValueRef tag_field_ptr = LLVMBuildStructGEP(g->builder, union_val, union_type->data.unionation.gen_tag_index, ""); ZigType *ptr_type = get_pointer_to_type(g, tag_type, false); return get_handle_value(g, tag_field_ptr, tag_type, ptr_type); } static LLVMValueRef ir_render_struct_init(CodeGen *g, IrExecutable *executable, IrInstructionStructInit *instruction) { for (size_t i = 0; i < instruction->field_count; i += 1) { IrInstructionStructInitField *field = &instruction->fields[i]; TypeStructField *type_struct_field = field->type_struct_field; if (!type_has_bits(type_struct_field->type_entry)) continue; LLVMValueRef field_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, (unsigned)type_struct_field->gen_index, ""); LLVMValueRef value = ir_llvm_value(g, field->value); uint32_t field_align_bytes = get_abi_alignment(g, type_struct_field->type_entry); uint32_t host_int_bytes = get_host_int_bytes(g, instruction->struct_type, type_struct_field); ZigType *ptr_type = get_pointer_to_type_extra(g, type_struct_field->type_entry, false, false, PtrLenSingle, field_align_bytes, (uint32_t)type_struct_field->bit_offset_in_host, host_int_bytes, false); gen_assign_raw(g, field_ptr, ptr_type, value); } return instruction->tmp_ptr; } static LLVMValueRef ir_render_union_init(CodeGen *g, IrExecutable *executable, IrInstructionUnionInit *instruction) { TypeUnionField *type_union_field = instruction->field; if (!type_has_bits(type_union_field->type_entry)) return nullptr; uint32_t field_align_bytes = get_abi_alignment(g, type_union_field->type_entry); ZigType *ptr_type = get_pointer_to_type_extra(g, type_union_field->type_entry, false, false, PtrLenSingle, field_align_bytes, 0, 0, false); LLVMValueRef uncasted_union_ptr; // Even if safety is off in this block, if the union type has the safety field, we have to populate it // correctly. Otherwise safety code somewhere other than here could fail. ZigType *union_type = instruction->union_type; if (union_type->data.unionation.gen_tag_index != SIZE_MAX) { LLVMValueRef tag_field_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, union_type->data.unionation.gen_tag_index, ""); LLVMValueRef tag_value = bigint_to_llvm_const(get_llvm_type(g, union_type->data.unionation.tag_type), &type_union_field->enum_field->value); gen_store_untyped(g, tag_value, tag_field_ptr, 0, false); uncasted_union_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, (unsigned)union_type->data.unionation.gen_union_index, ""); } else { uncasted_union_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, (unsigned)0, ""); } LLVMValueRef field_ptr = LLVMBuildBitCast(g->builder, uncasted_union_ptr, get_llvm_type(g, ptr_type), ""); LLVMValueRef value = ir_llvm_value(g, instruction->init_value); gen_assign_raw(g, field_ptr, ptr_type, value); return instruction->tmp_ptr; } static LLVMValueRef ir_render_container_init_list(CodeGen *g, IrExecutable *executable, IrInstructionContainerInitList *instruction) { ZigType *array_type = instruction->base.value.type; assert(array_type->id == ZigTypeIdArray); LLVMValueRef tmp_array_ptr = instruction->tmp_ptr; assert(tmp_array_ptr); size_t field_count = instruction->item_count; ZigType *child_type = array_type->data.array.child_type; for (size_t i = 0; i < field_count; i += 1) { LLVMValueRef elem_val = ir_llvm_value(g, instruction->items[i]); LLVMValueRef indices[] = { LLVMConstNull(g->builtin_types.entry_usize->llvm_type), LLVMConstInt(g->builtin_types.entry_usize->llvm_type, i, false), }; LLVMValueRef elem_ptr = LLVMBuildInBoundsGEP(g->builder, tmp_array_ptr, indices, 2, ""); gen_assign_raw(g, elem_ptr, get_pointer_to_type(g, child_type, false), elem_val); } return tmp_array_ptr; } static LLVMValueRef ir_render_panic(CodeGen *g, IrExecutable *executable, IrInstructionPanic *instruction) { gen_panic(g, ir_llvm_value(g, instruction->msg), get_cur_err_ret_trace_val(g, instruction->base.scope)); return nullptr; } static LLVMValueRef ir_render_coro_id(CodeGen *g, IrExecutable *executable, IrInstructionCoroId *instruction) { LLVMValueRef promise_ptr = ir_llvm_value(g, instruction->promise_ptr); LLVMValueRef align_val = LLVMConstInt(LLVMInt32Type(), get_coro_frame_align_bytes(g), false); LLVMValueRef null = LLVMConstIntToPtr(LLVMConstNull(g->builtin_types.entry_usize->llvm_type), LLVMPointerType(LLVMInt8Type(), 0)); LLVMValueRef params[] = { align_val, promise_ptr, null, null, }; return LLVMBuildCall(g->builder, get_coro_id_fn_val(g), params, 4, ""); } static LLVMValueRef ir_render_coro_alloc(CodeGen *g, IrExecutable *executable, IrInstructionCoroAlloc *instruction) { LLVMValueRef token = ir_llvm_value(g, instruction->coro_id); return LLVMBuildCall(g->builder, get_coro_alloc_fn_val(g), &token, 1, ""); } static LLVMValueRef ir_render_coro_size(CodeGen *g, IrExecutable *executable, IrInstructionCoroSize *instruction) { return LLVMBuildCall(g->builder, get_coro_size_fn_val(g), nullptr, 0, ""); } static LLVMValueRef ir_render_coro_begin(CodeGen *g, IrExecutable *executable, IrInstructionCoroBegin *instruction) { LLVMValueRef coro_id = ir_llvm_value(g, instruction->coro_id); LLVMValueRef coro_mem_ptr = ir_llvm_value(g, instruction->coro_mem_ptr); LLVMValueRef params[] = { coro_id, coro_mem_ptr, }; return LLVMBuildCall(g->builder, get_coro_begin_fn_val(g), params, 2, ""); } static LLVMValueRef ir_render_coro_alloc_fail(CodeGen *g, IrExecutable *executable, IrInstructionCoroAllocFail *instruction) { size_t err_code_ptr_arg_index = get_async_err_code_arg_index(g, &g->cur_fn->type_entry->data.fn.fn_type_id); LLVMValueRef err_code_ptr_val = LLVMGetParam(g->cur_fn_val, err_code_ptr_arg_index); LLVMValueRef err_code = ir_llvm_value(g, instruction->err_val); LLVMBuildStore(g->builder, err_code, err_code_ptr_val); LLVMValueRef return_value; if (ir_want_runtime_safety(g, &instruction->base)) { return_value = LLVMConstNull(LLVMPointerType(LLVMInt8Type(), 0)); } else { return_value = LLVMGetUndef(LLVMPointerType(LLVMInt8Type(), 0)); } LLVMBuildRet(g->builder, return_value); return nullptr; } static LLVMValueRef ir_render_coro_suspend(CodeGen *g, IrExecutable *executable, IrInstructionCoroSuspend *instruction) { LLVMValueRef save_point; if (instruction->save_point == nullptr) { save_point = LLVMConstNull(ZigLLVMTokenTypeInContext(LLVMGetGlobalContext())); } else { save_point = ir_llvm_value(g, instruction->save_point); } LLVMValueRef is_final = ir_llvm_value(g, instruction->is_final); LLVMValueRef params[] = { save_point, is_final, }; return LLVMBuildCall(g->builder, get_coro_suspend_fn_val(g), params, 2, ""); } static LLVMValueRef ir_render_coro_end(CodeGen *g, IrExecutable *executable, IrInstructionCoroEnd *instruction) { LLVMValueRef params[] = { LLVMConstNull(LLVMPointerType(LLVMInt8Type(), 0)), LLVMConstNull(LLVMInt1Type()), }; return LLVMBuildCall(g->builder, get_coro_end_fn_val(g), params, 2, ""); } static LLVMValueRef ir_render_coro_free(CodeGen *g, IrExecutable *executable, IrInstructionCoroFree *instruction) { LLVMValueRef coro_id = ir_llvm_value(g, instruction->coro_id); LLVMValueRef coro_handle = ir_llvm_value(g, instruction->coro_handle); LLVMValueRef params[] = { coro_id, coro_handle, }; return LLVMBuildCall(g->builder, get_coro_free_fn_val(g), params, 2, ""); } static LLVMValueRef ir_render_coro_resume(CodeGen *g, IrExecutable *executable, IrInstructionCoroResume *instruction) { LLVMValueRef awaiter_handle = ir_llvm_value(g, instruction->awaiter_handle); return LLVMBuildCall(g->builder, get_coro_resume_fn_val(g), &awaiter_handle, 1, ""); } static LLVMValueRef ir_render_coro_save(CodeGen *g, IrExecutable *executable, IrInstructionCoroSave *instruction) { LLVMValueRef coro_handle = ir_llvm_value(g, instruction->coro_handle); return LLVMBuildCall(g->builder, get_coro_save_fn_val(g), &coro_handle, 1, ""); } static LLVMValueRef ir_render_coro_promise(CodeGen *g, IrExecutable *executable, IrInstructionCoroPromise *instruction) { LLVMValueRef coro_handle = ir_llvm_value(g, instruction->coro_handle); LLVMValueRef params[] = { coro_handle, LLVMConstInt(LLVMInt32Type(), get_coro_frame_align_bytes(g), false), LLVMConstNull(LLVMInt1Type()), }; LLVMValueRef uncasted_result = LLVMBuildCall(g->builder, get_coro_promise_fn_val(g), params, 3, ""); return LLVMBuildBitCast(g->builder, uncasted_result, get_llvm_type(g, instruction->base.value.type), ""); } static LLVMValueRef get_coro_alloc_helper_fn_val(CodeGen *g, LLVMTypeRef alloc_fn_type_ref, ZigType *fn_type) { if (g->coro_alloc_helper_fn_val != nullptr) return g->coro_alloc_helper_fn_val; assert(fn_type->id == ZigTypeIdFn); ZigType *ptr_to_err_code_type = get_pointer_to_type(g, g->builtin_types.entry_global_error_set, false); LLVMTypeRef alloc_raw_fn_type_ref = LLVMGetElementType(alloc_fn_type_ref); LLVMTypeRef *alloc_fn_arg_types = allocate(LLVMCountParamTypes(alloc_raw_fn_type_ref)); LLVMGetParamTypes(alloc_raw_fn_type_ref, alloc_fn_arg_types); ZigList arg_types = {}; arg_types.append(alloc_fn_type_ref); if (g->have_err_ret_tracing) { arg_types.append(alloc_fn_arg_types[1]); } arg_types.append(alloc_fn_arg_types[g->have_err_ret_tracing ? 2 : 1]); arg_types.append(get_llvm_type(g, ptr_to_err_code_type)); arg_types.append(g->builtin_types.entry_usize->llvm_type); LLVMTypeRef fn_type_ref = LLVMFunctionType(LLVMPointerType(LLVMInt8Type(), 0), arg_types.items, arg_types.length, false); Buf *fn_name = get_mangled_name(g, buf_create_from_str("__zig_coro_alloc_helper"), false); LLVMValueRef fn_val = LLVMAddFunction(g->module, buf_ptr(fn_name), fn_type_ref); LLVMSetLinkage(fn_val, LLVMInternalLinkage); LLVMSetFunctionCallConv(fn_val, get_llvm_cc(g, CallingConventionUnspecified)); addLLVMFnAttr(fn_val, "nounwind"); addLLVMArgAttr(fn_val, (unsigned)0, "nonnull"); addLLVMArgAttr(fn_val, (unsigned)1, "nonnull"); LLVMBasicBlockRef prev_block = LLVMGetInsertBlock(g->builder); LLVMValueRef prev_debug_location = LLVMGetCurrentDebugLocation(g->builder); ZigFn *prev_cur_fn = g->cur_fn; LLVMValueRef prev_cur_fn_val = g->cur_fn_val; LLVMBasicBlockRef entry_block = LLVMAppendBasicBlock(fn_val, "Entry"); LLVMPositionBuilderAtEnd(g->builder, entry_block); ZigLLVMClearCurrentDebugLocation(g->builder); g->cur_fn = nullptr; g->cur_fn_val = fn_val; LLVMValueRef sret_ptr = LLVMBuildAlloca(g->builder, LLVMGetElementType(alloc_fn_arg_types[0]), ""); size_t next_arg = 0; LLVMValueRef realloc_fn_val = LLVMGetParam(fn_val, next_arg); next_arg += 1; LLVMValueRef stack_trace_val; if (g->have_err_ret_tracing) { stack_trace_val = LLVMGetParam(fn_val, next_arg); next_arg += 1; } LLVMValueRef allocator_val = LLVMGetParam(fn_val, next_arg); next_arg += 1; LLVMValueRef err_code_ptr = LLVMGetParam(fn_val, next_arg); next_arg += 1; LLVMValueRef coro_size = LLVMGetParam(fn_val, next_arg); next_arg += 1; LLVMValueRef alignment_val = LLVMConstInt(g->builtin_types.entry_u29->llvm_type, get_coro_frame_align_bytes(g), false); ConstExprValue *zero_array = create_const_str_lit(g, buf_create_from_str("")); ConstExprValue *undef_slice_zero = create_const_slice(g, zero_array, 0, 0, false); render_const_val(g, undef_slice_zero, ""); render_const_val_global(g, undef_slice_zero, ""); ZigList args = {}; args.append(sret_ptr); if (g->have_err_ret_tracing) { args.append(stack_trace_val); } args.append(allocator_val); args.append(undef_slice_zero->global_refs->llvm_global); args.append(LLVMGetUndef(g->builtin_types.entry_u29->llvm_type)); args.append(coro_size); args.append(alignment_val); LLVMValueRef call_instruction = ZigLLVMBuildCall(g->builder, realloc_fn_val, args.items, args.length, get_llvm_cc(g, CallingConventionUnspecified), ZigLLVM_FnInlineAuto, ""); set_call_instr_sret(g, call_instruction); LLVMValueRef err_val_ptr = LLVMBuildStructGEP(g->builder, sret_ptr, err_union_err_index, ""); LLVMValueRef err_val = LLVMBuildLoad(g->builder, err_val_ptr, ""); LLVMBuildStore(g->builder, err_val, err_code_ptr); LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, err_val, LLVMConstNull(LLVMTypeOf(err_val)), ""); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(fn_val, "AllocOk"); LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(fn_val, "AllocFail"); LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block); LLVMPositionBuilderAtEnd(g->builder, ok_block); LLVMValueRef payload_ptr = LLVMBuildStructGEP(g->builder, sret_ptr, err_union_payload_index, ""); ZigType *u8_ptr_type = get_pointer_to_type_extra(g, g->builtin_types.entry_u8, false, false, PtrLenUnknown, get_abi_alignment(g, g->builtin_types.entry_u8), 0, 0, false); ZigType *slice_type = get_slice_type(g, u8_ptr_type); size_t ptr_field_index = slice_type->data.structure.fields[slice_ptr_index].gen_index; LLVMValueRef ptr_field_ptr = LLVMBuildStructGEP(g->builder, payload_ptr, ptr_field_index, ""); LLVMValueRef ptr_val = LLVMBuildLoad(g->builder, ptr_field_ptr, ""); LLVMBuildRet(g->builder, ptr_val); LLVMPositionBuilderAtEnd(g->builder, fail_block); LLVMBuildRet(g->builder, LLVMConstNull(LLVMPointerType(LLVMInt8Type(), 0))); g->cur_fn = prev_cur_fn; g->cur_fn_val = prev_cur_fn_val; LLVMPositionBuilderAtEnd(g->builder, prev_block); LLVMSetCurrentDebugLocation(g->builder, prev_debug_location); g->coro_alloc_helper_fn_val = fn_val; return fn_val; } static LLVMValueRef ir_render_coro_alloc_helper(CodeGen *g, IrExecutable *executable, IrInstructionCoroAllocHelper *instruction) { LLVMValueRef realloc_fn = ir_llvm_value(g, instruction->realloc_fn); LLVMValueRef coro_size = ir_llvm_value(g, instruction->coro_size); LLVMValueRef fn_val = get_coro_alloc_helper_fn_val(g, LLVMTypeOf(realloc_fn), instruction->realloc_fn->value.type); size_t err_code_ptr_arg_index = get_async_err_code_arg_index(g, &g->cur_fn->type_entry->data.fn.fn_type_id); size_t allocator_arg_index = get_async_allocator_arg_index(g, &g->cur_fn->type_entry->data.fn.fn_type_id); ZigList params = {}; params.append(realloc_fn); uint32_t err_ret_trace_arg_index = get_err_ret_trace_arg_index(g, g->cur_fn); if (err_ret_trace_arg_index != UINT32_MAX) { params.append(LLVMGetParam(g->cur_fn_val, err_ret_trace_arg_index)); } params.append(LLVMGetParam(g->cur_fn_val, allocator_arg_index)); params.append(LLVMGetParam(g->cur_fn_val, err_code_ptr_arg_index)); params.append(coro_size); return ZigLLVMBuildCall(g->builder, fn_val, params.items, params.length, get_llvm_cc(g, CallingConventionUnspecified), ZigLLVM_FnInlineAuto, ""); } static LLVMValueRef ir_render_atomic_rmw(CodeGen *g, IrExecutable *executable, IrInstructionAtomicRmw *instruction) { bool is_signed; ZigType *operand_type = instruction->operand->value.type; if (operand_type->id == ZigTypeIdInt) { is_signed = operand_type->data.integral.is_signed; } else { is_signed = false; } LLVMAtomicRMWBinOp op = to_LLVMAtomicRMWBinOp(instruction->resolved_op, is_signed); LLVMAtomicOrdering ordering = to_LLVMAtomicOrdering(instruction->resolved_ordering); LLVMValueRef ptr = ir_llvm_value(g, instruction->ptr); LLVMValueRef operand = ir_llvm_value(g, instruction->operand); if (get_codegen_ptr_type(operand_type) == nullptr) { return LLVMBuildAtomicRMW(g->builder, op, ptr, operand, ordering, false); } // it's a pointer but we need to treat it as an int LLVMValueRef casted_ptr = LLVMBuildBitCast(g->builder, ptr, LLVMPointerType(g->builtin_types.entry_usize->llvm_type, 0), ""); LLVMValueRef casted_operand = LLVMBuildPtrToInt(g->builder, operand, g->builtin_types.entry_usize->llvm_type, ""); LLVMValueRef uncasted_result = LLVMBuildAtomicRMW(g->builder, op, casted_ptr, casted_operand, ordering, false); return LLVMBuildIntToPtr(g->builder, uncasted_result, get_llvm_type(g, operand_type), ""); } static LLVMValueRef ir_render_atomic_load(CodeGen *g, IrExecutable *executable, IrInstructionAtomicLoad *instruction) { LLVMAtomicOrdering ordering = to_LLVMAtomicOrdering(instruction->resolved_ordering); LLVMValueRef ptr = ir_llvm_value(g, instruction->ptr); LLVMValueRef load_inst = gen_load(g, ptr, instruction->ptr->value.type, ""); LLVMSetOrdering(load_inst, ordering); return load_inst; } static LLVMValueRef ir_render_merge_err_ret_traces(CodeGen *g, IrExecutable *executable, IrInstructionMergeErrRetTraces *instruction) { assert(g->have_err_ret_tracing); LLVMValueRef src_trace_ptr = ir_llvm_value(g, instruction->src_err_ret_trace_ptr); LLVMValueRef dest_trace_ptr = ir_llvm_value(g, instruction->dest_err_ret_trace_ptr); LLVMValueRef args[] = { dest_trace_ptr, src_trace_ptr }; ZigLLVMBuildCall(g->builder, get_merge_err_ret_traces_fn_val(g), args, 2, get_llvm_cc(g, CallingConventionUnspecified), ZigLLVM_FnInlineAuto, ""); return nullptr; } static LLVMValueRef ir_render_mark_err_ret_trace_ptr(CodeGen *g, IrExecutable *executable, IrInstructionMarkErrRetTracePtr *instruction) { assert(g->have_err_ret_tracing); g->cur_err_ret_trace_val_stack = ir_llvm_value(g, instruction->err_ret_trace_ptr); return nullptr; } static LLVMValueRef ir_render_sqrt(CodeGen *g, IrExecutable *executable, IrInstructionSqrt *instruction) { LLVMValueRef op = ir_llvm_value(g, instruction->op); assert(instruction->base.value.type->id == ZigTypeIdFloat); LLVMValueRef fn_val = get_float_fn(g, instruction->base.value.type, ZigLLVMFnIdSqrt); return LLVMBuildCall(g->builder, fn_val, &op, 1, ""); } static LLVMValueRef ir_render_bswap(CodeGen *g, IrExecutable *executable, IrInstructionBswap *instruction) { LLVMValueRef op = ir_llvm_value(g, instruction->op); ZigType *int_type = instruction->base.value.type; assert(int_type->id == ZigTypeIdInt); if (int_type->data.integral.bit_count % 16 == 0) { LLVMValueRef fn_val = get_int_builtin_fn(g, instruction->base.value.type, BuiltinFnIdBswap); return LLVMBuildCall(g->builder, fn_val, &op, 1, ""); } // Not an even number of bytes, so we zext 1 byte, then bswap, shift right 1 byte, truncate ZigType *extended_type = get_int_type(g, int_type->data.integral.is_signed, int_type->data.integral.bit_count + 8); // aabbcc LLVMValueRef extended = LLVMBuildZExt(g->builder, op, get_llvm_type(g, extended_type), ""); // 00aabbcc LLVMValueRef fn_val = get_int_builtin_fn(g, extended_type, BuiltinFnIdBswap); LLVMValueRef swapped = LLVMBuildCall(g->builder, fn_val, &extended, 1, ""); // ccbbaa00 LLVMValueRef shifted = ZigLLVMBuildLShrExact(g->builder, swapped, LLVMConstInt(get_llvm_type(g, extended_type), 8, false), ""); // 00ccbbaa return LLVMBuildTrunc(g->builder, shifted, get_llvm_type(g, int_type), ""); } static LLVMValueRef ir_render_bit_reverse(CodeGen *g, IrExecutable *executable, IrInstructionBitReverse *instruction) { LLVMValueRef op = ir_llvm_value(g, instruction->op); ZigType *int_type = instruction->base.value.type; assert(int_type->id == ZigTypeIdInt); LLVMValueRef fn_val = get_int_builtin_fn(g, instruction->base.value.type, BuiltinFnIdBitReverse); return LLVMBuildCall(g->builder, fn_val, &op, 1, ""); } static LLVMValueRef ir_render_vector_to_array(CodeGen *g, IrExecutable *executable, IrInstructionVectorToArray *instruction) { ZigType *array_type = instruction->base.value.type; assert(array_type->id == ZigTypeIdArray); assert(handle_is_ptr(array_type)); assert(instruction->tmp_ptr); LLVMValueRef vector = ir_llvm_value(g, instruction->vector); LLVMValueRef casted_ptr = LLVMBuildBitCast(g->builder, instruction->tmp_ptr, LLVMPointerType(get_llvm_type(g, instruction->vector->value.type), 0), ""); gen_store_untyped(g, vector, casted_ptr, 0, false); return instruction->tmp_ptr; } static LLVMValueRef ir_render_array_to_vector(CodeGen *g, IrExecutable *executable, IrInstructionArrayToVector *instruction) { ZigType *vector_type = instruction->base.value.type; assert(vector_type->id == ZigTypeIdVector); assert(!handle_is_ptr(vector_type)); LLVMValueRef array_ptr = ir_llvm_value(g, instruction->array); LLVMValueRef casted_ptr = LLVMBuildBitCast(g->builder, array_ptr, LLVMPointerType(get_llvm_type(g, vector_type), 0), ""); return gen_load_untyped(g, casted_ptr, 0, false, ""); } static LLVMValueRef ir_render_assert_zero(CodeGen *g, IrExecutable *executable, IrInstructionAssertZero *instruction) { LLVMValueRef target = ir_llvm_value(g, instruction->target); ZigType *int_type = instruction->target->value.type; if (ir_want_runtime_safety(g, &instruction->base)) { return gen_assert_zero(g, target, int_type); } return nullptr; } static LLVMValueRef ir_render_assert_non_null(CodeGen *g, IrExecutable *executable, IrInstructionAssertNonNull *instruction) { LLVMValueRef target = ir_llvm_value(g, instruction->target); ZigType *target_type = instruction->target->value.type; if (target_type->id == ZigTypeIdPointer) { assert(target_type->data.pointer.ptr_len == PtrLenC); LLVMValueRef non_null_bit = LLVMBuildICmp(g->builder, LLVMIntNE, target, LLVMConstNull(get_llvm_type(g, target_type)), ""); LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "AssertNonNullFail"); LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "AssertNonNullOk"); LLVMBuildCondBr(g->builder, non_null_bit, ok_block, fail_block); LLVMPositionBuilderAtEnd(g->builder, fail_block); gen_assertion(g, PanicMsgIdUnwrapOptionalFail, &instruction->base); LLVMPositionBuilderAtEnd(g->builder, ok_block); } else { zig_unreachable(); } return nullptr; } static void set_debug_location(CodeGen *g, IrInstruction *instruction) { AstNode *source_node = instruction->source_node; Scope *scope = instruction->scope; assert(source_node); assert(scope); ZigLLVMSetCurrentDebugLocation(g->builder, (int)source_node->line + 1, (int)source_node->column + 1, get_di_scope(g, scope)); } static LLVMValueRef ir_render_instruction(CodeGen *g, IrExecutable *executable, IrInstruction *instruction) { set_debug_location(g, instruction); switch (instruction->id) { case IrInstructionIdInvalid: case IrInstructionIdConst: case IrInstructionIdTypeOf: case IrInstructionIdToPtrType: case IrInstructionIdPtrTypeChild: case IrInstructionIdFieldPtr: case IrInstructionIdSetCold: case IrInstructionIdSetRuntimeSafety: case IrInstructionIdSetFloatMode: case IrInstructionIdArrayType: case IrInstructionIdPromiseType: case IrInstructionIdSliceType: case IrInstructionIdSizeOf: case IrInstructionIdSwitchTarget: case IrInstructionIdContainerInitFields: case IrInstructionIdCompileErr: case IrInstructionIdCompileLog: case IrInstructionIdImport: case IrInstructionIdCImport: case IrInstructionIdCInclude: case IrInstructionIdCDefine: case IrInstructionIdCUndef: case IrInstructionIdEmbedFile: case IrInstructionIdIntType: case IrInstructionIdVectorType: case IrInstructionIdMemberCount: case IrInstructionIdMemberType: case IrInstructionIdMemberName: case IrInstructionIdAlignOf: case IrInstructionIdFnProto: case IrInstructionIdTestComptime: case IrInstructionIdCheckSwitchProngs: case IrInstructionIdCheckStatementIsVoid: case IrInstructionIdTypeName: case IrInstructionIdDeclRef: case IrInstructionIdSwitchVar: case IrInstructionIdSwitchElseVar: case IrInstructionIdByteOffsetOf: case IrInstructionIdBitOffsetOf: case IrInstructionIdTypeInfo: case IrInstructionIdTypeId: case IrInstructionIdSetEvalBranchQuota: case IrInstructionIdPtrType: case IrInstructionIdOpaqueType: case IrInstructionIdSetAlignStack: case IrInstructionIdArgType: case IrInstructionIdTagType: case IrInstructionIdExport: case IrInstructionIdErrorUnion: case IrInstructionIdPromiseResultType: case IrInstructionIdAwaitBookkeeping: case IrInstructionIdAddImplicitReturnType: case IrInstructionIdIntCast: case IrInstructionIdFloatCast: case IrInstructionIdIntToFloat: case IrInstructionIdFloatToInt: case IrInstructionIdBoolToInt: case IrInstructionIdErrSetCast: case IrInstructionIdFromBytes: case IrInstructionIdToBytes: case IrInstructionIdEnumToInt: case IrInstructionIdCheckRuntimeScope: case IrInstructionIdDeclVarSrc: case IrInstructionIdPtrCastSrc: case IrInstructionIdCmpxchgSrc: case IrInstructionIdLoadPtr: case IrInstructionIdBitCast: case IrInstructionIdGlobalAsm: case IrInstructionIdHasDecl: zig_unreachable(); case IrInstructionIdDeclVarGen: return ir_render_decl_var(g, executable, (IrInstructionDeclVarGen *)instruction); case IrInstructionIdReturn: return ir_render_return(g, executable, (IrInstructionReturn *)instruction); case IrInstructionIdBinOp: return ir_render_bin_op(g, executable, (IrInstructionBinOp *)instruction); case IrInstructionIdCast: return ir_render_cast(g, executable, (IrInstructionCast *)instruction); case IrInstructionIdUnreachable: return ir_render_unreachable(g, executable, (IrInstructionUnreachable *)instruction); case IrInstructionIdCondBr: return ir_render_cond_br(g, executable, (IrInstructionCondBr *)instruction); case IrInstructionIdBr: return ir_render_br(g, executable, (IrInstructionBr *)instruction); case IrInstructionIdUnOp: return ir_render_un_op(g, executable, (IrInstructionUnOp *)instruction); case IrInstructionIdLoadPtrGen: return ir_render_load_ptr(g, executable, (IrInstructionLoadPtrGen *)instruction); case IrInstructionIdStorePtr: return ir_render_store_ptr(g, executable, (IrInstructionStorePtr *)instruction); case IrInstructionIdVarPtr: return ir_render_var_ptr(g, executable, (IrInstructionVarPtr *)instruction); case IrInstructionIdElemPtr: return ir_render_elem_ptr(g, executable, (IrInstructionElemPtr *)instruction); case IrInstructionIdCall: return ir_render_call(g, executable, (IrInstructionCall *)instruction); case IrInstructionIdStructFieldPtr: return ir_render_struct_field_ptr(g, executable, (IrInstructionStructFieldPtr *)instruction); case IrInstructionIdUnionFieldPtr: return ir_render_union_field_ptr(g, executable, (IrInstructionUnionFieldPtr *)instruction); case IrInstructionIdAsm: return ir_render_asm(g, executable, (IrInstructionAsm *)instruction); case IrInstructionIdTestNonNull: return ir_render_test_non_null(g, executable, (IrInstructionTestNonNull *)instruction); case IrInstructionIdOptionalUnwrapPtr: return ir_render_optional_unwrap_ptr(g, executable, (IrInstructionOptionalUnwrapPtr *)instruction); case IrInstructionIdClz: return ir_render_clz(g, executable, (IrInstructionClz *)instruction); case IrInstructionIdCtz: return ir_render_ctz(g, executable, (IrInstructionCtz *)instruction); case IrInstructionIdPopCount: return ir_render_pop_count(g, executable, (IrInstructionPopCount *)instruction); case IrInstructionIdSwitchBr: return ir_render_switch_br(g, executable, (IrInstructionSwitchBr *)instruction); case IrInstructionIdBswap: return ir_render_bswap(g, executable, (IrInstructionBswap *)instruction); case IrInstructionIdBitReverse: return ir_render_bit_reverse(g, executable, (IrInstructionBitReverse *)instruction); case IrInstructionIdPhi: return ir_render_phi(g, executable, (IrInstructionPhi *)instruction); case IrInstructionIdRef: return ir_render_ref(g, executable, (IrInstructionRef *)instruction); case IrInstructionIdErrName: return ir_render_err_name(g, executable, (IrInstructionErrName *)instruction); case IrInstructionIdCmpxchgGen: return ir_render_cmpxchg(g, executable, (IrInstructionCmpxchgGen *)instruction); case IrInstructionIdFence: return ir_render_fence(g, executable, (IrInstructionFence *)instruction); case IrInstructionIdTruncate: return ir_render_truncate(g, executable, (IrInstructionTruncate *)instruction); case IrInstructionIdBoolNot: return ir_render_bool_not(g, executable, (IrInstructionBoolNot *)instruction); case IrInstructionIdMemset: return ir_render_memset(g, executable, (IrInstructionMemset *)instruction); case IrInstructionIdMemcpy: return ir_render_memcpy(g, executable, (IrInstructionMemcpy *)instruction); case IrInstructionIdSlice: return ir_render_slice(g, executable, (IrInstructionSlice *)instruction); case IrInstructionIdBreakpoint: return ir_render_breakpoint(g, executable, (IrInstructionBreakpoint *)instruction); case IrInstructionIdReturnAddress: return ir_render_return_address(g, executable, (IrInstructionReturnAddress *)instruction); case IrInstructionIdFrameAddress: return ir_render_frame_address(g, executable, (IrInstructionFrameAddress *)instruction); case IrInstructionIdHandle: return ir_render_handle(g, executable, (IrInstructionHandle *)instruction); case IrInstructionIdOverflowOp: return ir_render_overflow_op(g, executable, (IrInstructionOverflowOp *)instruction); case IrInstructionIdTestErr: return ir_render_test_err(g, executable, (IrInstructionTestErr *)instruction); case IrInstructionIdUnwrapErrCode: return ir_render_unwrap_err_code(g, executable, (IrInstructionUnwrapErrCode *)instruction); case IrInstructionIdUnwrapErrPayload: return ir_render_unwrap_err_payload(g, executable, (IrInstructionUnwrapErrPayload *)instruction); case IrInstructionIdOptionalWrap: return ir_render_maybe_wrap(g, executable, (IrInstructionOptionalWrap *)instruction); case IrInstructionIdErrWrapCode: return ir_render_err_wrap_code(g, executable, (IrInstructionErrWrapCode *)instruction); case IrInstructionIdErrWrapPayload: return ir_render_err_wrap_payload(g, executable, (IrInstructionErrWrapPayload *)instruction); case IrInstructionIdUnionTag: return ir_render_union_tag(g, executable, (IrInstructionUnionTag *)instruction); case IrInstructionIdStructInit: return ir_render_struct_init(g, executable, (IrInstructionStructInit *)instruction); case IrInstructionIdUnionInit: return ir_render_union_init(g, executable, (IrInstructionUnionInit *)instruction); case IrInstructionIdPtrCastGen: return ir_render_ptr_cast(g, executable, (IrInstructionPtrCastGen *)instruction); case IrInstructionIdBitCastGen: return ir_render_bit_cast(g, executable, (IrInstructionBitCastGen *)instruction); case IrInstructionIdWidenOrShorten: return ir_render_widen_or_shorten(g, executable, (IrInstructionWidenOrShorten *)instruction); case IrInstructionIdPtrToInt: return ir_render_ptr_to_int(g, executable, (IrInstructionPtrToInt *)instruction); case IrInstructionIdIntToPtr: return ir_render_int_to_ptr(g, executable, (IrInstructionIntToPtr *)instruction); case IrInstructionIdIntToEnum: return ir_render_int_to_enum(g, executable, (IrInstructionIntToEnum *)instruction); case IrInstructionIdIntToErr: return ir_render_int_to_err(g, executable, (IrInstructionIntToErr *)instruction); case IrInstructionIdErrToInt: return ir_render_err_to_int(g, executable, (IrInstructionErrToInt *)instruction); case IrInstructionIdContainerInitList: return ir_render_container_init_list(g, executable, (IrInstructionContainerInitList *)instruction); case IrInstructionIdPanic: return ir_render_panic(g, executable, (IrInstructionPanic *)instruction); case IrInstructionIdTagName: return ir_render_enum_tag_name(g, executable, (IrInstructionTagName *)instruction); case IrInstructionIdFieldParentPtr: return ir_render_field_parent_ptr(g, executable, (IrInstructionFieldParentPtr *)instruction); case IrInstructionIdAlignCast: return ir_render_align_cast(g, executable, (IrInstructionAlignCast *)instruction); case IrInstructionIdErrorReturnTrace: return ir_render_error_return_trace(g, executable, (IrInstructionErrorReturnTrace *)instruction); case IrInstructionIdCancel: return ir_render_cancel(g, executable, (IrInstructionCancel *)instruction); case IrInstructionIdGetImplicitAllocator: return ir_render_get_implicit_allocator(g, executable, (IrInstructionGetImplicitAllocator *)instruction); case IrInstructionIdCoroId: return ir_render_coro_id(g, executable, (IrInstructionCoroId *)instruction); case IrInstructionIdCoroAlloc: return ir_render_coro_alloc(g, executable, (IrInstructionCoroAlloc *)instruction); case IrInstructionIdCoroSize: return ir_render_coro_size(g, executable, (IrInstructionCoroSize *)instruction); case IrInstructionIdCoroBegin: return ir_render_coro_begin(g, executable, (IrInstructionCoroBegin *)instruction); case IrInstructionIdCoroAllocFail: return ir_render_coro_alloc_fail(g, executable, (IrInstructionCoroAllocFail *)instruction); case IrInstructionIdCoroSuspend: return ir_render_coro_suspend(g, executable, (IrInstructionCoroSuspend *)instruction); case IrInstructionIdCoroEnd: return ir_render_coro_end(g, executable, (IrInstructionCoroEnd *)instruction); case IrInstructionIdCoroFree: return ir_render_coro_free(g, executable, (IrInstructionCoroFree *)instruction); case IrInstructionIdCoroResume: return ir_render_coro_resume(g, executable, (IrInstructionCoroResume *)instruction); case IrInstructionIdCoroSave: return ir_render_coro_save(g, executable, (IrInstructionCoroSave *)instruction); case IrInstructionIdCoroPromise: return ir_render_coro_promise(g, executable, (IrInstructionCoroPromise *)instruction); case IrInstructionIdCoroAllocHelper: return ir_render_coro_alloc_helper(g, executable, (IrInstructionCoroAllocHelper *)instruction); case IrInstructionIdAtomicRmw: return ir_render_atomic_rmw(g, executable, (IrInstructionAtomicRmw *)instruction); case IrInstructionIdAtomicLoad: return ir_render_atomic_load(g, executable, (IrInstructionAtomicLoad *)instruction); case IrInstructionIdSaveErrRetAddr: return ir_render_save_err_ret_addr(g, executable, (IrInstructionSaveErrRetAddr *)instruction); case IrInstructionIdMergeErrRetTraces: return ir_render_merge_err_ret_traces(g, executable, (IrInstructionMergeErrRetTraces *)instruction); case IrInstructionIdMarkErrRetTracePtr: return ir_render_mark_err_ret_trace_ptr(g, executable, (IrInstructionMarkErrRetTracePtr *)instruction); case IrInstructionIdSqrt: return ir_render_sqrt(g, executable, (IrInstructionSqrt *)instruction); case IrInstructionIdArrayToVector: return ir_render_array_to_vector(g, executable, (IrInstructionArrayToVector *)instruction); case IrInstructionIdVectorToArray: return ir_render_vector_to_array(g, executable, (IrInstructionVectorToArray *)instruction); case IrInstructionIdAssertZero: return ir_render_assert_zero(g, executable, (IrInstructionAssertZero *)instruction); case IrInstructionIdAssertNonNull: return ir_render_assert_non_null(g, executable, (IrInstructionAssertNonNull *)instruction); case IrInstructionIdResizeSlice: return ir_render_resize_slice(g, executable, (IrInstructionResizeSlice *)instruction); } zig_unreachable(); } static void ir_render(CodeGen *g, ZigFn *fn_entry) { assert(fn_entry); IrExecutable *executable = &fn_entry->analyzed_executable; assert(executable->basic_block_list.length > 0); for (size_t block_i = 0; block_i < executable->basic_block_list.length; block_i += 1) { IrBasicBlock *current_block = executable->basic_block_list.at(block_i); //assert(current_block->ref_count > 0); assert(current_block->llvm_block); LLVMPositionBuilderAtEnd(g->builder, current_block->llvm_block); for (size_t instr_i = 0; instr_i < current_block->instruction_list.length; instr_i += 1) { IrInstruction *instruction = current_block->instruction_list.at(instr_i); if (instruction->ref_count == 0 && !ir_has_side_effects(instruction)) continue; instruction->llvm_value = ir_render_instruction(g, executable, instruction); } current_block->llvm_exit_block = LLVMGetInsertBlock(g->builder); } } static LLVMValueRef gen_const_ptr_struct_recursive(CodeGen *g, ConstExprValue *struct_const_val, size_t field_index); static LLVMValueRef gen_const_ptr_array_recursive(CodeGen *g, ConstExprValue *array_const_val, size_t index); static LLVMValueRef gen_const_ptr_union_recursive(CodeGen *g, ConstExprValue *union_const_val); static LLVMValueRef gen_const_ptr_err_union_code_recursive(CodeGen *g, ConstExprValue *err_union_const_val); static LLVMValueRef gen_const_ptr_err_union_payload_recursive(CodeGen *g, ConstExprValue *err_union_const_val); static LLVMValueRef gen_const_ptr_optional_payload_recursive(CodeGen *g, ConstExprValue *optional_const_val); static LLVMValueRef gen_parent_ptr(CodeGen *g, ConstExprValue *val, ConstParent *parent) { switch (parent->id) { case ConstParentIdNone: render_const_val(g, val, ""); render_const_val_global(g, val, ""); return val->global_refs->llvm_global; case ConstParentIdStruct: return gen_const_ptr_struct_recursive(g, parent->data.p_struct.struct_val, parent->data.p_struct.field_index); case ConstParentIdErrUnionCode: return gen_const_ptr_err_union_code_recursive(g, parent->data.p_err_union_code.err_union_val); case ConstParentIdErrUnionPayload: return gen_const_ptr_err_union_payload_recursive(g, parent->data.p_err_union_payload.err_union_val); case ConstParentIdOptionalPayload: return gen_const_ptr_optional_payload_recursive(g, parent->data.p_optional_payload.optional_val); case ConstParentIdArray: return gen_const_ptr_array_recursive(g, parent->data.p_array.array_val, parent->data.p_array.elem_index); case ConstParentIdUnion: return gen_const_ptr_union_recursive(g, parent->data.p_union.union_val); case ConstParentIdScalar: render_const_val(g, parent->data.p_scalar.scalar_val, ""); render_const_val_global(g, parent->data.p_scalar.scalar_val, ""); return parent->data.p_scalar.scalar_val->global_refs->llvm_global; } zig_unreachable(); } static LLVMValueRef gen_const_ptr_array_recursive(CodeGen *g, ConstExprValue *array_const_val, size_t index) { expand_undef_array(g, array_const_val); ConstParent *parent = &array_const_val->parent; LLVMValueRef base_ptr = gen_parent_ptr(g, array_const_val, parent); LLVMTypeKind el_type = LLVMGetTypeKind(LLVMGetElementType(LLVMTypeOf(base_ptr))); if (el_type == LLVMArrayTypeKind) { ZigType *usize = g->builtin_types.entry_usize; LLVMValueRef indices[] = { LLVMConstNull(usize->llvm_type), LLVMConstInt(usize->llvm_type, index, false), }; return LLVMConstInBoundsGEP(base_ptr, indices, 2); } else if (el_type == LLVMStructTypeKind) { ZigType *u32 = g->builtin_types.entry_u32; LLVMValueRef indices[] = { LLVMConstNull(get_llvm_type(g, u32)), LLVMConstInt(get_llvm_type(g, u32), index, false), }; return LLVMConstInBoundsGEP(base_ptr, indices, 2); } else { assert(parent->id == ConstParentIdScalar); return base_ptr; } } static LLVMValueRef gen_const_ptr_struct_recursive(CodeGen *g, ConstExprValue *struct_const_val, size_t field_index) { ConstParent *parent = &struct_const_val->parent; LLVMValueRef base_ptr = gen_parent_ptr(g, struct_const_val, parent); ZigType *u32 = g->builtin_types.entry_u32; LLVMValueRef indices[] = { LLVMConstNull(get_llvm_type(g, u32)), LLVMConstInt(get_llvm_type(g, u32), field_index, false), }; return LLVMConstInBoundsGEP(base_ptr, indices, 2); } static LLVMValueRef gen_const_ptr_err_union_code_recursive(CodeGen *g, ConstExprValue *err_union_const_val) { ConstParent *parent = &err_union_const_val->parent; LLVMValueRef base_ptr = gen_parent_ptr(g, err_union_const_val, parent); ZigType *u32 = g->builtin_types.entry_u32; LLVMValueRef indices[] = { LLVMConstNull(get_llvm_type(g, u32)), LLVMConstInt(get_llvm_type(g, u32), err_union_err_index, false), }; return LLVMConstInBoundsGEP(base_ptr, indices, 2); } static LLVMValueRef gen_const_ptr_err_union_payload_recursive(CodeGen *g, ConstExprValue *err_union_const_val) { ConstParent *parent = &err_union_const_val->parent; LLVMValueRef base_ptr = gen_parent_ptr(g, err_union_const_val, parent); ZigType *u32 = g->builtin_types.entry_u32; LLVMValueRef indices[] = { LLVMConstNull(get_llvm_type(g, u32)), LLVMConstInt(get_llvm_type(g, u32), err_union_payload_index, false), }; return LLVMConstInBoundsGEP(base_ptr, indices, 2); } static LLVMValueRef gen_const_ptr_optional_payload_recursive(CodeGen *g, ConstExprValue *optional_const_val) { ConstParent *parent = &optional_const_val->parent; LLVMValueRef base_ptr = gen_parent_ptr(g, optional_const_val, parent); ZigType *u32 = g->builtin_types.entry_u32; LLVMValueRef indices[] = { LLVMConstNull(get_llvm_type(g, u32)), LLVMConstInt(get_llvm_type(g, u32), maybe_child_index, false), }; return LLVMConstInBoundsGEP(base_ptr, indices, 2); } static LLVMValueRef gen_const_ptr_union_recursive(CodeGen *g, ConstExprValue *union_const_val) { ConstParent *parent = &union_const_val->parent; LLVMValueRef base_ptr = gen_parent_ptr(g, union_const_val, parent); ZigType *u32 = g->builtin_types.entry_u32; LLVMValueRef indices[] = { LLVMConstNull(get_llvm_type(g, u32)), LLVMConstInt(get_llvm_type(g, u32), 0, false), // TODO test const union with more aligned tag type than payload }; return LLVMConstInBoundsGEP(base_ptr, indices, 2); } static LLVMValueRef pack_const_int(CodeGen *g, LLVMTypeRef big_int_type_ref, ConstExprValue *const_val) { switch (const_val->special) { case ConstValSpecialRuntime: zig_unreachable(); case ConstValSpecialUndef: return LLVMConstInt(big_int_type_ref, 0, false); case ConstValSpecialStatic: break; } ZigType *type_entry = const_val->type; assert(type_has_bits(type_entry)); switch (type_entry->id) { case ZigTypeIdInvalid: case ZigTypeIdMetaType: case ZigTypeIdUnreachable: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdEnumLiteral: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdErrorUnion: case ZigTypeIdErrorSet: case ZigTypeIdBoundFn: case ZigTypeIdArgTuple: case ZigTypeIdVoid: case ZigTypeIdOpaque: zig_unreachable(); case ZigTypeIdBool: return LLVMConstInt(big_int_type_ref, const_val->data.x_bool ? 1 : 0, false); case ZigTypeIdEnum: { assert(type_entry->data.enumeration.decl_node->data.container_decl.init_arg_expr != nullptr); LLVMValueRef int_val = gen_const_val(g, const_val, ""); return LLVMConstZExt(int_val, big_int_type_ref); } case ZigTypeIdInt: { LLVMValueRef int_val = gen_const_val(g, const_val, ""); return LLVMConstZExt(int_val, big_int_type_ref); } case ZigTypeIdFloat: { LLVMValueRef float_val = gen_const_val(g, const_val, ""); LLVMValueRef int_val = LLVMConstFPToUI(float_val, LLVMIntType((unsigned)type_entry->data.floating.bit_count)); return LLVMConstZExt(int_val, big_int_type_ref); } case ZigTypeIdPointer: case ZigTypeIdFn: case ZigTypeIdOptional: case ZigTypeIdPromise: { LLVMValueRef ptr_val = gen_const_val(g, const_val, ""); LLVMValueRef ptr_size_int_val = LLVMConstPtrToInt(ptr_val, g->builtin_types.entry_usize->llvm_type); return LLVMConstZExt(ptr_size_int_val, big_int_type_ref); } case ZigTypeIdArray: { LLVMValueRef val = LLVMConstInt(big_int_type_ref, 0, false); if (const_val->data.x_array.special == ConstArraySpecialUndef) { return val; } expand_undef_array(g, const_val); bool is_big_endian = g->is_big_endian; // TODO get endianness from struct type uint32_t packed_bits_size = type_size_bits(g, type_entry->data.array.child_type); size_t used_bits = 0; for (size_t i = 0; i < type_entry->data.array.len; i += 1) { ConstExprValue *elem_val = &const_val->data.x_array.data.s_none.elements[i]; LLVMValueRef child_val = pack_const_int(g, big_int_type_ref, elem_val); if (is_big_endian) { LLVMValueRef shift_amt = LLVMConstInt(big_int_type_ref, packed_bits_size, false); val = LLVMConstShl(val, shift_amt); val = LLVMConstOr(val, child_val); } else { LLVMValueRef shift_amt = LLVMConstInt(big_int_type_ref, used_bits, false); LLVMValueRef child_val_shifted = LLVMConstShl(child_val, shift_amt); val = LLVMConstOr(val, child_val_shifted); used_bits += packed_bits_size; } } return val; } case ZigTypeIdVector: zig_panic("TODO bit pack a vector"); case ZigTypeIdUnion: zig_panic("TODO bit pack a union"); case ZigTypeIdStruct: { assert(type_entry->data.structure.layout == ContainerLayoutPacked); bool is_big_endian = g->is_big_endian; // TODO get endianness from struct type LLVMValueRef val = LLVMConstInt(big_int_type_ref, 0, false); size_t used_bits = 0; for (size_t i = 0; i < type_entry->data.structure.src_field_count; i += 1) { TypeStructField *field = &type_entry->data.structure.fields[i]; if (field->gen_index == SIZE_MAX) { continue; } LLVMValueRef child_val = pack_const_int(g, big_int_type_ref, &const_val->data.x_struct.fields[i]); uint32_t packed_bits_size = type_size_bits(g, field->type_entry); if (is_big_endian) { LLVMValueRef shift_amt = LLVMConstInt(big_int_type_ref, packed_bits_size, false); val = LLVMConstShl(val, shift_amt); val = LLVMConstOr(val, child_val); } else { LLVMValueRef shift_amt = LLVMConstInt(big_int_type_ref, used_bits, false); LLVMValueRef child_val_shifted = LLVMConstShl(child_val, shift_amt); val = LLVMConstOr(val, child_val_shifted); used_bits += packed_bits_size; } } return val; } } zig_unreachable(); } // We have this because union constants can't be represented by the official union type, // and this property bubbles up in whatever aggregate type contains a union constant static bool is_llvm_value_unnamed_type(CodeGen *g, ZigType *type_entry, LLVMValueRef val) { return LLVMTypeOf(val) != get_llvm_type(g, type_entry); } static LLVMValueRef gen_const_val_ptr(CodeGen *g, ConstExprValue *const_val, const char *name) { switch (const_val->data.x_ptr.special) { case ConstPtrSpecialInvalid: case ConstPtrSpecialDiscard: zig_unreachable(); case ConstPtrSpecialRef: { assert(const_val->global_refs != nullptr); ConstExprValue *pointee = const_val->data.x_ptr.data.ref.pointee; render_const_val(g, pointee, ""); render_const_val_global(g, pointee, ""); const_val->global_refs->llvm_value = LLVMConstBitCast(pointee->global_refs->llvm_global, get_llvm_type(g, const_val->type)); return const_val->global_refs->llvm_value; } case ConstPtrSpecialBaseArray: { assert(const_val->global_refs != nullptr); ConstExprValue *array_const_val = const_val->data.x_ptr.data.base_array.array_val; assert(array_const_val->type->id == ZigTypeIdArray); if (!type_has_bits(array_const_val->type)) { // make this a null pointer ZigType *usize = g->builtin_types.entry_usize; const_val->global_refs->llvm_value = LLVMConstIntToPtr(LLVMConstNull(usize->llvm_type), get_llvm_type(g, const_val->type)); return const_val->global_refs->llvm_value; } size_t elem_index = const_val->data.x_ptr.data.base_array.elem_index; LLVMValueRef uncasted_ptr_val = gen_const_ptr_array_recursive(g, array_const_val, elem_index); LLVMValueRef ptr_val = LLVMConstBitCast(uncasted_ptr_val, get_llvm_type(g, const_val->type)); const_val->global_refs->llvm_value = ptr_val; return ptr_val; } case ConstPtrSpecialBaseStruct: { assert(const_val->global_refs != nullptr); ConstExprValue *struct_const_val = const_val->data.x_ptr.data.base_struct.struct_val; assert(struct_const_val->type->id == ZigTypeIdStruct); if (!type_has_bits(struct_const_val->type)) { // make this a null pointer ZigType *usize = g->builtin_types.entry_usize; const_val->global_refs->llvm_value = LLVMConstIntToPtr(LLVMConstNull(usize->llvm_type), get_llvm_type(g, const_val->type)); return const_val->global_refs->llvm_value; } size_t src_field_index = const_val->data.x_ptr.data.base_struct.field_index; size_t gen_field_index = struct_const_val->type->data.structure.fields[src_field_index].gen_index; LLVMValueRef uncasted_ptr_val = gen_const_ptr_struct_recursive(g, struct_const_val, gen_field_index); LLVMValueRef ptr_val = LLVMConstBitCast(uncasted_ptr_val, get_llvm_type(g, const_val->type)); const_val->global_refs->llvm_value = ptr_val; return ptr_val; } case ConstPtrSpecialBaseErrorUnionCode: { assert(const_val->global_refs != nullptr); ConstExprValue *err_union_const_val = const_val->data.x_ptr.data.base_err_union_code.err_union_val; assert(err_union_const_val->type->id == ZigTypeIdErrorUnion); if (!type_has_bits(err_union_const_val->type)) { // make this a null pointer ZigType *usize = g->builtin_types.entry_usize; const_val->global_refs->llvm_value = LLVMConstIntToPtr(LLVMConstNull(usize->llvm_type), get_llvm_type(g, const_val->type)); return const_val->global_refs->llvm_value; } LLVMValueRef uncasted_ptr_val = gen_const_ptr_err_union_code_recursive(g, err_union_const_val); LLVMValueRef ptr_val = LLVMConstBitCast(uncasted_ptr_val, get_llvm_type(g, const_val->type)); const_val->global_refs->llvm_value = ptr_val; return ptr_val; } case ConstPtrSpecialBaseErrorUnionPayload: { assert(const_val->global_refs != nullptr); ConstExprValue *err_union_const_val = const_val->data.x_ptr.data.base_err_union_payload.err_union_val; assert(err_union_const_val->type->id == ZigTypeIdErrorUnion); if (!type_has_bits(err_union_const_val->type)) { // make this a null pointer ZigType *usize = g->builtin_types.entry_usize; const_val->global_refs->llvm_value = LLVMConstIntToPtr(LLVMConstNull(usize->llvm_type), get_llvm_type(g, const_val->type)); return const_val->global_refs->llvm_value; } LLVMValueRef uncasted_ptr_val = gen_const_ptr_err_union_payload_recursive(g, err_union_const_val); LLVMValueRef ptr_val = LLVMConstBitCast(uncasted_ptr_val, get_llvm_type(g, const_val->type)); const_val->global_refs->llvm_value = ptr_val; return ptr_val; } case ConstPtrSpecialBaseOptionalPayload: { assert(const_val->global_refs != nullptr); ConstExprValue *optional_const_val = const_val->data.x_ptr.data.base_optional_payload.optional_val; assert(optional_const_val->type->id == ZigTypeIdOptional); if (!type_has_bits(optional_const_val->type)) { // make this a null pointer ZigType *usize = g->builtin_types.entry_usize; const_val->global_refs->llvm_value = LLVMConstIntToPtr(LLVMConstNull(usize->llvm_type), get_llvm_type(g, const_val->type)); return const_val->global_refs->llvm_value; } LLVMValueRef uncasted_ptr_val = gen_const_ptr_optional_payload_recursive(g, optional_const_val); LLVMValueRef ptr_val = LLVMConstBitCast(uncasted_ptr_val, get_llvm_type(g, const_val->type)); const_val->global_refs->llvm_value = ptr_val; return ptr_val; } case ConstPtrSpecialHardCodedAddr: { assert(const_val->global_refs != nullptr); uint64_t addr_value = const_val->data.x_ptr.data.hard_coded_addr.addr; ZigType *usize = g->builtin_types.entry_usize; const_val->global_refs->llvm_value = LLVMConstIntToPtr( LLVMConstInt(usize->llvm_type, addr_value, false), get_llvm_type(g, const_val->type)); return const_val->global_refs->llvm_value; } case ConstPtrSpecialFunction: return LLVMConstBitCast(fn_llvm_value(g, const_val->data.x_ptr.data.fn.fn_entry), get_llvm_type(g, const_val->type)); case ConstPtrSpecialNull: return LLVMConstNull(get_llvm_type(g, const_val->type)); } zig_unreachable(); } static LLVMValueRef gen_const_val_err_set(CodeGen *g, ConstExprValue *const_val, const char *name) { uint64_t value = (const_val->data.x_err_set == nullptr) ? 0 : const_val->data.x_err_set->value; return LLVMConstInt(get_llvm_type(g, g->builtin_types.entry_global_error_set), value, false); } static LLVMValueRef gen_const_val(CodeGen *g, ConstExprValue *const_val, const char *name) { Error err; ZigType *type_entry = const_val->type; assert(type_has_bits(type_entry)); switch (const_val->special) { case ConstValSpecialRuntime: zig_unreachable(); case ConstValSpecialUndef: return LLVMGetUndef(get_llvm_type(g, type_entry)); case ConstValSpecialStatic: break; } switch (type_entry->id) { case ZigTypeIdInt: return bigint_to_llvm_const(get_llvm_type(g, type_entry), &const_val->data.x_bigint); case ZigTypeIdErrorSet: return gen_const_val_err_set(g, const_val, name); case ZigTypeIdFloat: switch (type_entry->data.floating.bit_count) { case 16: return LLVMConstReal(get_llvm_type(g, type_entry), zig_f16_to_double(const_val->data.x_f16)); case 32: return LLVMConstReal(get_llvm_type(g, type_entry), const_val->data.x_f32); case 64: return LLVMConstReal(get_llvm_type(g, type_entry), const_val->data.x_f64); case 128: { // TODO make sure this is correct on big endian targets too uint8_t buf[16]; memcpy(buf, &const_val->data.x_f128, 16); LLVMValueRef as_int = LLVMConstIntOfArbitraryPrecision(LLVMInt128Type(), 2, (uint64_t*)buf); return LLVMConstBitCast(as_int, get_llvm_type(g, type_entry)); } default: zig_unreachable(); } case ZigTypeIdBool: if (const_val->data.x_bool) { return LLVMConstAllOnes(LLVMInt1Type()); } else { return LLVMConstNull(LLVMInt1Type()); } case ZigTypeIdOptional: { ZigType *child_type = type_entry->data.maybe.child_type; if (!type_has_bits(child_type)) { return LLVMConstInt(LLVMInt1Type(), const_val->data.x_optional ? 1 : 0, false); } else if (get_codegen_ptr_type(type_entry) != nullptr) { return gen_const_val_ptr(g, const_val, name); } else if (child_type->id == ZigTypeIdErrorSet) { return gen_const_val_err_set(g, const_val, name); } else { LLVMValueRef child_val; LLVMValueRef maybe_val; bool make_unnamed_struct; if (const_val->data.x_optional) { child_val = gen_const_val(g, const_val->data.x_optional, ""); maybe_val = LLVMConstAllOnes(LLVMInt1Type()); make_unnamed_struct = is_llvm_value_unnamed_type(g, const_val->type, child_val); } else { child_val = LLVMGetUndef(get_llvm_type(g, child_type)); maybe_val = LLVMConstNull(LLVMInt1Type()); make_unnamed_struct = false; } LLVMValueRef fields[] = { child_val, maybe_val, }; if (make_unnamed_struct) { return LLVMConstStruct(fields, 2, false); } else { return LLVMConstNamedStruct(get_llvm_type(g, type_entry), fields, 2); } } } case ZigTypeIdStruct: { LLVMValueRef *fields = allocate(type_entry->data.structure.gen_field_count); size_t src_field_count = type_entry->data.structure.src_field_count; bool make_unnamed_struct = false; if (type_entry->data.structure.layout == ContainerLayoutPacked) { size_t src_field_index = 0; while (src_field_index < src_field_count) { TypeStructField *type_struct_field = &type_entry->data.structure.fields[src_field_index]; if (type_struct_field->gen_index == SIZE_MAX) { src_field_index += 1; continue; } size_t src_field_index_end = src_field_index + 1; for (; src_field_index_end < src_field_count; src_field_index_end += 1) { TypeStructField *it_field = &type_entry->data.structure.fields[src_field_index_end]; if (it_field->gen_index != type_struct_field->gen_index) break; } if (src_field_index + 1 == src_field_index_end) { ConstExprValue *field_val = &const_val->data.x_struct.fields[src_field_index]; LLVMValueRef val = gen_const_val(g, field_val, ""); fields[type_struct_field->gen_index] = val; make_unnamed_struct = make_unnamed_struct || is_llvm_value_unnamed_type(g, field_val->type, val); } else { bool is_big_endian = g->is_big_endian; // TODO get endianness from struct type LLVMTypeRef big_int_type_ref = LLVMStructGetTypeAtIndex(get_llvm_type(g, type_entry), (unsigned)type_struct_field->gen_index); LLVMValueRef val = LLVMConstInt(big_int_type_ref, 0, false); size_t used_bits = 0; for (size_t i = src_field_index; i < src_field_index_end; i += 1) { TypeStructField *it_field = &type_entry->data.structure.fields[i]; if (it_field->gen_index == SIZE_MAX) { continue; } LLVMValueRef child_val = pack_const_int(g, big_int_type_ref, &const_val->data.x_struct.fields[i]); uint32_t packed_bits_size = type_size_bits(g, it_field->type_entry); if (is_big_endian) { LLVMValueRef shift_amt = LLVMConstInt(big_int_type_ref, packed_bits_size, false); val = LLVMConstShl(val, shift_amt); val = LLVMConstOr(val, child_val); } else { LLVMValueRef shift_amt = LLVMConstInt(big_int_type_ref, used_bits, false); LLVMValueRef child_val_shifted = LLVMConstShl(child_val, shift_amt); val = LLVMConstOr(val, child_val_shifted); used_bits += packed_bits_size; } } fields[type_struct_field->gen_index] = val; } src_field_index = src_field_index_end; } } else { for (uint32_t i = 0; i < src_field_count; i += 1) { TypeStructField *type_struct_field = &type_entry->data.structure.fields[i]; if (type_struct_field->gen_index == SIZE_MAX) { continue; } ConstExprValue *field_val = &const_val->data.x_struct.fields[i]; assert(field_val->type != nullptr); if ((err = ensure_const_val_repr(nullptr, g, nullptr, field_val, type_struct_field->type_entry))) { zig_unreachable(); } LLVMValueRef val = gen_const_val(g, field_val, ""); fields[type_struct_field->gen_index] = val; make_unnamed_struct = make_unnamed_struct || is_llvm_value_unnamed_type(g, field_val->type, val); } } if (make_unnamed_struct) { return LLVMConstStruct(fields, type_entry->data.structure.gen_field_count, type_entry->data.structure.layout == ContainerLayoutPacked); } else { return LLVMConstNamedStruct(get_llvm_type(g, type_entry), fields, type_entry->data.structure.gen_field_count); } } case ZigTypeIdArray: { uint64_t len = type_entry->data.array.len; switch (const_val->data.x_array.special) { case ConstArraySpecialUndef: return LLVMGetUndef(get_llvm_type(g, type_entry)); case ConstArraySpecialNone: { LLVMValueRef *values = allocate(len); LLVMTypeRef element_type_ref = get_llvm_type(g, type_entry->data.array.child_type); bool make_unnamed_struct = false; for (uint64_t i = 0; i < len; i += 1) { ConstExprValue *elem_value = &const_val->data.x_array.data.s_none.elements[i]; LLVMValueRef val = gen_const_val(g, elem_value, ""); values[i] = val; make_unnamed_struct = make_unnamed_struct || is_llvm_value_unnamed_type(g, elem_value->type, val); } if (make_unnamed_struct) { return LLVMConstStruct(values, len, true); } else { return LLVMConstArray(element_type_ref, values, (unsigned)len); } } case ConstArraySpecialBuf: { Buf *buf = const_val->data.x_array.data.s_buf; return LLVMConstString(buf_ptr(buf), (unsigned)buf_len(buf), true); } } zig_unreachable(); } case ZigTypeIdVector: { uint32_t len = type_entry->data.vector.len; switch (const_val->data.x_array.special) { case ConstArraySpecialUndef: return LLVMGetUndef(get_llvm_type(g, type_entry)); case ConstArraySpecialNone: { LLVMValueRef *values = allocate(len); for (uint64_t i = 0; i < len; i += 1) { ConstExprValue *elem_value = &const_val->data.x_array.data.s_none.elements[i]; values[i] = gen_const_val(g, elem_value, ""); } return LLVMConstVector(values, len); } case ConstArraySpecialBuf: { Buf *buf = const_val->data.x_array.data.s_buf; assert(buf_len(buf) == len); LLVMValueRef *values = allocate(len); for (uint64_t i = 0; i < len; i += 1) { values[i] = LLVMConstInt(g->builtin_types.entry_u8->llvm_type, buf_ptr(buf)[i], false); } return LLVMConstVector(values, len); } } zig_unreachable(); } case ZigTypeIdUnion: { // Force type_entry->data.unionation.union_llvm_type to get resolved (void)get_llvm_type(g, type_entry); if (type_entry->data.unionation.gen_field_count == 0) { if (type_entry->data.unionation.tag_type == nullptr) { return nullptr; } else { return bigint_to_llvm_const(get_llvm_type(g, type_entry->data.unionation.tag_type), &const_val->data.x_union.tag); } } LLVMTypeRef union_type_ref = type_entry->data.unionation.union_llvm_type; assert(union_type_ref != nullptr); LLVMValueRef union_value_ref; bool make_unnamed_struct; ConstExprValue *payload_value = const_val->data.x_union.payload; if (payload_value == nullptr || !type_has_bits(payload_value->type)) { if (type_entry->data.unionation.gen_tag_index == SIZE_MAX) return LLVMGetUndef(get_llvm_type(g, type_entry)); union_value_ref = LLVMGetUndef(union_type_ref); make_unnamed_struct = false; } else { uint64_t field_type_bytes = LLVMStoreSizeOfType(g->target_data_ref, get_llvm_type(g, payload_value->type)); uint64_t pad_bytes = type_entry->data.unionation.union_abi_size - field_type_bytes; LLVMValueRef correctly_typed_value = gen_const_val(g, payload_value, ""); make_unnamed_struct = is_llvm_value_unnamed_type(g, payload_value->type, correctly_typed_value) || payload_value->type != type_entry->data.unionation.most_aligned_union_member; { if (pad_bytes == 0) { union_value_ref = correctly_typed_value; } else { LLVMValueRef fields[2]; fields[0] = correctly_typed_value; fields[1] = LLVMGetUndef(LLVMArrayType(LLVMInt8Type(), (unsigned)pad_bytes)); if (make_unnamed_struct || type_entry->data.unionation.gen_tag_index != SIZE_MAX) { union_value_ref = LLVMConstStruct(fields, 2, false); } else { union_value_ref = LLVMConstNamedStruct(union_type_ref, fields, 2); } } } if (type_entry->data.unionation.gen_tag_index == SIZE_MAX) { return union_value_ref; } } LLVMValueRef tag_value = bigint_to_llvm_const( get_llvm_type(g, type_entry->data.unionation.tag_type), &const_val->data.x_union.tag); LLVMValueRef fields[3]; fields[type_entry->data.unionation.gen_union_index] = union_value_ref; fields[type_entry->data.unionation.gen_tag_index] = tag_value; if (make_unnamed_struct) { LLVMValueRef result = LLVMConstStruct(fields, 2, false); uint64_t last_field_offset = LLVMOffsetOfElement(g->target_data_ref, LLVMTypeOf(result), 1); uint64_t end_offset = last_field_offset + LLVMStoreSizeOfType(g->target_data_ref, LLVMTypeOf(fields[1])); uint64_t expected_sz = LLVMStoreSizeOfType(g->target_data_ref, get_llvm_type(g, type_entry)); unsigned pad_sz = expected_sz - end_offset; if (pad_sz != 0) { fields[2] = LLVMGetUndef(LLVMArrayType(LLVMInt8Type(), pad_sz)); result = LLVMConstStruct(fields, 3, false); } uint64_t actual_sz = LLVMStoreSizeOfType(g->target_data_ref, LLVMTypeOf(result)); assert(actual_sz == expected_sz); return result; } else { return LLVMConstNamedStruct(get_llvm_type(g, type_entry), fields, 2); } } case ZigTypeIdEnum: return bigint_to_llvm_const(get_llvm_type(g, type_entry), &const_val->data.x_enum_tag); case ZigTypeIdFn: if (const_val->data.x_ptr.special == ConstPtrSpecialFunction) { assert(const_val->data.x_ptr.mut == ConstPtrMutComptimeConst); return fn_llvm_value(g, const_val->data.x_ptr.data.fn.fn_entry); } else if (const_val->data.x_ptr.special == ConstPtrSpecialHardCodedAddr) { LLVMTypeRef usize_type_ref = g->builtin_types.entry_usize->llvm_type; uint64_t addr = const_val->data.x_ptr.data.hard_coded_addr.addr; return LLVMConstIntToPtr(LLVMConstInt(usize_type_ref, addr, false), get_llvm_type(g, type_entry)); } else { zig_unreachable(); } case ZigTypeIdPointer: return gen_const_val_ptr(g, const_val, name); case ZigTypeIdErrorUnion: { ZigType *payload_type = type_entry->data.error_union.payload_type; ZigType *err_set_type = type_entry->data.error_union.err_set_type; if (!type_has_bits(payload_type)) { assert(type_has_bits(err_set_type)); ErrorTableEntry *err_set = const_val->data.x_err_union.error_set->data.x_err_set; uint64_t value = (err_set == nullptr) ? 0 : err_set->value; return LLVMConstInt(get_llvm_type(g, g->err_tag_type), value, false); } else if (!type_has_bits(err_set_type)) { assert(type_has_bits(payload_type)); return gen_const_val(g, const_val->data.x_err_union.payload, ""); } else { LLVMValueRef err_tag_value; LLVMValueRef err_payload_value; bool make_unnamed_struct; ErrorTableEntry *err_set = const_val->data.x_err_union.error_set->data.x_err_set; if (err_set != nullptr) { err_tag_value = LLVMConstInt(get_llvm_type(g, g->err_tag_type), err_set->value, false); err_payload_value = LLVMConstNull(get_llvm_type(g, payload_type)); make_unnamed_struct = false; } else { err_tag_value = LLVMConstNull(get_llvm_type(g, g->err_tag_type)); ConstExprValue *payload_val = const_val->data.x_err_union.payload; err_payload_value = gen_const_val(g, payload_val, ""); make_unnamed_struct = is_llvm_value_unnamed_type(g, payload_val->type, err_payload_value); } if (make_unnamed_struct) { uint64_t payload_off = LLVMOffsetOfElement(g->target_data_ref, get_llvm_type(g, type_entry), 1); uint64_t err_sz = LLVMStoreSizeOfType(g->target_data_ref, LLVMTypeOf(err_tag_value)); unsigned pad_sz = payload_off - err_sz; if (pad_sz == 0) { LLVMValueRef fields[] = { err_tag_value, err_payload_value, }; return LLVMConstStruct(fields, 2, false); } else { LLVMValueRef fields[] = { err_tag_value, LLVMGetUndef(LLVMArrayType(LLVMInt8Type(), pad_sz)), err_payload_value, }; return LLVMConstStruct(fields, 3, false); } } else { LLVMValueRef fields[] = { err_tag_value, err_payload_value, }; return LLVMConstNamedStruct(get_llvm_type(g, type_entry), fields, 2); } } } case ZigTypeIdVoid: return nullptr; case ZigTypeIdInvalid: case ZigTypeIdMetaType: case ZigTypeIdUnreachable: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdEnumLiteral: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdBoundFn: case ZigTypeIdArgTuple: case ZigTypeIdOpaque: case ZigTypeIdPromise: zig_unreachable(); } zig_unreachable(); } static void render_const_val(CodeGen *g, ConstExprValue *const_val, const char *name) { if (!const_val->global_refs) const_val->global_refs = allocate(1); if (!const_val->global_refs->llvm_value) const_val->global_refs->llvm_value = gen_const_val(g, const_val, name); if (const_val->global_refs->llvm_global) LLVMSetInitializer(const_val->global_refs->llvm_global, const_val->global_refs->llvm_value); } static void render_const_val_global(CodeGen *g, ConstExprValue *const_val, const char *name) { if (!const_val->global_refs) const_val->global_refs = allocate(1); if (!const_val->global_refs->llvm_global) { LLVMTypeRef type_ref = const_val->global_refs->llvm_value ? LLVMTypeOf(const_val->global_refs->llvm_value) : get_llvm_type(g, const_val->type); LLVMValueRef global_value = LLVMAddGlobal(g->module, type_ref, name); LLVMSetLinkage(global_value, LLVMInternalLinkage); LLVMSetGlobalConstant(global_value, true); LLVMSetUnnamedAddr(global_value, true); LLVMSetAlignment(global_value, get_abi_alignment(g, const_val->type)); const_val->global_refs->llvm_global = global_value; } if (const_val->global_refs->llvm_value) LLVMSetInitializer(const_val->global_refs->llvm_global, const_val->global_refs->llvm_value); } static void generate_error_name_table(CodeGen *g) { if (g->err_name_table != nullptr || !g->generate_error_name_table || g->errors_by_index.length == 1) { return; } assert(g->errors_by_index.length > 0); ZigType *u8_ptr_type = get_pointer_to_type_extra(g, g->builtin_types.entry_u8, true, false, PtrLenUnknown, get_abi_alignment(g, g->builtin_types.entry_u8), 0, 0, false); ZigType *str_type = get_slice_type(g, u8_ptr_type); LLVMValueRef *values = allocate(g->errors_by_index.length); values[0] = LLVMGetUndef(get_llvm_type(g, str_type)); for (size_t i = 1; i < g->errors_by_index.length; i += 1) { ErrorTableEntry *err_entry = g->errors_by_index.at(i); Buf *name = &err_entry->name; g->largest_err_name_len = max(g->largest_err_name_len, buf_len(name)); LLVMValueRef str_init = LLVMConstString(buf_ptr(name), (unsigned)buf_len(name), true); LLVMValueRef str_global = LLVMAddGlobal(g->module, LLVMTypeOf(str_init), ""); LLVMSetInitializer(str_global, str_init); LLVMSetLinkage(str_global, LLVMPrivateLinkage); LLVMSetGlobalConstant(str_global, true); LLVMSetUnnamedAddr(str_global, true); LLVMSetAlignment(str_global, LLVMABIAlignmentOfType(g->target_data_ref, LLVMTypeOf(str_init))); LLVMValueRef fields[] = { LLVMConstBitCast(str_global, get_llvm_type(g, u8_ptr_type)), LLVMConstInt(g->builtin_types.entry_usize->llvm_type, buf_len(name), false), }; values[i] = LLVMConstNamedStruct(get_llvm_type(g, str_type), fields, 2); } LLVMValueRef err_name_table_init = LLVMConstArray(get_llvm_type(g, str_type), values, (unsigned)g->errors_by_index.length); g->err_name_table = LLVMAddGlobal(g->module, LLVMTypeOf(err_name_table_init), buf_ptr(get_mangled_name(g, buf_create_from_str("__zig_err_name_table"), false))); LLVMSetInitializer(g->err_name_table, err_name_table_init); LLVMSetLinkage(g->err_name_table, LLVMPrivateLinkage); LLVMSetGlobalConstant(g->err_name_table, true); LLVMSetUnnamedAddr(g->err_name_table, true); LLVMSetAlignment(g->err_name_table, LLVMABIAlignmentOfType(g->target_data_ref, LLVMTypeOf(err_name_table_init))); } static void build_all_basic_blocks(CodeGen *g, ZigFn *fn) { IrExecutable *executable = &fn->analyzed_executable; assert(executable->basic_block_list.length > 0); for (size_t block_i = 0; block_i < executable->basic_block_list.length; block_i += 1) { IrBasicBlock *bb = executable->basic_block_list.at(block_i); bb->llvm_block = LLVMAppendBasicBlock(fn_llvm_value(g, fn), bb->name_hint); } IrBasicBlock *entry_bb = executable->basic_block_list.at(0); LLVMPositionBuilderAtEnd(g->builder, entry_bb->llvm_block); } static void gen_global_var(CodeGen *g, ZigVar *var, LLVMValueRef init_val, ZigType *type_entry) { if (g->strip_debug_symbols) { return; } assert(var->gen_is_const); assert(type_entry); ZigType *import = get_scope_import(var->parent_scope); assert(import); bool is_local_to_unit = true; ZigLLVMCreateGlobalVariable(g->dbuilder, get_di_scope(g, var->parent_scope), buf_ptr(&var->name), buf_ptr(&var->name), import->data.structure.root_struct->di_file, (unsigned)(var->decl_node->line + 1), get_llvm_di_type(g, type_entry), is_local_to_unit); // TODO ^^ make an actual global variable } static void validate_inline_fns(CodeGen *g) { for (size_t i = 0; i < g->inline_fns.length; i += 1) { ZigFn *fn_entry = g->inline_fns.at(i); LLVMValueRef fn_val = LLVMGetNamedFunction(g->module, fn_entry->llvm_name); if (fn_val != nullptr) { add_node_error(g, fn_entry->proto_node, buf_sprintf("unable to inline function")); } } report_errors_and_maybe_exit(g); } static void set_global_tls(CodeGen *g, ZigVar *var, LLVMValueRef global_value) { if (var->is_thread_local && (!g->is_single_threaded || var->linkage != VarLinkageInternal)) { LLVMSetThreadLocalMode(global_value, LLVMGeneralDynamicTLSModel); } } static LLVMLinkage var_linkage_to_llvm(VarLinkage var_linkage) { switch (var_linkage) { case VarLinkageInternal: return LLVMInternalLinkage; case VarLinkageExportStrong: return LLVMExternalLinkage; case VarLinkageExportWeak: return LLVMWeakODRLinkage; case VarLinkageExportLinkOnce: return LLVMLinkOnceODRLinkage; case VarLinkageExternal: return LLVMExternalLinkage; } zig_unreachable(); } static void do_code_gen(CodeGen *g) { assert(!g->errors.length); generate_error_name_table(g); // Generate module level variables for (size_t i = 0; i < g->global_vars.length; i += 1) { TldVar *tld_var = g->global_vars.at(i); ZigVar *var = tld_var->var; if (var->var_type->id == ZigTypeIdComptimeFloat) { // Generate debug info for it but that's it. ConstExprValue *const_val = var->const_value; assert(const_val->special != ConstValSpecialRuntime); if (const_val->type != var->var_type) { zig_panic("TODO debug info for var with ptr casted value"); } ZigType *var_type = g->builtin_types.entry_f128; ConstExprValue coerced_value; coerced_value.special = ConstValSpecialStatic; coerced_value.type = var_type; coerced_value.data.x_f128 = bigfloat_to_f128(&const_val->data.x_bigfloat); LLVMValueRef init_val = gen_const_val(g, &coerced_value, ""); gen_global_var(g, var, init_val, var_type); continue; } if (var->var_type->id == ZigTypeIdComptimeInt) { // Generate debug info for it but that's it. ConstExprValue *const_val = var->const_value; assert(const_val->special != ConstValSpecialRuntime); if (const_val->type != var->var_type) { zig_panic("TODO debug info for var with ptr casted value"); } size_t bits_needed = bigint_bits_needed(&const_val->data.x_bigint); if (bits_needed < 8) { bits_needed = 8; } ZigType *var_type = get_int_type(g, const_val->data.x_bigint.is_negative, bits_needed); LLVMValueRef init_val = bigint_to_llvm_const(get_llvm_type(g, var_type), &const_val->data.x_bigint); gen_global_var(g, var, init_val, var_type); continue; } if (!type_has_bits(var->var_type)) continue; assert(var->decl_node); LLVMValueRef global_value; if (var->linkage == VarLinkageExternal) { LLVMValueRef existing_llvm_var = LLVMGetNamedGlobal(g->module, buf_ptr(&var->name)); if (existing_llvm_var) { global_value = LLVMConstBitCast(existing_llvm_var, LLVMPointerType(get_llvm_type(g, var->var_type), 0)); } else { global_value = LLVMAddGlobal(g->module, get_llvm_type(g, var->var_type), buf_ptr(&var->name)); // TODO debug info for the extern variable LLVMSetLinkage(global_value, var_linkage_to_llvm(var->linkage)); maybe_import_dll(g, global_value, GlobalLinkageIdStrong); LLVMSetAlignment(global_value, var->align_bytes); LLVMSetGlobalConstant(global_value, var->gen_is_const); set_global_tls(g, var, global_value); } } else { bool exported = (var->linkage != VarLinkageInternal); const char *mangled_name = buf_ptr(get_mangled_name(g, &var->name, exported)); render_const_val(g, var->const_value, mangled_name); render_const_val_global(g, var->const_value, mangled_name); global_value = var->const_value->global_refs->llvm_global; if (exported) { LLVMSetLinkage(global_value, var_linkage_to_llvm(var->linkage)); maybe_export_dll(g, global_value, GlobalLinkageIdStrong); } if (tld_var->section_name) { LLVMSetSection(global_value, buf_ptr(tld_var->section_name)); } LLVMSetAlignment(global_value, var->align_bytes); // TODO debug info for function pointers // Here we use const_value->type because that's the type of the llvm global, // which we const ptr cast upon use to whatever it needs to be. if (var->gen_is_const && var->const_value->type->id != ZigTypeIdFn) { gen_global_var(g, var, var->const_value->global_refs->llvm_value, var->const_value->type); } LLVMSetGlobalConstant(global_value, var->gen_is_const); set_global_tls(g, var, global_value); } var->value_ref = global_value; } // Generate function definitions. for (size_t fn_i = 0; fn_i < g->fn_defs.length; fn_i += 1) { ZigFn *fn_table_entry = g->fn_defs.at(fn_i); FnTypeId *fn_type_id = &fn_table_entry->type_entry->data.fn.fn_type_id; CallingConvention cc = fn_type_id->cc; bool is_c_abi = cc == CallingConventionC; LLVMValueRef fn = fn_llvm_value(g, fn_table_entry); g->cur_fn = fn_table_entry; g->cur_fn_val = fn; ZigType *return_type = fn_type_id->return_type; if (handle_is_ptr(return_type)) { g->cur_ret_ptr = LLVMGetParam(fn, 0); } else { g->cur_ret_ptr = nullptr; } build_all_basic_blocks(g, fn_table_entry); clear_debug_source_node(g); uint32_t err_ret_trace_arg_index = get_err_ret_trace_arg_index(g, fn_table_entry); bool have_err_ret_trace_arg = err_ret_trace_arg_index != UINT32_MAX; if (have_err_ret_trace_arg) { g->cur_err_ret_trace_val_arg = LLVMGetParam(fn, err_ret_trace_arg_index); } else { g->cur_err_ret_trace_val_arg = nullptr; } // error return tracing setup bool is_async = cc == CallingConventionAsync; bool have_err_ret_trace_stack = g->have_err_ret_tracing && fn_table_entry->calls_or_awaits_errorable_fn && !is_async && !have_err_ret_trace_arg; LLVMValueRef err_ret_array_val = nullptr; if (have_err_ret_trace_stack) { ZigType *array_type = get_array_type(g, g->builtin_types.entry_usize, stack_trace_ptr_count); err_ret_array_val = build_alloca(g, array_type, "error_return_trace_addresses", get_abi_alignment(g, array_type)); // populate g->stack_trace_type (void)get_ptr_to_stack_trace_type(g); g->cur_err_ret_trace_val_stack = build_alloca(g, g->stack_trace_type, "error_return_trace", get_abi_alignment(g, g->stack_trace_type)); } else { g->cur_err_ret_trace_val_stack = nullptr; } // allocate temporary stack data for (size_t alloca_i = 0; alloca_i < fn_table_entry->alloca_list.length; alloca_i += 1) { IrInstruction *instruction = fn_table_entry->alloca_list.at(alloca_i); LLVMValueRef *slot; ZigType *slot_type = instruction->value.type; uint32_t alignment_bytes = 0; if (instruction->id == IrInstructionIdCast) { IrInstructionCast *cast_instruction = (IrInstructionCast *)instruction; slot = &cast_instruction->tmp_ptr; } else if (instruction->id == IrInstructionIdRef) { IrInstructionRef *ref_instruction = (IrInstructionRef *)instruction; slot = &ref_instruction->tmp_ptr; assert(instruction->value.type->id == ZigTypeIdPointer); slot_type = instruction->value.type->data.pointer.child_type; } else if (instruction->id == IrInstructionIdContainerInitList) { IrInstructionContainerInitList *container_init_list_instruction = (IrInstructionContainerInitList *)instruction; slot = &container_init_list_instruction->tmp_ptr; } else if (instruction->id == IrInstructionIdStructInit) { IrInstructionStructInit *struct_init_instruction = (IrInstructionStructInit *)instruction; slot = &struct_init_instruction->tmp_ptr; } else if (instruction->id == IrInstructionIdUnionInit) { IrInstructionUnionInit *union_init_instruction = (IrInstructionUnionInit *)instruction; slot = &union_init_instruction->tmp_ptr; } else if (instruction->id == IrInstructionIdCall) { IrInstructionCall *call_instruction = (IrInstructionCall *)instruction; slot = &call_instruction->tmp_ptr; } else if (instruction->id == IrInstructionIdSlice) { IrInstructionSlice *slice_instruction = (IrInstructionSlice *)instruction; slot = &slice_instruction->tmp_ptr; } else if (instruction->id == IrInstructionIdOptionalWrap) { IrInstructionOptionalWrap *maybe_wrap_instruction = (IrInstructionOptionalWrap *)instruction; slot = &maybe_wrap_instruction->tmp_ptr; } else if (instruction->id == IrInstructionIdErrWrapPayload) { IrInstructionErrWrapPayload *err_wrap_payload_instruction = (IrInstructionErrWrapPayload *)instruction; slot = &err_wrap_payload_instruction->tmp_ptr; } else if (instruction->id == IrInstructionIdErrWrapCode) { IrInstructionErrWrapCode *err_wrap_code_instruction = (IrInstructionErrWrapCode *)instruction; slot = &err_wrap_code_instruction->tmp_ptr; } else if (instruction->id == IrInstructionIdCmpxchgGen) { IrInstructionCmpxchgGen *cmpxchg_instruction = (IrInstructionCmpxchgGen *)instruction; slot = &cmpxchg_instruction->tmp_ptr; } else if (instruction->id == IrInstructionIdResizeSlice) { IrInstructionResizeSlice *resize_slice_instruction = (IrInstructionResizeSlice *)instruction; slot = &resize_slice_instruction->tmp_ptr; } else if (instruction->id == IrInstructionIdLoadPtrGen) { IrInstructionLoadPtrGen *load_ptr_inst = (IrInstructionLoadPtrGen *)instruction; slot = &load_ptr_inst->tmp_ptr; } else if (instruction->id == IrInstructionIdBitCastGen) { IrInstructionBitCastGen *bit_cast_inst = (IrInstructionBitCastGen *)instruction; slot = &bit_cast_inst->tmp_ptr; } else if (instruction->id == IrInstructionIdVectorToArray) { IrInstructionVectorToArray *vector_to_array_instruction = (IrInstructionVectorToArray *)instruction; alignment_bytes = get_abi_alignment(g, vector_to_array_instruction->vector->value.type); slot = &vector_to_array_instruction->tmp_ptr; } else { zig_unreachable(); } *slot = build_alloca(g, slot_type, "", alignment_bytes); } ZigType *import = get_scope_import(&fn_table_entry->fndef_scope->base); unsigned gen_i_init = want_first_arg_sret(g, fn_type_id) ? 1 : 0; // create debug variable declarations for variables and allocate all local variables FnWalk fn_walk_var = {}; fn_walk_var.id = FnWalkIdVars; fn_walk_var.data.vars.import = import; fn_walk_var.data.vars.fn = fn_table_entry; fn_walk_var.data.vars.llvm_fn = fn; fn_walk_var.data.vars.gen_i = gen_i_init; for (size_t var_i = 0; var_i < fn_table_entry->variable_list.length; var_i += 1) { ZigVar *var = fn_table_entry->variable_list.at(var_i); if (!type_has_bits(var->var_type)) { continue; } if (ir_get_var_is_comptime(var)) continue; switch (type_requires_comptime(g, var->var_type)) { case ReqCompTimeInvalid: zig_unreachable(); case ReqCompTimeYes: continue; case ReqCompTimeNo: break; } if (var->src_arg_index == SIZE_MAX) { var->value_ref = build_alloca(g, var->var_type, buf_ptr(&var->name), var->align_bytes); var->di_loc_var = ZigLLVMCreateAutoVariable(g->dbuilder, get_di_scope(g, var->parent_scope), buf_ptr(&var->name), import->data.structure.root_struct->di_file, (unsigned)(var->decl_node->line + 1), get_llvm_di_type(g, var->var_type), !g->strip_debug_symbols, 0); } else if (is_c_abi) { fn_walk_var.data.vars.var = var; iter_function_params_c_abi(g, fn_table_entry->type_entry, &fn_walk_var, var->src_arg_index); } else { ZigType *gen_type; FnGenParamInfo *gen_info = &fn_table_entry->type_entry->data.fn.gen_param_info[var->src_arg_index]; assert(gen_info->gen_index != SIZE_MAX); if (handle_is_ptr(var->var_type)) { if (gen_info->is_byval) { gen_type = var->var_type; } else { gen_type = gen_info->type; } var->value_ref = LLVMGetParam(fn, gen_info->gen_index); } else { gen_type = var->var_type; var->value_ref = build_alloca(g, var->var_type, buf_ptr(&var->name), var->align_bytes); } if (var->decl_node) { var->di_loc_var = ZigLLVMCreateParameterVariable(g->dbuilder, get_di_scope(g, var->parent_scope), buf_ptr(&var->name), import->data.structure.root_struct->di_file, (unsigned)(var->decl_node->line + 1), get_llvm_di_type(g, gen_type), !g->strip_debug_symbols, 0, (unsigned)(gen_info->gen_index+1)); } } } // finishing error return trace setup. we have to do this after all the allocas. if (have_err_ret_trace_stack) { ZigType *usize = g->builtin_types.entry_usize; size_t index_field_index = g->stack_trace_type->data.structure.fields[0].gen_index; LLVMValueRef index_field_ptr = LLVMBuildStructGEP(g->builder, g->cur_err_ret_trace_val_stack, (unsigned)index_field_index, ""); gen_store_untyped(g, LLVMConstNull(usize->llvm_type), index_field_ptr, 0, false); size_t addresses_field_index = g->stack_trace_type->data.structure.fields[1].gen_index; LLVMValueRef addresses_field_ptr = LLVMBuildStructGEP(g->builder, g->cur_err_ret_trace_val_stack, (unsigned)addresses_field_index, ""); ZigType *slice_type = g->stack_trace_type->data.structure.fields[1].type_entry; size_t ptr_field_index = slice_type->data.structure.fields[slice_ptr_index].gen_index; LLVMValueRef ptr_field_ptr = LLVMBuildStructGEP(g->builder, addresses_field_ptr, (unsigned)ptr_field_index, ""); LLVMValueRef zero = LLVMConstNull(usize->llvm_type); LLVMValueRef indices[] = {zero, zero}; LLVMValueRef err_ret_array_val_elem0_ptr = LLVMBuildInBoundsGEP(g->builder, err_ret_array_val, indices, 2, ""); ZigType *ptr_ptr_usize_type = get_pointer_to_type(g, get_pointer_to_type(g, usize, false), false); gen_store(g, err_ret_array_val_elem0_ptr, ptr_field_ptr, ptr_ptr_usize_type); size_t len_field_index = slice_type->data.structure.fields[slice_len_index].gen_index; LLVMValueRef len_field_ptr = LLVMBuildStructGEP(g->builder, addresses_field_ptr, (unsigned)len_field_index, ""); gen_store(g, LLVMConstInt(usize->llvm_type, stack_trace_ptr_count, false), len_field_ptr, get_pointer_to_type(g, usize, false)); } // create debug variable declarations for parameters // rely on the first variables in the variable_list being parameters. FnWalk fn_walk_init = {}; fn_walk_init.id = FnWalkIdInits; fn_walk_init.data.inits.fn = fn_table_entry; fn_walk_init.data.inits.llvm_fn = fn; fn_walk_init.data.inits.gen_i = gen_i_init; walk_function_params(g, fn_table_entry->type_entry, &fn_walk_init); ir_render(g, fn_table_entry); } assert(!g->errors.length); if (buf_len(&g->global_asm) != 0) { LLVMSetModuleInlineAsm(g->module, buf_ptr(&g->global_asm)); } ZigLLVMDIBuilderFinalize(g->dbuilder); if (g->verbose_llvm_ir) { fflush(stderr); LLVMDumpModule(g->module); } // in release mode, we're sooooo confident that we've generated correct ir, // that we skip the verify module step in order to get better performance. #ifndef NDEBUG char *error = nullptr; LLVMVerifyModule(g->module, LLVMAbortProcessAction, &error); #endif } static void zig_llvm_emit_output(CodeGen *g) { bool is_small = g->build_mode == BuildModeSmallRelease; Buf *output_path = &g->o_file_output_path; char *err_msg = nullptr; switch (g->emit_file_type) { case EmitFileTypeBinary: if (ZigLLVMTargetMachineEmitToFile(g->target_machine, g->module, buf_ptr(output_path), ZigLLVM_EmitBinary, &err_msg, g->build_mode == BuildModeDebug, is_small, g->enable_time_report)) { zig_panic("unable to write object file %s: %s", buf_ptr(output_path), err_msg); } validate_inline_fns(g); g->link_objects.append(output_path); if (g->bundle_compiler_rt && (g->out_type == OutTypeObj || (g->out_type == OutTypeLib && !g->is_dynamic))) { zig_link_add_compiler_rt(g); } break; case EmitFileTypeAssembly: if (ZigLLVMTargetMachineEmitToFile(g->target_machine, g->module, buf_ptr(output_path), ZigLLVM_EmitAssembly, &err_msg, g->build_mode == BuildModeDebug, is_small, g->enable_time_report)) { zig_panic("unable to write assembly file %s: %s", buf_ptr(output_path), err_msg); } validate_inline_fns(g); break; case EmitFileTypeLLVMIr: if (ZigLLVMTargetMachineEmitToFile(g->target_machine, g->module, buf_ptr(output_path), ZigLLVM_EmitLLVMIr, &err_msg, g->build_mode == BuildModeDebug, is_small, g->enable_time_report)) { zig_panic("unable to write llvm-ir file %s: %s", buf_ptr(output_path), err_msg); } validate_inline_fns(g); break; default: zig_unreachable(); } } struct CIntTypeInfo { CIntType id; const char *name; bool is_signed; }; static const CIntTypeInfo c_int_type_infos[] = { {CIntTypeShort, "c_short", true}, {CIntTypeUShort, "c_ushort", false}, {CIntTypeInt, "c_int", true}, {CIntTypeUInt, "c_uint", false}, {CIntTypeLong, "c_long", true}, {CIntTypeULong, "c_ulong", false}, {CIntTypeLongLong, "c_longlong", true}, {CIntTypeULongLong, "c_ulonglong", false}, }; static const bool is_signed_list[] = { false, true, }; struct GlobalLinkageValue { GlobalLinkageId id; const char *name; }; static const GlobalLinkageValue global_linkage_values[] = { {GlobalLinkageIdInternal, "Internal"}, {GlobalLinkageIdStrong, "Strong"}, {GlobalLinkageIdWeak, "Weak"}, {GlobalLinkageIdLinkOnce, "LinkOnce"}, }; static void add_fp_entry(CodeGen *g, const char *name, uint32_t bit_count, LLVMTypeRef type_ref, ZigType **field) { ZigType *entry = new_type_table_entry(ZigTypeIdFloat); entry->llvm_type = type_ref; entry->size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, entry->llvm_type); entry->abi_size = LLVMABISizeOfType(g->target_data_ref, entry->llvm_type); entry->abi_align = LLVMABIAlignmentOfType(g->target_data_ref, entry->llvm_type); buf_init_from_str(&entry->name, name); entry->data.floating.bit_count = bit_count; entry->llvm_di_type = ZigLLVMCreateDebugBasicType(g->dbuilder, buf_ptr(&entry->name), entry->size_in_bits, ZigLLVMEncoding_DW_ATE_float()); *field = entry; g->primitive_type_table.put(&entry->name, entry); } static void define_builtin_types(CodeGen *g) { { // if this type is anywhere in the AST, we should never hit codegen. ZigType *entry = new_type_table_entry(ZigTypeIdInvalid); buf_init_from_str(&entry->name, "(invalid)"); g->builtin_types.entry_invalid = entry; } { ZigType *entry = new_type_table_entry(ZigTypeIdComptimeFloat); buf_init_from_str(&entry->name, "comptime_float"); g->builtin_types.entry_num_lit_float = entry; g->primitive_type_table.put(&entry->name, entry); } { ZigType *entry = new_type_table_entry(ZigTypeIdComptimeInt); buf_init_from_str(&entry->name, "comptime_int"); g->builtin_types.entry_num_lit_int = entry; g->primitive_type_table.put(&entry->name, entry); } { ZigType *entry = new_type_table_entry(ZigTypeIdEnumLiteral); buf_init_from_str(&entry->name, "(enum literal)"); g->builtin_types.entry_enum_literal = entry; } { ZigType *entry = new_type_table_entry(ZigTypeIdUndefined); buf_init_from_str(&entry->name, "(undefined)"); g->builtin_types.entry_undef = entry; } { ZigType *entry = new_type_table_entry(ZigTypeIdNull); buf_init_from_str(&entry->name, "(null)"); g->builtin_types.entry_null = entry; } { ZigType *entry = new_type_table_entry(ZigTypeIdArgTuple); buf_init_from_str(&entry->name, "(args)"); g->builtin_types.entry_arg_tuple = entry; } for (size_t i = 0; i < array_length(c_int_type_infos); i += 1) { const CIntTypeInfo *info = &c_int_type_infos[i]; uint32_t size_in_bits = target_c_type_size_in_bits(g->zig_target, info->id); bool is_signed = info->is_signed; ZigType *entry = new_type_table_entry(ZigTypeIdInt); entry->llvm_type = LLVMIntType(size_in_bits); entry->size_in_bits = size_in_bits; entry->abi_size = LLVMABISizeOfType(g->target_data_ref, entry->llvm_type); entry->abi_align = LLVMABIAlignmentOfType(g->target_data_ref, entry->llvm_type); buf_init_from_str(&entry->name, info->name); entry->llvm_di_type = ZigLLVMCreateDebugBasicType(g->dbuilder, buf_ptr(&entry->name), size_in_bits, is_signed ? ZigLLVMEncoding_DW_ATE_signed() : ZigLLVMEncoding_DW_ATE_unsigned()); entry->data.integral.is_signed = is_signed; entry->data.integral.bit_count = size_in_bits; g->primitive_type_table.put(&entry->name, entry); get_c_int_type_ptr(g, info->id)[0] = entry; } { ZigType *entry = new_type_table_entry(ZigTypeIdBool); entry->llvm_type = LLVMInt1Type(); entry->size_in_bits = 1; entry->abi_size = LLVMABISizeOfType(g->target_data_ref, entry->llvm_type); entry->abi_align = LLVMABIAlignmentOfType(g->target_data_ref, entry->llvm_type); buf_init_from_str(&entry->name, "bool"); entry->llvm_di_type = ZigLLVMCreateDebugBasicType(g->dbuilder, buf_ptr(&entry->name), entry->size_in_bits, ZigLLVMEncoding_DW_ATE_boolean()); g->builtin_types.entry_bool = entry; g->primitive_type_table.put(&entry->name, entry); } for (size_t sign_i = 0; sign_i < array_length(is_signed_list); sign_i += 1) { bool is_signed = is_signed_list[sign_i]; ZigType *entry = new_type_table_entry(ZigTypeIdInt); entry->llvm_type = LLVMIntType(g->pointer_size_bytes * 8); entry->size_in_bits = g->pointer_size_bytes * 8; entry->abi_size = LLVMABISizeOfType(g->target_data_ref, entry->llvm_type); entry->abi_align = LLVMABIAlignmentOfType(g->target_data_ref, entry->llvm_type); const char u_or_i = is_signed ? 'i' : 'u'; buf_resize(&entry->name, 0); buf_appendf(&entry->name, "%csize", u_or_i); entry->data.integral.is_signed = is_signed; entry->data.integral.bit_count = g->pointer_size_bytes * 8; entry->llvm_di_type = ZigLLVMCreateDebugBasicType(g->dbuilder, buf_ptr(&entry->name), entry->size_in_bits, is_signed ? ZigLLVMEncoding_DW_ATE_signed() : ZigLLVMEncoding_DW_ATE_unsigned()); g->primitive_type_table.put(&entry->name, entry); if (is_signed) { g->builtin_types.entry_isize = entry; } else { g->builtin_types.entry_usize = entry; } } add_fp_entry(g, "f16", 16, LLVMHalfType(), &g->builtin_types.entry_f16); add_fp_entry(g, "f32", 32, LLVMFloatType(), &g->builtin_types.entry_f32); add_fp_entry(g, "f64", 64, LLVMDoubleType(), &g->builtin_types.entry_f64); add_fp_entry(g, "f128", 128, LLVMFP128Type(), &g->builtin_types.entry_f128); add_fp_entry(g, "c_longdouble", 80, LLVMX86FP80Type(), &g->builtin_types.entry_c_longdouble); { ZigType *entry = new_type_table_entry(ZigTypeIdVoid); entry->llvm_type = LLVMVoidType(); buf_init_from_str(&entry->name, "void"); entry->llvm_di_type = ZigLLVMCreateDebugBasicType(g->dbuilder, buf_ptr(&entry->name), 0, ZigLLVMEncoding_DW_ATE_unsigned()); g->builtin_types.entry_void = entry; g->primitive_type_table.put(&entry->name, entry); } { ZigType *entry = new_type_table_entry(ZigTypeIdUnreachable); entry->llvm_type = LLVMVoidType(); buf_init_from_str(&entry->name, "noreturn"); entry->llvm_di_type = g->builtin_types.entry_void->llvm_di_type; g->builtin_types.entry_unreachable = entry; g->primitive_type_table.put(&entry->name, entry); } { ZigType *entry = new_type_table_entry(ZigTypeIdMetaType); buf_init_from_str(&entry->name, "type"); g->builtin_types.entry_type = entry; g->primitive_type_table.put(&entry->name, entry); } g->builtin_types.entry_u8 = get_int_type(g, false, 8); g->builtin_types.entry_u16 = get_int_type(g, false, 16); g->builtin_types.entry_u29 = get_int_type(g, false, 29); g->builtin_types.entry_u32 = get_int_type(g, false, 32); g->builtin_types.entry_u64 = get_int_type(g, false, 64); g->builtin_types.entry_i8 = get_int_type(g, true, 8); g->builtin_types.entry_i32 = get_int_type(g, true, 32); g->builtin_types.entry_i64 = get_int_type(g, true, 64); { g->builtin_types.entry_c_void = get_opaque_type(g, nullptr, nullptr, "c_void", buf_create_from_str("c_void")); g->primitive_type_table.put(&g->builtin_types.entry_c_void->name, g->builtin_types.entry_c_void); } { ZigType *entry = new_type_table_entry(ZigTypeIdErrorSet); buf_init_from_str(&entry->name, "anyerror"); entry->data.error_set.err_count = UINT32_MAX; // TODO https://github.com/ziglang/zig/issues/786 g->err_tag_type = g->builtin_types.entry_u16; entry->size_in_bits = g->err_tag_type->size_in_bits; entry->abi_align = g->err_tag_type->abi_align; entry->abi_size = g->err_tag_type->abi_size; g->builtin_types.entry_global_error_set = entry; g->errors_by_index.append(nullptr); g->primitive_type_table.put(&entry->name, entry); } { ZigType *entry = get_promise_type(g, nullptr); g->primitive_type_table.put(&entry->name, entry); entry->size_in_bits = g->builtin_types.entry_usize->size_in_bits; entry->abi_align = g->builtin_types.entry_usize->abi_align; entry->abi_size = g->builtin_types.entry_usize->abi_size; } } static BuiltinFnEntry *create_builtin_fn(CodeGen *g, BuiltinFnId id, const char *name, size_t count) { BuiltinFnEntry *builtin_fn = allocate(1); buf_init_from_str(&builtin_fn->name, name); builtin_fn->id = id; builtin_fn->param_count = count; g->builtin_fn_table.put(&builtin_fn->name, builtin_fn); return builtin_fn; } static void define_builtin_fns(CodeGen *g) { create_builtin_fn(g, BuiltinFnIdBreakpoint, "breakpoint", 0); create_builtin_fn(g, BuiltinFnIdReturnAddress, "returnAddress", 0); create_builtin_fn(g, BuiltinFnIdFrameAddress, "frameAddress", 0); create_builtin_fn(g, BuiltinFnIdHandle, "handle", 0); create_builtin_fn(g, BuiltinFnIdMemcpy, "memcpy", 3); create_builtin_fn(g, BuiltinFnIdMemset, "memset", 3); create_builtin_fn(g, BuiltinFnIdSizeof, "sizeOf", 1); create_builtin_fn(g, BuiltinFnIdAlignOf, "alignOf", 1); create_builtin_fn(g, BuiltinFnIdMemberCount, "memberCount", 1); create_builtin_fn(g, BuiltinFnIdMemberType, "memberType", 2); create_builtin_fn(g, BuiltinFnIdMemberName, "memberName", 2); create_builtin_fn(g, BuiltinFnIdField, "field", 2); create_builtin_fn(g, BuiltinFnIdTypeInfo, "typeInfo", 1); create_builtin_fn(g, BuiltinFnIdTypeof, "typeOf", 1); // TODO rename to TypeOf create_builtin_fn(g, BuiltinFnIdAddWithOverflow, "addWithOverflow", 4); create_builtin_fn(g, BuiltinFnIdSubWithOverflow, "subWithOverflow", 4); create_builtin_fn(g, BuiltinFnIdMulWithOverflow, "mulWithOverflow", 4); create_builtin_fn(g, BuiltinFnIdShlWithOverflow, "shlWithOverflow", 4); create_builtin_fn(g, BuiltinFnIdCInclude, "cInclude", 1); create_builtin_fn(g, BuiltinFnIdCDefine, "cDefine", 2); create_builtin_fn(g, BuiltinFnIdCUndef, "cUndef", 1); create_builtin_fn(g, BuiltinFnIdCtz, "ctz", 2); create_builtin_fn(g, BuiltinFnIdClz, "clz", 2); create_builtin_fn(g, BuiltinFnIdPopCount, "popCount", 2); create_builtin_fn(g, BuiltinFnIdBswap, "byteSwap", 2); create_builtin_fn(g, BuiltinFnIdBitReverse, "bitReverse", 2); create_builtin_fn(g, BuiltinFnIdImport, "import", 1); create_builtin_fn(g, BuiltinFnIdCImport, "cImport", 1); create_builtin_fn(g, BuiltinFnIdErrName, "errorName", 1); create_builtin_fn(g, BuiltinFnIdTypeName, "typeName", 1); create_builtin_fn(g, BuiltinFnIdEmbedFile, "embedFile", 1); create_builtin_fn(g, BuiltinFnIdCmpxchgWeak, "cmpxchgWeak", 6); create_builtin_fn(g, BuiltinFnIdCmpxchgStrong, "cmpxchgStrong", 6); create_builtin_fn(g, BuiltinFnIdFence, "fence", 1); create_builtin_fn(g, BuiltinFnIdTruncate, "truncate", 2); create_builtin_fn(g, BuiltinFnIdIntCast, "intCast", 2); create_builtin_fn(g, BuiltinFnIdFloatCast, "floatCast", 2); create_builtin_fn(g, BuiltinFnIdIntToFloat, "intToFloat", 2); create_builtin_fn(g, BuiltinFnIdFloatToInt, "floatToInt", 2); create_builtin_fn(g, BuiltinFnIdBoolToInt, "boolToInt", 1); create_builtin_fn(g, BuiltinFnIdErrToInt, "errorToInt", 1); create_builtin_fn(g, BuiltinFnIdIntToErr, "intToError", 1); create_builtin_fn(g, BuiltinFnIdEnumToInt, "enumToInt", 1); create_builtin_fn(g, BuiltinFnIdIntToEnum, "intToEnum", 2); create_builtin_fn(g, BuiltinFnIdCompileErr, "compileError", 1); create_builtin_fn(g, BuiltinFnIdCompileLog, "compileLog", SIZE_MAX); create_builtin_fn(g, BuiltinFnIdIntType, "IntType", 2); // TODO rename to Int create_builtin_fn(g, BuiltinFnIdVectorType, "Vector", 2); create_builtin_fn(g, BuiltinFnIdSetCold, "setCold", 1); create_builtin_fn(g, BuiltinFnIdSetRuntimeSafety, "setRuntimeSafety", 1); create_builtin_fn(g, BuiltinFnIdSetFloatMode, "setFloatMode", 1); create_builtin_fn(g, BuiltinFnIdPanic, "panic", 1); create_builtin_fn(g, BuiltinFnIdPtrCast, "ptrCast", 2); create_builtin_fn(g, BuiltinFnIdBitCast, "bitCast", 2); create_builtin_fn(g, BuiltinFnIdIntToPtr, "intToPtr", 2); create_builtin_fn(g, BuiltinFnIdPtrToInt, "ptrToInt", 1); create_builtin_fn(g, BuiltinFnIdTagName, "tagName", 1); create_builtin_fn(g, BuiltinFnIdTagType, "TagType", 1); create_builtin_fn(g, BuiltinFnIdFieldParentPtr, "fieldParentPtr", 3); create_builtin_fn(g, BuiltinFnIdByteOffsetOf, "byteOffsetOf", 2); create_builtin_fn(g, BuiltinFnIdBitOffsetOf, "bitOffsetOf", 2); create_builtin_fn(g, BuiltinFnIdDivExact, "divExact", 2); create_builtin_fn(g, BuiltinFnIdDivTrunc, "divTrunc", 2); create_builtin_fn(g, BuiltinFnIdDivFloor, "divFloor", 2); create_builtin_fn(g, BuiltinFnIdRem, "rem", 2); create_builtin_fn(g, BuiltinFnIdMod, "mod", 2); create_builtin_fn(g, BuiltinFnIdSqrt, "sqrt", 2); create_builtin_fn(g, BuiltinFnIdInlineCall, "inlineCall", SIZE_MAX); create_builtin_fn(g, BuiltinFnIdNoInlineCall, "noInlineCall", SIZE_MAX); create_builtin_fn(g, BuiltinFnIdNewStackCall, "newStackCall", SIZE_MAX); create_builtin_fn(g, BuiltinFnIdTypeId, "typeId", 1); create_builtin_fn(g, BuiltinFnIdShlExact, "shlExact", 2); create_builtin_fn(g, BuiltinFnIdShrExact, "shrExact", 2); create_builtin_fn(g, BuiltinFnIdSetEvalBranchQuota, "setEvalBranchQuota", 1); create_builtin_fn(g, BuiltinFnIdAlignCast, "alignCast", 2); create_builtin_fn(g, BuiltinFnIdOpaqueType, "OpaqueType", 0); create_builtin_fn(g, BuiltinFnIdSetAlignStack, "setAlignStack", 1); create_builtin_fn(g, BuiltinFnIdArgType, "ArgType", 2); create_builtin_fn(g, BuiltinFnIdExport, "export", 3); create_builtin_fn(g, BuiltinFnIdErrorReturnTrace, "errorReturnTrace", 0); create_builtin_fn(g, BuiltinFnIdAtomicRmw, "atomicRmw", 5); create_builtin_fn(g, BuiltinFnIdAtomicLoad, "atomicLoad", 3); create_builtin_fn(g, BuiltinFnIdErrSetCast, "errSetCast", 2); create_builtin_fn(g, BuiltinFnIdToBytes, "sliceToBytes", 1); create_builtin_fn(g, BuiltinFnIdFromBytes, "bytesToSlice", 2); create_builtin_fn(g, BuiltinFnIdThis, "This", 0); create_builtin_fn(g, BuiltinFnIdHasDecl, "hasDecl", 2); } static const char *bool_to_str(bool b) { return b ? "true" : "false"; } static const char *build_mode_to_str(BuildMode build_mode) { switch (build_mode) { case BuildModeDebug: return "Mode.Debug"; case BuildModeSafeRelease: return "Mode.ReleaseSafe"; case BuildModeFastRelease: return "Mode.ReleaseFast"; case BuildModeSmallRelease: return "Mode.ReleaseSmall"; } zig_unreachable(); } static bool detect_dynamic_link(CodeGen *g) { if (g->is_dynamic) return true; if (g->zig_target->os == OsFreestanding) return false; if (target_requires_pic(g->zig_target, g->libc_link_lib != nullptr)) return true; // If there are no dynamic libraries then we can disable PIC for (size_t i = 0; i < g->link_libs_list.length; i += 1) { LinkLib *link_lib = g->link_libs_list.at(i); if (target_is_libc_lib_name(g->zig_target, buf_ptr(link_lib->name))) continue; return true; } return false; } static bool detect_pic(CodeGen *g) { if (target_requires_pic(g->zig_target, g->libc_link_lib != nullptr)) return true; switch (g->want_pic) { case WantPICDisabled: return false; case WantPICEnabled: return true; case WantPICAuto: return g->have_dynamic_link; } zig_unreachable(); } static bool detect_single_threaded(CodeGen *g) { if (g->want_single_threaded) return true; if (target_is_single_threaded(g->zig_target)) { return true; } return false; } static bool detect_err_ret_tracing(CodeGen *g) { return !target_is_wasm(g->zig_target) && g->build_mode != BuildModeFastRelease && g->build_mode != BuildModeSmallRelease; } Buf *codegen_generate_builtin_source(CodeGen *g) { g->have_dynamic_link = detect_dynamic_link(g); g->have_pic = detect_pic(g); g->is_single_threaded = detect_single_threaded(g); g->have_err_ret_tracing = detect_err_ret_tracing(g); Buf *contents = buf_alloc(); // NOTE: when editing this file, you may need to make modifications to the // cache input parameters in define_builtin_compile_vars // Modifications to this struct must be coordinated with code that does anything with // g->stack_trace_type. There are hard-coded references to the field indexes. buf_append_str(contents, "pub const StackTrace = struct {\n" " index: usize,\n" " instruction_addresses: []usize,\n" "};\n\n"); buf_append_str(contents, "pub const PanicFn = fn([]const u8, ?*StackTrace) noreturn;\n\n"); const char *cur_os = nullptr; { buf_appendf(contents, "pub const Os = enum {\n"); uint32_t field_count = (uint32_t)target_os_count(); for (uint32_t i = 0; i < field_count; i += 1) { Os os_type = target_os_enum(i); const char *name = target_os_name(os_type); buf_appendf(contents, " %s,\n", name); if (os_type == g->zig_target->os) { g->target_os_index = i; cur_os = name; } } buf_appendf(contents, "};\n\n"); } assert(cur_os != nullptr); const char *cur_arch = nullptr; { buf_appendf(contents, "pub const Arch = union(enum) {\n"); uint32_t field_count = (uint32_t)target_arch_count(); for (uint32_t arch_i = 0; arch_i < field_count; arch_i += 1) { ZigLLVM_ArchType arch = target_arch_enum(arch_i); const char *arch_name = target_arch_name(arch); SubArchList sub_arch_list = target_subarch_list(arch); if (sub_arch_list == SubArchListNone) { buf_appendf(contents, " %s,\n", arch_name); if (arch == g->zig_target->arch) { g->target_arch_index = arch_i; cur_arch = buf_ptr(buf_sprintf("Arch.%s", arch_name)); } } else { const char *sub_arch_list_name = target_subarch_list_name(sub_arch_list); buf_appendf(contents, " %s: %s,\n", arch_name, sub_arch_list_name); if (arch == g->zig_target->arch) { size_t sub_count = target_subarch_count(sub_arch_list); for (size_t sub_i = 0; sub_i < sub_count; sub_i += 1) { ZigLLVM_SubArchType sub = target_subarch_enum(sub_arch_list, sub_i); if (sub == g->zig_target->sub_arch) { g->target_sub_arch_index = sub_i; cur_arch = buf_ptr(buf_sprintf("Arch{ .%s = Arch.%s.%s }", arch_name, sub_arch_list_name, target_subarch_name(sub))); } } } } } uint32_t list_count = target_subarch_list_count(); // start at index 1 to skip None for (uint32_t list_i = 1; list_i < list_count; list_i += 1) { SubArchList sub_arch_list = target_subarch_list_enum(list_i); const char *subarch_list_name = target_subarch_list_name(sub_arch_list); buf_appendf(contents, " pub const %s = enum {\n", subarch_list_name); size_t sub_count = target_subarch_count(sub_arch_list); for (size_t sub_i = 0; sub_i < sub_count; sub_i += 1) { ZigLLVM_SubArchType sub = target_subarch_enum(sub_arch_list, sub_i); buf_appendf(contents, " %s,\n", target_subarch_name(sub)); } buf_appendf(contents, " };\n"); } buf_appendf(contents, "};\n\n"); } assert(cur_arch != nullptr); const char *cur_abi = nullptr; { buf_appendf(contents, "pub const Abi = enum {\n"); uint32_t field_count = (uint32_t)target_abi_count(); for (uint32_t i = 0; i < field_count; i += 1) { ZigLLVM_EnvironmentType abi = target_abi_enum(i); const char *name = target_abi_name(abi); buf_appendf(contents, " %s,\n", name); if (abi == g->zig_target->abi) { g->target_abi_index = i; cur_abi = name; } } buf_appendf(contents, "};\n\n"); } assert(cur_abi != nullptr); const char *cur_obj_fmt = nullptr; { buf_appendf(contents, "pub const ObjectFormat = enum {\n"); uint32_t field_count = (uint32_t)target_oformat_count(); for (uint32_t i = 0; i < field_count; i += 1) { ZigLLVM_ObjectFormatType oformat = target_oformat_enum(i); const char *name = target_oformat_name(oformat); buf_appendf(contents, " %s,\n", name); ZigLLVM_ObjectFormatType target_oformat = target_object_format(g->zig_target); if (oformat == target_oformat) { g->target_oformat_index = i; cur_obj_fmt = name; } } buf_appendf(contents, "};\n\n"); } assert(cur_obj_fmt != nullptr); { buf_appendf(contents, "pub const GlobalLinkage = enum {\n"); uint32_t field_count = array_length(global_linkage_values); for (uint32_t i = 0; i < field_count; i += 1) { const GlobalLinkageValue *value = &global_linkage_values[i]; buf_appendf(contents, " %s,\n", value->name); } buf_appendf(contents, "};\n\n"); } { buf_appendf(contents, "pub const AtomicOrder = enum {\n" " Unordered,\n" " Monotonic,\n" " Acquire,\n" " Release,\n" " AcqRel,\n" " SeqCst,\n" "};\n\n"); } { buf_appendf(contents, "pub const AtomicRmwOp = enum {\n" " Xchg,\n" " Add,\n" " Sub,\n" " And,\n" " Nand,\n" " Or,\n" " Xor,\n" " Max,\n" " Min,\n" "};\n\n"); } { buf_appendf(contents, "pub const Mode = enum {\n" " Debug,\n" " ReleaseSafe,\n" " ReleaseFast,\n" " ReleaseSmall,\n" "};\n\n"); } { buf_appendf(contents, "pub const TypeId = enum {\n"); size_t field_count = type_id_len(); for (size_t i = 0; i < field_count; i += 1) { const ZigTypeId id = type_id_at_index(i); buf_appendf(contents, " %s,\n", type_id_name(id)); } buf_appendf(contents, "};\n\n"); } { buf_appendf(contents, "pub const TypeInfo = union(TypeId) {\n" " Type: void,\n" " Void: void,\n" " Bool: void,\n" " NoReturn: void,\n" " Int: Int,\n" " Float: Float,\n" " Pointer: Pointer,\n" " Array: Array,\n" " Struct: Struct,\n" " ComptimeFloat: void,\n" " ComptimeInt: void,\n" " Undefined: void,\n" " Null: void,\n" " Optional: Optional,\n" " ErrorUnion: ErrorUnion,\n" " ErrorSet: ErrorSet,\n" " Enum: Enum,\n" " Union: Union,\n" " Fn: Fn,\n" " BoundFn: Fn,\n" " ArgTuple: void,\n" " Opaque: void,\n" " Promise: Promise,\n" " Vector: Vector,\n" " EnumLiteral: void,\n" "\n\n" " pub const Int = struct {\n" " is_signed: bool,\n" " bits: comptime_int,\n" " };\n" "\n" " pub const Float = struct {\n" " bits: comptime_int,\n" " };\n" "\n" " pub const Pointer = struct {\n" " size: Size,\n" " is_const: bool,\n" " is_volatile: bool,\n" " alignment: comptime_int,\n" " child: type,\n" " is_allowzero: bool,\n" "\n" " pub const Size = enum {\n" " One,\n" " Many,\n" " Slice,\n" " C,\n" " };\n" " };\n" "\n" " pub const Array = struct {\n" " len: comptime_int,\n" " child: type,\n" " };\n" "\n" " pub const ContainerLayout = enum {\n" " Auto,\n" " Extern,\n" " Packed,\n" " };\n" "\n" " pub const StructField = struct {\n" " name: []const u8,\n" " offset: ?comptime_int,\n" " field_type: type,\n" " };\n" "\n" " pub const Struct = struct {\n" " layout: ContainerLayout,\n" " fields: []StructField,\n" " defs: []Definition,\n" " };\n" "\n" " pub const Optional = struct {\n" " child: type,\n" " };\n" "\n" " pub const ErrorUnion = struct {\n" " error_set: type,\n" " payload: type,\n" " };\n" "\n" " pub const Error = struct {\n" " name: []const u8,\n" " value: comptime_int,\n" " };\n" "\n" " pub const ErrorSet = ?[]Error;\n" "\n" " pub const EnumField = struct {\n" " name: []const u8,\n" " value: comptime_int,\n" " };\n" "\n" " pub const Enum = struct {\n" " layout: ContainerLayout,\n" " tag_type: type,\n" " fields: []EnumField,\n" " defs: []Definition,\n" " };\n" "\n" " pub const UnionField = struct {\n" " name: []const u8,\n" " enum_field: ?EnumField,\n" " field_type: type,\n" " };\n" "\n" " pub const Union = struct {\n" " layout: ContainerLayout,\n" " tag_type: ?type,\n" " fields: []UnionField,\n" " defs: []Definition,\n" " };\n" "\n" " pub const CallingConvention = enum {\n" " Unspecified,\n" " C,\n" " Cold,\n" " Naked,\n" " Stdcall,\n" " Async,\n" " };\n" "\n" " pub const FnArg = struct {\n" " is_generic: bool,\n" " is_noalias: bool,\n" " arg_type: ?type,\n" " };\n" "\n" " pub const Fn = struct {\n" " calling_convention: CallingConvention,\n" " is_generic: bool,\n" " is_var_args: bool,\n" " return_type: ?type,\n" " async_allocator_type: ?type,\n" " args: []FnArg,\n" " };\n" "\n" " pub const Promise = struct {\n" " child: ?type,\n" " };\n" "\n" " pub const Vector = struct {\n" " len: comptime_int,\n" " child: type,\n" " };\n" "\n" " pub const Definition = struct {\n" " name: []const u8,\n" " is_pub: bool,\n" " data: Data,\n" "\n" " pub const Data = union(enum) {\n" " Type: type,\n" " Var: type,\n" " Fn: FnDef,\n" "\n" " pub const FnDef = struct {\n" " fn_type: type,\n" " inline_type: Inline,\n" " calling_convention: CallingConvention,\n" " is_var_args: bool,\n" " is_extern: bool,\n" " is_export: bool,\n" " lib_name: ?[]const u8,\n" " return_type: type,\n" " arg_names: [][] const u8,\n" "\n" " pub const Inline = enum {\n" " Auto,\n" " Always,\n" " Never,\n" " };\n" " };\n" " };\n" " };\n" "};\n\n"); assert(ContainerLayoutAuto == 0); assert(ContainerLayoutExtern == 1); assert(ContainerLayoutPacked == 2); assert(CallingConventionUnspecified == 0); assert(CallingConventionC == 1); assert(CallingConventionCold == 2); assert(CallingConventionNaked == 3); assert(CallingConventionStdcall == 4); assert(CallingConventionAsync == 5); assert(FnInlineAuto == 0); assert(FnInlineAlways == 1); assert(FnInlineNever == 2); } { buf_appendf(contents, "pub const FloatMode = enum {\n" " Strict,\n" " Optimized,\n" "};\n\n"); assert(FloatModeStrict == 0); assert(FloatModeOptimized == 1); } { buf_appendf(contents, "pub const Endian = enum {\n" " Big,\n" " Little,\n" "};\n\n"); //assert(EndianBig == 0); //assert(EndianLittle == 1); } { const char *endian_str = g->is_big_endian ? "Endian.Big" : "Endian.Little"; buf_appendf(contents, "pub const endian = %s;\n", endian_str); } buf_appendf(contents, "pub const is_test = %s;\n", bool_to_str(g->is_test_build)); buf_appendf(contents, "pub const single_threaded = %s;\n", bool_to_str(g->is_single_threaded)); buf_appendf(contents, "pub const os = Os.%s;\n", cur_os); buf_appendf(contents, "pub const arch = %s;\n", cur_arch); buf_appendf(contents, "pub const abi = Abi.%s;\n", cur_abi); buf_appendf(contents, "pub const object_format = ObjectFormat.%s;\n", cur_obj_fmt); buf_appendf(contents, "pub const mode = %s;\n", build_mode_to_str(g->build_mode)); buf_appendf(contents, "pub const link_libc = %s;\n", bool_to_str(g->libc_link_lib != nullptr)); buf_appendf(contents, "pub const have_error_return_tracing = %s;\n", bool_to_str(g->have_err_ret_tracing)); buf_appendf(contents, "pub const valgrind_support = %s;\n", bool_to_str(want_valgrind_support(g))); buf_appendf(contents, "pub const position_independent_code = %s;\n", bool_to_str(g->have_pic)); if (g->is_test_build) { buf_appendf(contents, "const TestFn = struct {\n" "name: []const u8,\n" "func: fn()anyerror!void,\n" "};\n" "pub const test_functions = {}; // overwritten later\n" ); } return contents; } static Error define_builtin_compile_vars(CodeGen *g) { if (g->std_package == nullptr) return ErrorNone; Error err; Buf *manifest_dir = buf_alloc(); os_path_join(get_stage1_cache_path(), buf_create_from_str("builtin"), manifest_dir); CacheHash cache_hash; cache_init(&cache_hash, manifest_dir); Buf *compiler_id; if ((err = get_compiler_id(&compiler_id))) return err; // Only a few things affect builtin.zig cache_buf(&cache_hash, compiler_id); cache_int(&cache_hash, g->build_mode); cache_bool(&cache_hash, g->is_test_build); cache_bool(&cache_hash, g->is_single_threaded); cache_int(&cache_hash, g->zig_target->is_native); cache_int(&cache_hash, g->zig_target->arch); cache_int(&cache_hash, g->zig_target->sub_arch); cache_int(&cache_hash, g->zig_target->vendor); cache_int(&cache_hash, g->zig_target->os); cache_int(&cache_hash, g->zig_target->abi); cache_bool(&cache_hash, g->have_err_ret_tracing); cache_bool(&cache_hash, g->libc_link_lib != nullptr); cache_bool(&cache_hash, g->valgrind_support); Buf digest = BUF_INIT; buf_resize(&digest, 0); if ((err = cache_hit(&cache_hash, &digest))) { // Treat an invalid format error as a cache miss. if (err != ErrorInvalidFormat) return err; } // We should always get a cache hit because there are no // files in the input hash. assert(buf_len(&digest) != 0); Buf *this_dir = buf_alloc(); os_path_join(manifest_dir, &digest, this_dir); if ((err = os_make_path(this_dir))) return err; const char *builtin_zig_basename = "builtin.zig"; Buf *builtin_zig_path = buf_alloc(); os_path_join(this_dir, buf_create_from_str(builtin_zig_basename), builtin_zig_path); bool hit; if ((err = os_file_exists(builtin_zig_path, &hit))) return err; Buf *contents; if (hit) { contents = buf_alloc(); if ((err = os_fetch_file_path(builtin_zig_path, contents))) { fprintf(stderr, "Unable to open '%s': %s\n", buf_ptr(builtin_zig_path), err_str(err)); exit(1); } } else { contents = codegen_generate_builtin_source(g); if ((err = os_write_file(builtin_zig_path, contents))) { fprintf(stderr, "Unable to write file '%s': %s\n", buf_ptr(builtin_zig_path), err_str(err)); exit(1); } } assert(g->root_package); assert(g->std_package); g->compile_var_package = new_package(buf_ptr(this_dir), builtin_zig_basename, "builtin"); g->root_package->package_table.put(buf_create_from_str("builtin"), g->compile_var_package); g->std_package->package_table.put(buf_create_from_str("builtin"), g->compile_var_package); g->std_package->package_table.put(buf_create_from_str("std"), g->std_package); g->compile_var_import = add_source_file(g, g->compile_var_package, builtin_zig_path, contents, SourceKindPkgMain); return ErrorNone; } static void init(CodeGen *g) { if (g->module) return; g->have_dynamic_link = detect_dynamic_link(g); g->have_pic = detect_pic(g); g->is_single_threaded = detect_single_threaded(g); g->have_err_ret_tracing = detect_err_ret_tracing(g); if (target_is_single_threaded(g->zig_target)) { g->is_single_threaded = true; } if (g->is_test_build) { g->subsystem = TargetSubsystemConsole; } assert(g->root_out_name); g->module = LLVMModuleCreateWithName(buf_ptr(g->root_out_name)); LLVMSetTarget(g->module, buf_ptr(&g->triple_str)); if (target_object_format(g->zig_target) == ZigLLVM_COFF) { ZigLLVMAddModuleCodeViewFlag(g->module); } else { ZigLLVMAddModuleDebugInfoFlag(g->module); } LLVMTargetRef target_ref; char *err_msg = nullptr; if (LLVMGetTargetFromTriple(buf_ptr(&g->triple_str), &target_ref, &err_msg)) { fprintf(stderr, "Zig is expecting LLVM to understand this target: '%s'\n" "However LLVM responded with: \"%s\"\n" "Zig is unable to continue. This is a bug in Zig:\n" "https://github.com/ziglang/zig/issues/438\n" , buf_ptr(&g->triple_str), err_msg); exit(1); } bool is_optimized = g->build_mode != BuildModeDebug; LLVMCodeGenOptLevel opt_level = is_optimized ? LLVMCodeGenLevelAggressive : LLVMCodeGenLevelNone; LLVMRelocMode reloc_mode; if (g->have_pic) { reloc_mode = LLVMRelocPIC; } else if (g->have_dynamic_link) { reloc_mode = LLVMRelocDynamicNoPic; } else { reloc_mode = LLVMRelocStatic; } const char *target_specific_cpu_args; const char *target_specific_features; if (g->zig_target->is_native) { // LLVM creates invalid binaries on Windows sometimes. // See https://github.com/ziglang/zig/issues/508 // As a workaround we do not use target native features on Windows. if (g->zig_target->os == OsWindows || g->zig_target->os == OsUefi) { target_specific_cpu_args = ""; target_specific_features = ""; } else { target_specific_cpu_args = ZigLLVMGetHostCPUName(); target_specific_features = ZigLLVMGetNativeFeatures(); } } else { target_specific_cpu_args = ""; target_specific_features = ""; } g->target_machine = LLVMCreateTargetMachine(target_ref, buf_ptr(&g->triple_str), target_specific_cpu_args, target_specific_features, opt_level, reloc_mode, LLVMCodeModelDefault); g->target_data_ref = LLVMCreateTargetDataLayout(g->target_machine); char *layout_str = LLVMCopyStringRepOfTargetData(g->target_data_ref); LLVMSetDataLayout(g->module, layout_str); assert(g->pointer_size_bytes == LLVMPointerSize(g->target_data_ref)); g->is_big_endian = (LLVMByteOrder(g->target_data_ref) == LLVMBigEndian); g->builder = LLVMCreateBuilder(); g->dbuilder = ZigLLVMCreateDIBuilder(g->module, true); // Don't use ZIG_VERSION_STRING here, llvm misparses it when it includes // the git revision. Buf *producer = buf_sprintf("zig %d.%d.%d", ZIG_VERSION_MAJOR, ZIG_VERSION_MINOR, ZIG_VERSION_PATCH); const char *flags = ""; unsigned runtime_version = 0; ZigLLVMDIFile *compile_unit_file = ZigLLVMCreateFile(g->dbuilder, buf_ptr(g->root_out_name), buf_ptr(&g->root_package->root_src_dir)); g->compile_unit = ZigLLVMCreateCompileUnit(g->dbuilder, ZigLLVMLang_DW_LANG_C99(), compile_unit_file, buf_ptr(producer), is_optimized, flags, runtime_version, "", 0, !g->strip_debug_symbols); // This is for debug stuff that doesn't have a real file. g->dummy_di_file = nullptr; define_builtin_types(g); IrInstruction *sentinel_instructions = allocate(2); g->invalid_instruction = &sentinel_instructions[0]; g->invalid_instruction->value.type = g->builtin_types.entry_invalid; g->invalid_instruction->value.global_refs = allocate(1); g->unreach_instruction = &sentinel_instructions[1]; g->unreach_instruction->value.type = g->builtin_types.entry_unreachable; g->unreach_instruction->value.global_refs = allocate(1); g->const_void_val.special = ConstValSpecialStatic; g->const_void_val.type = g->builtin_types.entry_void; g->const_void_val.global_refs = allocate(1); { ConstGlobalRefs *global_refs = allocate(PanicMsgIdCount); for (size_t i = 0; i < PanicMsgIdCount; i += 1) { g->panic_msg_vals[i].global_refs = &global_refs[i]; } } define_builtin_fns(g); Error err; if ((err = define_builtin_compile_vars(g))) { fprintf(stderr, "Unable to create builtin.zig: %s\n", err_str(err)); exit(1); } } static void detect_dynamic_linker(CodeGen *g) { if (g->dynamic_linker_path != nullptr) return; if (!g->have_dynamic_link) return; if (g->out_type == OutTypeObj || (g->out_type == OutTypeLib && !g->is_dynamic)) return; const char *standard_ld_path = target_dynamic_linker(g->zig_target); if (standard_ld_path == nullptr) return; if (g->zig_target->is_native) { // target_dynamic_linker is usually correct. However on some systems, such as NixOS // it will be incorrect. See if we can do better by looking at what zig's own // dynamic linker path is. g->dynamic_linker_path = get_self_dynamic_linker_path(); if (g->dynamic_linker_path != nullptr) return; // If Zig is statically linked, such as via distributed binary static builds, the above // trick won't work. What are we left with? Try to run the system C compiler and get // it to tell us the dynamic linker path #if defined(ZIG_OS_LINUX) { Error err; Buf *result = buf_alloc(); for (size_t i = 0; possible_ld_names[i] != NULL; i += 1) { const char *lib_name = possible_ld_names[i]; if ((err = zig_libc_cc_print_file_name(lib_name, result, false, true))) { if (err != ErrorCCompilerCannotFindFile && err != ErrorNoCCompilerInstalled) { fprintf(stderr, "Unable to detect native dynamic linker: %s\n", err_str(err)); exit(1); } continue; } g->dynamic_linker_path = result; return; } } #endif } g->dynamic_linker_path = buf_create_from_str(standard_ld_path); } static void detect_libc(CodeGen *g) { Error err; if (g->libc != nullptr || g->libc_link_lib == nullptr) return; if (target_can_build_libc(g->zig_target)) { const char *generic_name = target_libc_generic_name(g->zig_target); Buf *arch_include_dir = buf_sprintf("%s" OS_SEP "libc" OS_SEP "include" OS_SEP "%s-%s-%s", buf_ptr(g->zig_lib_dir), target_arch_name(g->zig_target->arch), target_os_name(g->zig_target->os), target_abi_name(g->zig_target->abi)); Buf *generic_include_dir = buf_sprintf("%s" OS_SEP "libc" OS_SEP "include" OS_SEP "generic-%s", buf_ptr(g->zig_lib_dir), generic_name); Buf *arch_os_include_dir = buf_sprintf("%s" OS_SEP "libc" OS_SEP "include" OS_SEP "%s-%s-any", buf_ptr(g->zig_lib_dir), target_arch_name(g->zig_target->arch), target_os_name(g->zig_target->os)); Buf *generic_os_include_dir = buf_sprintf("%s" OS_SEP "libc" OS_SEP "include" OS_SEP "any-%s-any", buf_ptr(g->zig_lib_dir), target_os_name(g->zig_target->os)); g->libc_include_dir_len = 4; g->libc_include_dir_list = allocate(g->libc_include_dir_len); g->libc_include_dir_list[0] = arch_include_dir; g->libc_include_dir_list[1] = generic_include_dir; g->libc_include_dir_list[2] = arch_os_include_dir; g->libc_include_dir_list[3] = generic_os_include_dir; return; } if (g->zig_target->is_native) { g->libc = allocate(1); // Look for zig-cache/native_libc.txt Buf *native_libc_txt = buf_alloc(); os_path_join(g->cache_dir, buf_create_from_str("native_libc.txt"), native_libc_txt); if ((err = zig_libc_parse(g->libc, native_libc_txt, g->zig_target, false))) { if ((err = zig_libc_find_native(g->libc, true))) { fprintf(stderr, "Unable to link against libc: Unable to find libc installation: %s\n" "See `zig libc --help` for more details.\n", err_str(err)); exit(1); } if ((err = os_make_path(g->cache_dir))) { fprintf(stderr, "Unable to create %s directory: %s\n", buf_ptr(g->cache_dir), err_str(err)); exit(1); } Buf *native_libc_tmp = buf_sprintf("%s.tmp", buf_ptr(native_libc_txt)); FILE *file = fopen(buf_ptr(native_libc_tmp), "wb"); if (file == nullptr) { fprintf(stderr, "Unable to open %s: %s\n", buf_ptr(native_libc_tmp), strerror(errno)); exit(1); } zig_libc_render(g->libc, file); if (fclose(file) != 0) { fprintf(stderr, "Unable to save %s: %s\n", buf_ptr(native_libc_tmp), strerror(errno)); exit(1); } if ((err = os_rename(native_libc_tmp, native_libc_txt))) { fprintf(stderr, "Unable to create %s: %s\n", buf_ptr(native_libc_txt), err_str(err)); exit(1); } } bool want_sys_dir = !buf_eql_buf(&g->libc->include_dir, &g->libc->sys_include_dir); size_t dir_count = 1 + want_sys_dir; g->libc_include_dir_len = dir_count; g->libc_include_dir_list = allocate(dir_count); g->libc_include_dir_list[0] = &g->libc->include_dir; if (want_sys_dir) { g->libc_include_dir_list[1] = &g->libc->sys_include_dir; } } else if ((g->out_type == OutTypeExe || (g->out_type == OutTypeLib && g->is_dynamic)) && !target_os_is_darwin(g->zig_target->os)) { Buf triple_buf = BUF_INIT; get_target_triple(&triple_buf, g->zig_target); fprintf(stderr, "Zig is unable to provide a libc for the chosen target '%s'.\n" "The target is non-native, so Zig also cannot use the native libc installation.\n" "Choose a target which has a libc available, or provide a libc installation text file.\n" "See `zig libc --help` for more details.\n", buf_ptr(&triple_buf)); exit(1); } } // does not add the "cc" arg void add_cc_args(CodeGen *g, ZigList &args, const char *out_dep_path, bool translate_c) { if (translate_c) { args.append("-x"); args.append("c"); } if (out_dep_path != nullptr) { args.append("-MD"); args.append("-MV"); args.append("-MF"); args.append(out_dep_path); } args.append("-nostdinc"); args.append("-fno-spell-checking"); if (translate_c) { // this gives us access to preprocessing entities, presumably at // the cost of performance args.append("-Xclang"); args.append("-detailed-preprocessing-record"); } else { switch (g->err_color) { case ErrColorAuto: break; case ErrColorOff: args.append("-fno-color-diagnostics"); args.append("-fno-caret-diagnostics"); break; case ErrColorOn: args.append("-fcolor-diagnostics"); args.append("-fcaret-diagnostics"); break; } } args.append("-isystem"); args.append(buf_ptr(g->zig_c_headers_dir)); for (size_t i = 0; i < g->libc_include_dir_len; i += 1) { Buf *include_dir = g->libc_include_dir_list[i]; args.append("-isystem"); args.append(buf_ptr(include_dir)); } if (g->zig_target->is_native) { args.append("-march=native"); } else { args.append("-target"); args.append(buf_ptr(&g->triple_str)); } if (g->zig_target->os == OsFreestanding) { args.append("-ffreestanding"); } if (!g->strip_debug_symbols) { args.append("-g"); } switch (g->build_mode) { case BuildModeDebug: // windows c runtime requires -D_DEBUG if using debug libraries args.append("-D_DEBUG"); if (g->libc_link_lib != nullptr) { args.append("-fstack-protector-strong"); args.append("--param"); args.append("ssp-buffer-size=4"); } else { args.append("-fno-stack-protector"); } args.append("-fno-omit-frame-pointer"); break; case BuildModeSafeRelease: // See the comment in the BuildModeFastRelease case for why we pass -O2 rather // than -O3 here. args.append("-O2"); if (g->libc_link_lib != nullptr) { args.append("-D_FORTIFY_SOURCE=2"); args.append("-fstack-protector-strong"); args.append("--param"); args.append("ssp-buffer-size=4"); } else { args.append("-fno-stack-protector"); } args.append("-fomit-frame-pointer"); break; case BuildModeFastRelease: args.append("-DNDEBUG"); // Here we pass -O2 rather than -O3 because, although we do the equivalent of // -O3 in Zig code, the justification for the difference here is that Zig // has better detection and prevention of undefined behavior, so -O3 is safer for // Zig code than it is for C code. Also, C programmers are used to their code // running in -O2 and thus the -O3 path has been tested less. args.append("-O2"); args.append("-fno-stack-protector"); args.append("-fomit-frame-pointer"); break; case BuildModeSmallRelease: args.append("-DNDEBUG"); args.append("-Os"); args.append("-fno-stack-protector"); args.append("-fomit-frame-pointer"); break; } if (target_supports_fpic(g->zig_target) && g->have_pic) { args.append("-fPIC"); } for (size_t arg_i = 0; arg_i < g->clang_argv_len; arg_i += 1) { args.append(g->clang_argv[arg_i]); } } void codegen_translate_c(CodeGen *g, Buf *full_path, FILE *out_file, bool use_userland_implementation) { Error err; Buf *src_basename = buf_alloc(); Buf *src_dirname = buf_alloc(); os_path_split(full_path, src_dirname, src_basename); Buf noextname = BUF_INIT; os_path_extname(src_basename, &noextname, nullptr); detect_libc(g); init(g); Stage2TranslateMode trans_mode = buf_ends_with_str(full_path, ".h") ? Stage2TranslateModeImport : Stage2TranslateModeTranslate; ZigList clang_argv = {0}; add_cc_args(g, clang_argv, nullptr, true); clang_argv.append(buf_ptr(full_path)); if (g->verbose_cc) { fprintf(stderr, "clang"); for (size_t i = 0; i < clang_argv.length; i += 1) { fprintf(stderr, " %s", clang_argv.at(i)); } fprintf(stderr, "\n"); } clang_argv.append(nullptr); // to make the [start...end] argument work const char *resources_path = buf_ptr(g->zig_c_headers_dir); Stage2ErrorMsg *errors_ptr; size_t errors_len; Stage2Ast *ast; AstNode *root_node; if (use_userland_implementation) { err = stage2_translate_c(&ast, &errors_ptr, &errors_len, &clang_argv.at(0), &clang_argv.last(), trans_mode, resources_path); } else { err = parse_h_file(g, &root_node, &errors_ptr, &errors_len, &clang_argv.at(0), &clang_argv.last(), trans_mode, resources_path); } if (err == ErrorCCompileErrors && errors_len > 0) { for (size_t i = 0; i < errors_len; i += 1) { Stage2ErrorMsg *clang_err = &errors_ptr[i]; ErrorMsg *err_msg = err_msg_create_with_offset( clang_err->filename_ptr ? buf_create_from_mem(clang_err->filename_ptr, clang_err->filename_len) : buf_alloc(), clang_err->line, clang_err->column, clang_err->offset, clang_err->source, buf_create_from_mem(clang_err->msg_ptr, clang_err->msg_len)); print_err_msg(err_msg, g->err_color); } exit(1); } if (err) { fprintf(stderr, "unable to parse C file: %s\n", err_str(err)); exit(1); } if (use_userland_implementation) { stage2_render_ast(ast, out_file); } else { ast_render(out_file, root_node, 4); } } static ZigType *add_special_code(CodeGen *g, ZigPackage *package, const char *basename) { Buf *code_basename = buf_create_from_str(basename); Buf path_to_code_src = BUF_INIT; os_path_join(g->zig_std_special_dir, code_basename, &path_to_code_src); Buf *resolve_paths[] = {&path_to_code_src}; Buf *resolved_path = buf_alloc(); *resolved_path = os_path_resolve(resolve_paths, 1); Buf *import_code = buf_alloc(); Error err; if ((err = file_fetch(g, resolved_path, import_code))) { zig_panic("unable to open '%s': %s\n", buf_ptr(&path_to_code_src), err_str(err)); } return add_source_file(g, package, resolved_path, import_code, SourceKindPkgMain); } static ZigPackage *create_bootstrap_pkg(CodeGen *g, ZigPackage *pkg_with_main) { ZigPackage *package = codegen_create_package(g, buf_ptr(g->zig_std_special_dir), "bootstrap.zig", "std.special"); package->package_table.put(buf_create_from_str("@root"), pkg_with_main); return package; } static ZigPackage *create_test_runner_pkg(CodeGen *g) { return codegen_create_package(g, buf_ptr(g->zig_std_special_dir), "test_runner.zig", "std.special"); } static ZigPackage *create_panic_pkg(CodeGen *g) { return codegen_create_package(g, buf_ptr(g->zig_std_special_dir), "panic.zig", "std.special"); } static void create_test_compile_var_and_add_test_runner(CodeGen *g) { Error err; assert(g->is_test_build); if (g->test_fns.length == 0) { fprintf(stderr, "No tests to run.\n"); exit(0); } ZigType *fn_type = get_test_fn_type(g); ConstExprValue *test_fn_type_val = get_builtin_value(g, "TestFn"); assert(test_fn_type_val->type->id == ZigTypeIdMetaType); ZigType *struct_type = test_fn_type_val->data.x_type; if ((err = type_resolve(g, struct_type, ResolveStatusSizeKnown))) zig_unreachable(); ConstExprValue *test_fn_array = create_const_vals(1); test_fn_array->type = get_array_type(g, struct_type, g->test_fns.length); test_fn_array->special = ConstValSpecialStatic; test_fn_array->data.x_array.data.s_none.elements = create_const_vals(g->test_fns.length); for (size_t i = 0; i < g->test_fns.length; i += 1) { ZigFn *test_fn_entry = g->test_fns.at(i); ConstExprValue *this_val = &test_fn_array->data.x_array.data.s_none.elements[i]; this_val->special = ConstValSpecialStatic; this_val->type = struct_type; this_val->parent.id = ConstParentIdArray; this_val->parent.data.p_array.array_val = test_fn_array; this_val->parent.data.p_array.elem_index = i; this_val->data.x_struct.fields = create_const_vals(2); ConstExprValue *name_field = &this_val->data.x_struct.fields[0]; ConstExprValue *name_array_val = create_const_str_lit(g, &test_fn_entry->symbol_name); init_const_slice(g, name_field, name_array_val, 0, buf_len(&test_fn_entry->symbol_name), true); ConstExprValue *fn_field = &this_val->data.x_struct.fields[1]; fn_field->type = fn_type; fn_field->special = ConstValSpecialStatic; fn_field->data.x_ptr.special = ConstPtrSpecialFunction; fn_field->data.x_ptr.mut = ConstPtrMutComptimeConst; fn_field->data.x_ptr.data.fn.fn_entry = test_fn_entry; } ConstExprValue *test_fn_slice = create_const_slice(g, test_fn_array, 0, g->test_fns.length, true); update_compile_var(g, buf_create_from_str("test_functions"), test_fn_slice); g->test_runner_package = create_test_runner_pkg(g); g->test_runner_import = add_special_code(g, g->test_runner_package, "test_runner.zig"); } static Buf *get_resolved_root_src_path(CodeGen *g) { // TODO memoize if (buf_len(&g->root_package->root_src_path) == 0) return nullptr; Buf rel_full_path = BUF_INIT; os_path_join(&g->root_package->root_src_dir, &g->root_package->root_src_path, &rel_full_path); Buf *resolved_path = buf_alloc(); Buf *resolve_paths[] = {&rel_full_path}; *resolved_path = os_path_resolve(resolve_paths, 1); return resolved_path; } static void gen_root_source(CodeGen *g) { Buf *resolved_path = get_resolved_root_src_path(g); if (resolved_path == nullptr) return; Buf *source_code = buf_alloc(); Error err; // No need for using the caching system for this file fetch because it is handled // separately. if ((err = os_fetch_file_path(resolved_path, source_code))) { fprintf(stderr, "unable to open '%s': %s\n", buf_ptr(resolved_path), err_str(err)); exit(1); } ZigType *root_import_alias = add_source_file(g, g->root_package, resolved_path, source_code, SourceKindRoot); assert(root_import_alias == g->root_import); assert(g->root_out_name); assert(g->out_type != OutTypeUnknown); if (!g->is_dummy_so) { // Zig has lazy top level definitions. Here we semantically analyze the panic function. ZigType *import_with_panic; if (g->have_pub_panic) { import_with_panic = g->root_import; } else { g->panic_package = create_panic_pkg(g); import_with_panic = add_special_code(g, g->panic_package, "panic.zig"); } Tld *panic_tld = find_decl(g, &get_container_scope(import_with_panic)->base, buf_create_from_str("panic")); assert(panic_tld != nullptr); resolve_top_level_decl(g, panic_tld, nullptr); } if (!g->error_during_imports) { semantic_analyze(g); } report_errors_and_maybe_exit(g); if (!g->is_test_build && (g->zig_target->os != OsFreestanding || target_is_wasm(g->zig_target)) && g->zig_target->os != OsUefi && !g->have_c_main && !g->have_winmain && !g->have_winmain_crt_startup && ((g->have_pub_main && g->out_type == OutTypeObj) || g->out_type == OutTypeExe)) { g->bootstrap_import = add_special_code(g, create_bootstrap_pkg(g, g->root_package), "bootstrap.zig"); } if (g->zig_target->os == OsWindows && !g->have_dllmain_crt_startup && g->out_type == OutTypeLib && g->is_dynamic) { g->bootstrap_import = add_special_code(g, create_bootstrap_pkg(g, g->root_package), "bootstrap_lib.zig"); } if (!g->error_during_imports) { semantic_analyze(g); } if (g->is_test_build) { create_test_compile_var_and_add_test_runner(g); g->bootstrap_import = add_special_code(g, create_bootstrap_pkg(g, g->test_runner_package), "bootstrap.zig"); if (!g->error_during_imports) { semantic_analyze(g); } } if (!g->is_dummy_so) { typecheck_panic_fn(g, g->panic_tld_fn, g->panic_fn); } report_errors_and_maybe_exit(g); } static void print_zig_cc_cmd(const char *zig_exe, ZigList *args) { fprintf(stderr, "%s", zig_exe); for (size_t arg_i = 0; arg_i < args->length; arg_i += 1) { fprintf(stderr, " %s", args->at(arg_i)); } fprintf(stderr, "\n"); } // Caller should delete the file when done or rename it into a better location. static Error get_tmp_filename(CodeGen *g, Buf *out, Buf *suffix) { Error err; buf_resize(out, 0); os_path_join(g->cache_dir, buf_create_from_str("tmp" OS_SEP), out); if ((err = os_make_path(out))) { return err; } const char base64[] = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-_"; assert(array_length(base64) == 64 + 1); for (size_t i = 0; i < 12; i += 1) { buf_append_char(out, base64[rand() % 64]); } buf_append_char(out, '-'); buf_append_buf(out, suffix); return ErrorNone; } Error create_c_object_cache(CodeGen *g, CacheHash **out_cache_hash, bool verbose) { Error err; CacheHash *cache_hash = allocate(1); Buf *manifest_dir = buf_sprintf("%s" OS_SEP CACHE_HASH_SUBDIR, buf_ptr(g->cache_dir)); cache_init(cache_hash, manifest_dir); Buf *compiler_id; if ((err = get_compiler_id(&compiler_id))) { if (verbose) { fprintf(stderr, "unable to get compiler id: %s\n", err_str(err)); } return err; } cache_buf(cache_hash, compiler_id); cache_int(cache_hash, g->err_color); cache_buf(cache_hash, g->zig_c_headers_dir); cache_list_of_buf(cache_hash, g->libc_include_dir_list, g->libc_include_dir_len); cache_int(cache_hash, g->zig_target->is_native); cache_int(cache_hash, g->zig_target->arch); cache_int(cache_hash, g->zig_target->sub_arch); cache_int(cache_hash, g->zig_target->vendor); cache_int(cache_hash, g->zig_target->os); cache_int(cache_hash, g->zig_target->abi); cache_bool(cache_hash, g->strip_debug_symbols); cache_int(cache_hash, g->build_mode); cache_bool(cache_hash, g->have_pic); cache_bool(cache_hash, want_valgrind_support(g)); for (size_t arg_i = 0; arg_i < g->clang_argv_len; arg_i += 1) { cache_str(cache_hash, g->clang_argv[arg_i]); } *out_cache_hash = cache_hash; return ErrorNone; } // returns true if it was a cache miss static void gen_c_object(CodeGen *g, Buf *self_exe_path, CFile *c_file) { Error err; Buf *artifact_dir; Buf *o_final_path; Buf *o_dir = buf_sprintf("%s" OS_SEP CACHE_OUT_SUBDIR, buf_ptr(g->cache_dir)); Buf *c_source_file = buf_create_from_str(c_file->source_path); Buf *c_source_basename = buf_alloc(); os_path_split(c_source_file, nullptr, c_source_basename); Buf *final_o_basename = buf_alloc(); os_path_extname(c_source_basename, final_o_basename, nullptr); buf_append_str(final_o_basename, target_o_file_ext(g->zig_target)); CacheHash *cache_hash; if ((err = create_c_object_cache(g, &cache_hash, true))) { // Already printed error; verbose = true exit(1); } cache_file(cache_hash, c_source_file); // Note: not directory args, just args that always have a file next static const char *file_args[] = { "-include", }; for (size_t arg_i = 0; arg_i < c_file->args.length; arg_i += 1) { const char *arg = c_file->args.at(arg_i); cache_str(cache_hash, arg); for (size_t file_arg_i = 0; file_arg_i < array_length(file_args); file_arg_i += 1) { if (strcmp(arg, file_args[file_arg_i]) == 0 && arg_i + 1 < c_file->args.length) { arg_i += 1; cache_file(cache_hash, buf_create_from_str(c_file->args.at(arg_i))); } } } Buf digest = BUF_INIT; buf_resize(&digest, 0); if ((err = cache_hit(cache_hash, &digest))) { if (err != ErrorInvalidFormat) { if (err == ErrorCacheUnavailable) { // already printed error } else { fprintf(stderr, "unable to check cache when compiling C object: %s\n", err_str(err)); } exit(1); } } bool is_cache_miss = (buf_len(&digest) == 0); if (is_cache_miss) { // we can't know the digest until we do the C compiler invocation, so we // need a tmp filename. Buf *out_obj_path = buf_alloc(); if ((err = get_tmp_filename(g, out_obj_path, final_o_basename))) { fprintf(stderr, "unable to create tmp dir: %s\n", err_str(err)); exit(1); } Termination term; ZigList args = {}; args.append("cc"); Buf *out_dep_path = buf_sprintf("%s.d", buf_ptr(out_obj_path)); add_cc_args(g, args, buf_ptr(out_dep_path), false); args.append("-o"); args.append(buf_ptr(out_obj_path)); args.append("-c"); args.append(buf_ptr(c_source_file)); for (size_t arg_i = 0; arg_i < c_file->args.length; arg_i += 1) { args.append(c_file->args.at(arg_i)); } if (g->verbose_cc) { print_zig_cc_cmd("zig", &args); } os_spawn_process(buf_ptr(self_exe_path), args, &term); if (term.how != TerminationIdClean || term.code != 0) { fprintf(stderr, "\nThe following command failed:\n"); print_zig_cc_cmd(buf_ptr(self_exe_path), &args); exit(1); } // add the files depended on to the cache system if ((err = cache_add_dep_file(cache_hash, out_dep_path, true))) { // Don't treat the absence of the .d file as a fatal error, the // compiler may not produce one eg. when compiling .s files if (err != ErrorFileNotFound) { fprintf(stderr, "Failed to add C source dependencies to cache: %s\n", err_str(err)); exit(1); } } if (err != ErrorFileNotFound) { os_delete_file(out_dep_path); } if ((err = cache_final(cache_hash, &digest))) { fprintf(stderr, "Unable to finalize cache hash: %s\n", err_str(err)); exit(1); } artifact_dir = buf_alloc(); os_path_join(o_dir, &digest, artifact_dir); if ((err = os_make_path(artifact_dir))) { fprintf(stderr, "Unable to create output directory '%s': %s", buf_ptr(artifact_dir), err_str(err)); exit(1); } o_final_path = buf_alloc(); os_path_join(artifact_dir, final_o_basename, o_final_path); if ((err = os_rename(out_obj_path, o_final_path))) { fprintf(stderr, "Unable to rename object: %s\n", err_str(err)); exit(1); } } else { // cache hit artifact_dir = buf_alloc(); os_path_join(o_dir, &digest, artifact_dir); o_final_path = buf_alloc(); os_path_join(artifact_dir, final_o_basename, o_final_path); } g->link_objects.append(o_final_path); g->caches_to_release.append(cache_hash); } // returns true if we had any cache misses static void gen_c_objects(CodeGen *g) { Error err; if (g->c_source_files.length == 0) return; Buf *self_exe_path = buf_alloc(); if ((err = os_self_exe_path(self_exe_path))) { fprintf(stderr, "Unable to get self exe path: %s\n", err_str(err)); exit(1); } codegen_add_time_event(g, "Compile C Code"); for (size_t c_file_i = 0; c_file_i < g->c_source_files.length; c_file_i += 1) { CFile *c_file = g->c_source_files.at(c_file_i); gen_c_object(g, self_exe_path, c_file); } } void codegen_add_object(CodeGen *g, Buf *object_path) { g->link_objects.append(object_path); } // Must be coordinated with with CIntType enum static const char *c_int_type_names[] = { "short", "unsigned short", "int", "unsigned int", "long", "unsigned long", "long long", "unsigned long long", }; struct GenH { ZigList types_to_declare; }; static void prepend_c_type_to_decl_list(CodeGen *g, GenH *gen_h, ZigType *type_entry) { if (type_entry->gen_h_loop_flag) return; type_entry->gen_h_loop_flag = true; switch (type_entry->id) { case ZigTypeIdInvalid: case ZigTypeIdMetaType: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdEnumLiteral: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdBoundFn: case ZigTypeIdArgTuple: case ZigTypeIdErrorUnion: case ZigTypeIdErrorSet: case ZigTypeIdPromise: zig_unreachable(); case ZigTypeIdVoid: case ZigTypeIdUnreachable: case ZigTypeIdBool: case ZigTypeIdInt: case ZigTypeIdFloat: return; case ZigTypeIdOpaque: gen_h->types_to_declare.append(type_entry); return; case ZigTypeIdStruct: for (uint32_t i = 0; i < type_entry->data.structure.src_field_count; i += 1) { TypeStructField *field = &type_entry->data.structure.fields[i]; prepend_c_type_to_decl_list(g, gen_h, field->type_entry); } gen_h->types_to_declare.append(type_entry); return; case ZigTypeIdUnion: for (uint32_t i = 0; i < type_entry->data.unionation.src_field_count; i += 1) { TypeUnionField *field = &type_entry->data.unionation.fields[i]; prepend_c_type_to_decl_list(g, gen_h, field->type_entry); } gen_h->types_to_declare.append(type_entry); return; case ZigTypeIdEnum: prepend_c_type_to_decl_list(g, gen_h, type_entry->data.enumeration.tag_int_type); gen_h->types_to_declare.append(type_entry); return; case ZigTypeIdPointer: prepend_c_type_to_decl_list(g, gen_h, type_entry->data.pointer.child_type); return; case ZigTypeIdArray: prepend_c_type_to_decl_list(g, gen_h, type_entry->data.array.child_type); return; case ZigTypeIdVector: prepend_c_type_to_decl_list(g, gen_h, type_entry->data.vector.elem_type); return; case ZigTypeIdOptional: prepend_c_type_to_decl_list(g, gen_h, type_entry->data.maybe.child_type); return; case ZigTypeIdFn: for (size_t i = 0; i < type_entry->data.fn.fn_type_id.param_count; i += 1) { prepend_c_type_to_decl_list(g, gen_h, type_entry->data.fn.fn_type_id.param_info[i].type); } prepend_c_type_to_decl_list(g, gen_h, type_entry->data.fn.fn_type_id.return_type); return; } } static void get_c_type(CodeGen *g, GenH *gen_h, ZigType *type_entry, Buf *out_buf) { assert(type_entry); for (size_t i = 0; i < array_length(c_int_type_names); i += 1) { if (type_entry == g->builtin_types.entry_c_int[i]) { buf_init_from_str(out_buf, c_int_type_names[i]); return; } } if (type_entry == g->builtin_types.entry_c_longdouble) { buf_init_from_str(out_buf, "long double"); return; } if (type_entry == g->builtin_types.entry_c_void) { buf_init_from_str(out_buf, "void"); return; } if (type_entry == g->builtin_types.entry_isize) { g->c_want_stdint = true; buf_init_from_str(out_buf, "intptr_t"); return; } if (type_entry == g->builtin_types.entry_usize) { g->c_want_stdint = true; buf_init_from_str(out_buf, "uintptr_t"); return; } prepend_c_type_to_decl_list(g, gen_h, type_entry); switch (type_entry->id) { case ZigTypeIdVoid: buf_init_from_str(out_buf, "void"); break; case ZigTypeIdBool: buf_init_from_str(out_buf, "bool"); g->c_want_stdbool = true; break; case ZigTypeIdUnreachable: buf_init_from_str(out_buf, "__attribute__((__noreturn__)) void"); break; case ZigTypeIdFloat: switch (type_entry->data.floating.bit_count) { case 32: buf_init_from_str(out_buf, "float"); break; case 64: buf_init_from_str(out_buf, "double"); break; case 80: buf_init_from_str(out_buf, "__float80"); break; case 128: buf_init_from_str(out_buf, "__float128"); break; default: zig_unreachable(); } break; case ZigTypeIdInt: g->c_want_stdint = true; buf_resize(out_buf, 0); buf_appendf(out_buf, "%sint%" PRIu32 "_t", type_entry->data.integral.is_signed ? "" : "u", type_entry->data.integral.bit_count); break; case ZigTypeIdPointer: { Buf child_buf = BUF_INIT; ZigType *child_type = type_entry->data.pointer.child_type; get_c_type(g, gen_h, child_type, &child_buf); const char *const_str = type_entry->data.pointer.is_const ? "const " : ""; buf_resize(out_buf, 0); buf_appendf(out_buf, "%s%s *", const_str, buf_ptr(&child_buf)); break; } case ZigTypeIdOptional: { ZigType *child_type = type_entry->data.maybe.child_type; if (!type_has_bits(child_type)) { buf_init_from_str(out_buf, "bool"); return; } else if (type_is_nonnull_ptr(child_type)) { return get_c_type(g, gen_h, child_type, out_buf); } else { zig_unreachable(); } } case ZigTypeIdStruct: case ZigTypeIdOpaque: { buf_init_from_str(out_buf, "struct "); buf_append_buf(out_buf, type_h_name(type_entry)); return; } case ZigTypeIdUnion: { buf_init_from_str(out_buf, "union "); buf_append_buf(out_buf, type_h_name(type_entry)); return; } case ZigTypeIdEnum: { buf_init_from_str(out_buf, "enum "); buf_append_buf(out_buf, type_h_name(type_entry)); return; } case ZigTypeIdArray: { ZigTypeArray *array_data = &type_entry->data.array; Buf *child_buf = buf_alloc(); get_c_type(g, gen_h, array_data->child_type, child_buf); buf_resize(out_buf, 0); buf_appendf(out_buf, "%s", buf_ptr(child_buf)); return; } case ZigTypeIdVector: zig_panic("TODO implement get_c_type for vector types"); case ZigTypeIdErrorUnion: case ZigTypeIdErrorSet: case ZigTypeIdFn: zig_panic("TODO implement get_c_type for more types"); case ZigTypeIdInvalid: case ZigTypeIdMetaType: case ZigTypeIdBoundFn: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdEnumLiteral: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdArgTuple: case ZigTypeIdPromise: zig_unreachable(); } } static const char *preprocessor_alphabet1 = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"; static const char *preprocessor_alphabet2 = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; static bool need_to_preprocessor_mangle(Buf *src) { for (size_t i = 0; i < buf_len(src); i += 1) { const char *alphabet = (i == 0) ? preprocessor_alphabet1 : preprocessor_alphabet2; uint8_t byte = buf_ptr(src)[i]; if (strchr(alphabet, byte) == nullptr) { return true; } } return false; } static Buf *preprocessor_mangle(Buf *src) { if (!need_to_preprocessor_mangle(src)) { return buf_create_from_buf(src); } Buf *result = buf_alloc(); for (size_t i = 0; i < buf_len(src); i += 1) { const char *alphabet = (i == 0) ? preprocessor_alphabet1 : preprocessor_alphabet2; uint8_t byte = buf_ptr(src)[i]; if (strchr(alphabet, byte) == nullptr) { // perform escape buf_appendf(result, "_%02x_", byte); } else { buf_append_char(result, byte); } } return result; } static void gen_h_file(CodeGen *g) { GenH gen_h_data = {0}; GenH *gen_h = &gen_h_data; assert(!g->is_test_build); assert(!g->disable_gen_h); Buf *out_h_path = buf_sprintf("%s" OS_SEP "%s.h", buf_ptr(g->output_dir), buf_ptr(g->root_out_name)); FILE *out_h = fopen(buf_ptr(out_h_path), "wb"); if (!out_h) zig_panic("unable to open %s: %s\n", buf_ptr(out_h_path), strerror(errno)); Buf *export_macro = preprocessor_mangle(buf_sprintf("%s_EXPORT", buf_ptr(g->root_out_name))); buf_upcase(export_macro); Buf *extern_c_macro = preprocessor_mangle(buf_sprintf("%s_EXTERN_C", buf_ptr(g->root_out_name))); buf_upcase(extern_c_macro); Buf h_buf = BUF_INIT; buf_resize(&h_buf, 0); for (size_t fn_def_i = 0; fn_def_i < g->fn_defs.length; fn_def_i += 1) { ZigFn *fn_table_entry = g->fn_defs.at(fn_def_i); if (fn_table_entry->export_list.length == 0) continue; FnTypeId *fn_type_id = &fn_table_entry->type_entry->data.fn.fn_type_id; Buf return_type_c = BUF_INIT; get_c_type(g, gen_h, fn_type_id->return_type, &return_type_c); Buf *symbol_name; if (fn_table_entry->export_list.length == 0) { symbol_name = &fn_table_entry->symbol_name; } else { FnExport *fn_export = &fn_table_entry->export_list.items[0]; symbol_name = &fn_export->name; } buf_appendf(&h_buf, "%s %s %s(", buf_ptr(export_macro), buf_ptr(&return_type_c), buf_ptr(symbol_name)); Buf param_type_c = BUF_INIT; if (fn_type_id->param_count > 0) { for (size_t param_i = 0; param_i < fn_type_id->param_count; param_i += 1) { FnTypeParamInfo *param_info = &fn_type_id->param_info[param_i]; AstNode *param_decl_node = get_param_decl_node(fn_table_entry, param_i); Buf *param_name = param_decl_node->data.param_decl.name; const char *comma_str = (param_i == 0) ? "" : ", "; const char *restrict_str = param_info->is_noalias ? "restrict" : ""; get_c_type(g, gen_h, param_info->type, ¶m_type_c); if (param_info->type->id == ZigTypeIdArray) { // Arrays decay to pointers buf_appendf(&h_buf, "%s%s%s %s[]", comma_str, buf_ptr(¶m_type_c), restrict_str, buf_ptr(param_name)); } else { buf_appendf(&h_buf, "%s%s%s %s", comma_str, buf_ptr(¶m_type_c), restrict_str, buf_ptr(param_name)); } } buf_appendf(&h_buf, ")"); } else { buf_appendf(&h_buf, "void)"); } buf_appendf(&h_buf, ";\n"); } Buf *ifdef_dance_name = preprocessor_mangle(buf_sprintf("%s_H", buf_ptr(g->root_out_name))); buf_upcase(ifdef_dance_name); fprintf(out_h, "#ifndef %s\n", buf_ptr(ifdef_dance_name)); fprintf(out_h, "#define %s\n\n", buf_ptr(ifdef_dance_name)); if (g->c_want_stdbool) fprintf(out_h, "#include \n"); if (g->c_want_stdint) fprintf(out_h, "#include \n"); fprintf(out_h, "\n"); fprintf(out_h, "#ifdef __cplusplus\n"); fprintf(out_h, "#define %s extern \"C\"\n", buf_ptr(extern_c_macro)); fprintf(out_h, "#else\n"); fprintf(out_h, "#define %s\n", buf_ptr(extern_c_macro)); fprintf(out_h, "#endif\n"); fprintf(out_h, "\n"); fprintf(out_h, "#if defined(_WIN32)\n"); fprintf(out_h, "#define %s %s __declspec(dllimport)\n", buf_ptr(export_macro), buf_ptr(extern_c_macro)); fprintf(out_h, "#else\n"); fprintf(out_h, "#define %s %s __attribute__((visibility (\"default\")))\n", buf_ptr(export_macro), buf_ptr(extern_c_macro)); fprintf(out_h, "#endif\n"); fprintf(out_h, "\n"); for (size_t type_i = 0; type_i < gen_h->types_to_declare.length; type_i += 1) { ZigType *type_entry = gen_h->types_to_declare.at(type_i); switch (type_entry->id) { case ZigTypeIdInvalid: case ZigTypeIdMetaType: case ZigTypeIdVoid: case ZigTypeIdBool: case ZigTypeIdUnreachable: case ZigTypeIdInt: case ZigTypeIdFloat: case ZigTypeIdPointer: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdEnumLiteral: case ZigTypeIdArray: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdErrorUnion: case ZigTypeIdErrorSet: case ZigTypeIdBoundFn: case ZigTypeIdArgTuple: case ZigTypeIdOptional: case ZigTypeIdFn: case ZigTypeIdPromise: case ZigTypeIdVector: zig_unreachable(); case ZigTypeIdEnum: if (type_entry->data.enumeration.layout == ContainerLayoutExtern) { fprintf(out_h, "enum %s {\n", buf_ptr(type_h_name(type_entry))); for (uint32_t field_i = 0; field_i < type_entry->data.enumeration.src_field_count; field_i += 1) { TypeEnumField *enum_field = &type_entry->data.enumeration.fields[field_i]; Buf *value_buf = buf_alloc(); bigint_append_buf(value_buf, &enum_field->value, 10); fprintf(out_h, " %s = %s", buf_ptr(enum_field->name), buf_ptr(value_buf)); if (field_i != type_entry->data.enumeration.src_field_count - 1) { fprintf(out_h, ","); } fprintf(out_h, "\n"); } fprintf(out_h, "};\n\n"); } else { fprintf(out_h, "enum %s;\n", buf_ptr(type_h_name(type_entry))); } break; case ZigTypeIdStruct: if (type_entry->data.structure.layout == ContainerLayoutExtern) { fprintf(out_h, "struct %s {\n", buf_ptr(type_h_name(type_entry))); for (uint32_t field_i = 0; field_i < type_entry->data.structure.src_field_count; field_i += 1) { TypeStructField *struct_field = &type_entry->data.structure.fields[field_i]; Buf *type_name_buf = buf_alloc(); get_c_type(g, gen_h, struct_field->type_entry, type_name_buf); if (struct_field->type_entry->id == ZigTypeIdArray) { fprintf(out_h, " %s %s[%" ZIG_PRI_u64 "];\n", buf_ptr(type_name_buf), buf_ptr(struct_field->name), struct_field->type_entry->data.array.len); } else { fprintf(out_h, " %s %s;\n", buf_ptr(type_name_buf), buf_ptr(struct_field->name)); } } fprintf(out_h, "};\n\n"); } else { fprintf(out_h, "struct %s;\n", buf_ptr(type_h_name(type_entry))); } break; case ZigTypeIdUnion: if (type_entry->data.unionation.layout == ContainerLayoutExtern) { fprintf(out_h, "union %s {\n", buf_ptr(type_h_name(type_entry))); for (uint32_t field_i = 0; field_i < type_entry->data.unionation.src_field_count; field_i += 1) { TypeUnionField *union_field = &type_entry->data.unionation.fields[field_i]; Buf *type_name_buf = buf_alloc(); get_c_type(g, gen_h, union_field->type_entry, type_name_buf); fprintf(out_h, " %s %s;\n", buf_ptr(type_name_buf), buf_ptr(union_field->name)); } fprintf(out_h, "};\n\n"); } else { fprintf(out_h, "union %s;\n", buf_ptr(type_h_name(type_entry))); } break; case ZigTypeIdOpaque: fprintf(out_h, "struct %s;\n\n", buf_ptr(type_h_name(type_entry))); break; } } fprintf(out_h, "%s", buf_ptr(&h_buf)); fprintf(out_h, "\n#endif\n"); if (fclose(out_h)) zig_panic("unable to close h file: %s", strerror(errno)); } void codegen_print_timing_report(CodeGen *g, FILE *f) { double start_time = g->timing_events.at(0).time; double end_time = g->timing_events.last().time; double total = end_time - start_time; fprintf(f, "%20s%12s%12s%12s%12s\n", "Name", "Start", "End", "Duration", "Percent"); for (size_t i = 0; i < g->timing_events.length - 1; i += 1) { TimeEvent *te = &g->timing_events.at(i); TimeEvent *next_te = &g->timing_events.at(i + 1); fprintf(f, "%20s%12.4f%12.4f%12.4f%12.4f\n", te->name, te->time - start_time, next_te->time - start_time, next_te->time - te->time, (next_te->time - te->time) / total); } fprintf(f, "%20s%12.4f%12.4f%12.4f%12.4f\n", "Total", 0.0, total, total, 1.0); } void codegen_add_time_event(CodeGen *g, const char *name) { OsTimeStamp timestamp = os_timestamp_monotonic(); double seconds = (double)timestamp.sec; seconds += ((double)timestamp.nsec) / 1000000000.0; g->timing_events.append({seconds, name}); } static void add_cache_pkg(CodeGen *g, CacheHash *ch, ZigPackage *pkg) { if (buf_len(&pkg->root_src_path) == 0) return; Buf *rel_full_path = buf_alloc(); os_path_join(&pkg->root_src_dir, &pkg->root_src_path, rel_full_path); cache_file(ch, rel_full_path); auto it = pkg->package_table.entry_iterator(); for (;;) { auto *entry = it.next(); if (!entry) break; // TODO: I think we need a more sophisticated detection of // packages we have already seen if (entry->value != pkg) { cache_buf(ch, entry->key); add_cache_pkg(g, ch, entry->value); } } } // Called before init() // is_cache_hit takes into account gen_c_objects static Error check_cache(CodeGen *g, Buf *manifest_dir, Buf *digest) { Error err; Buf *compiler_id; if ((err = get_compiler_id(&compiler_id))) return err; CacheHash *ch = &g->cache_hash; cache_init(ch, manifest_dir); add_cache_pkg(g, ch, g->root_package); if (g->linker_script != nullptr) { cache_file(ch, buf_create_from_str(g->linker_script)); } cache_buf(ch, compiler_id); cache_buf(ch, g->root_out_name); cache_buf(ch, g->zig_lib_dir); cache_buf(ch, g->zig_std_dir); cache_list_of_link_lib(ch, g->link_libs_list.items, g->link_libs_list.length); cache_list_of_buf(ch, g->darwin_frameworks.items, g->darwin_frameworks.length); cache_list_of_buf(ch, g->rpath_list.items, g->rpath_list.length); cache_list_of_buf(ch, g->forbidden_libs.items, g->forbidden_libs.length); cache_int(ch, g->build_mode); cache_int(ch, g->out_type); cache_bool(ch, g->zig_target->is_native); cache_int(ch, g->zig_target->arch); cache_int(ch, g->zig_target->sub_arch); cache_int(ch, g->zig_target->vendor); cache_int(ch, g->zig_target->os); cache_int(ch, g->zig_target->abi); cache_int(ch, g->subsystem); cache_bool(ch, g->strip_debug_symbols); cache_bool(ch, g->is_test_build); if (g->is_test_build) { cache_buf_opt(ch, g->test_filter); cache_buf_opt(ch, g->test_name_prefix); } cache_bool(ch, g->is_single_threaded); cache_bool(ch, g->linker_rdynamic); cache_bool(ch, g->each_lib_rpath); cache_bool(ch, g->disable_gen_h); cache_bool(ch, g->bundle_compiler_rt); cache_bool(ch, g->disable_stack_probing); cache_bool(ch, want_valgrind_support(g)); cache_bool(ch, g->have_pic); cache_bool(ch, g->have_dynamic_link); cache_bool(ch, g->is_dummy_so); cache_buf_opt(ch, g->mmacosx_version_min); cache_buf_opt(ch, g->mios_version_min); cache_usize(ch, g->version_major); cache_usize(ch, g->version_minor); cache_usize(ch, g->version_patch); cache_list_of_str(ch, g->llvm_argv, g->llvm_argv_len); cache_list_of_str(ch, g->clang_argv, g->clang_argv_len); cache_list_of_str(ch, g->lib_dirs.items, g->lib_dirs.length); if (g->libc) { cache_buf(ch, &g->libc->include_dir); cache_buf(ch, &g->libc->sys_include_dir); cache_buf(ch, &g->libc->crt_dir); cache_buf(ch, &g->libc->msvc_lib_dir); cache_buf(ch, &g->libc->kernel32_lib_dir); } cache_buf_opt(ch, g->dynamic_linker_path); // gen_c_objects appends objects to g->link_objects which we want to include in the hash gen_c_objects(g); cache_list_of_file(ch, g->link_objects.items, g->link_objects.length); buf_resize(digest, 0); if ((err = cache_hit(ch, digest))) { if (err != ErrorInvalidFormat) return err; } if (ch->manifest_file_path != nullptr) { g->caches_to_release.append(ch); } return ErrorNone; } static bool need_llvm_module(CodeGen *g) { return buf_len(&g->root_package->root_src_path) != 0; } static void resolve_out_paths(CodeGen *g) { assert(g->output_dir != nullptr); assert(g->root_out_name != nullptr); Buf *out_basename = buf_create_from_buf(g->root_out_name); Buf *o_basename = buf_create_from_buf(g->root_out_name); switch (g->emit_file_type) { case EmitFileTypeBinary: { switch (g->out_type) { case OutTypeUnknown: zig_unreachable(); case OutTypeObj: if (g->enable_cache && g->link_objects.length == 1 && !need_llvm_module(g)) { buf_init_from_buf(&g->output_file_path, g->link_objects.at(0)); return; } if (need_llvm_module(g) && g->link_objects.length != 0 && !g->enable_cache && buf_eql_buf(o_basename, out_basename)) { // make it not collide with main output object buf_append_str(o_basename, ".root"); } buf_append_str(o_basename, target_o_file_ext(g->zig_target)); buf_append_str(out_basename, target_o_file_ext(g->zig_target)); break; case OutTypeExe: buf_append_str(o_basename, target_o_file_ext(g->zig_target)); buf_append_str(out_basename, target_exe_file_ext(g->zig_target)); break; case OutTypeLib: buf_append_str(o_basename, target_o_file_ext(g->zig_target)); buf_resize(out_basename, 0); buf_append_str(out_basename, target_lib_file_prefix(g->zig_target)); buf_append_buf(out_basename, g->root_out_name); buf_append_str(out_basename, target_lib_file_ext(g->zig_target, !g->is_dynamic, g->version_major, g->version_minor, g->version_patch)); break; } break; } case EmitFileTypeAssembly: { const char *asm_ext = target_asm_file_ext(g->zig_target); buf_append_str(o_basename, asm_ext); buf_append_str(out_basename, asm_ext); break; } case EmitFileTypeLLVMIr: { const char *llvm_ir_ext = target_llvm_ir_file_ext(g->zig_target); buf_append_str(o_basename, llvm_ir_ext); buf_append_str(out_basename, llvm_ir_ext); break; } } os_path_join(g->output_dir, o_basename, &g->o_file_output_path); os_path_join(g->output_dir, out_basename, &g->output_file_path); } void codegen_build_and_link(CodeGen *g) { Error err; assert(g->out_type != OutTypeUnknown); if (!g->enable_cache && g->output_dir == nullptr) { g->output_dir = buf_create_from_str("."); } g->have_dynamic_link = detect_dynamic_link(g); g->have_pic = detect_pic(g); g->is_single_threaded = detect_single_threaded(g); g->have_err_ret_tracing = detect_err_ret_tracing(g); detect_libc(g); detect_dynamic_linker(g); Buf digest = BUF_INIT; if (g->enable_cache) { Buf *manifest_dir = buf_alloc(); os_path_join(g->cache_dir, buf_create_from_str(CACHE_HASH_SUBDIR), manifest_dir); if ((err = check_cache(g, manifest_dir, &digest))) { if (err == ErrorCacheUnavailable) { // message already printed } else if (err == ErrorNotDir) { fprintf(stderr, "Unable to check cache: %s is not a directory\n", buf_ptr(manifest_dir)); } else { fprintf(stderr, "Unable to check cache: %s\n", err_str(err)); } exit(1); } } else { // There is a call to this in check_cache gen_c_objects(g); } if (g->enable_cache && buf_len(&digest) != 0) { g->output_dir = buf_sprintf("%s" OS_SEP CACHE_OUT_SUBDIR OS_SEP "%s", buf_ptr(g->cache_dir), buf_ptr(&digest)); resolve_out_paths(g); } else { if (need_llvm_module(g)) { init(g); codegen_add_time_event(g, "Semantic Analysis"); gen_root_source(g); } if (g->enable_cache) { if (buf_len(&digest) == 0) { if ((err = cache_final(&g->cache_hash, &digest))) { fprintf(stderr, "Unable to finalize cache hash: %s\n", err_str(err)); exit(1); } } g->output_dir = buf_sprintf("%s" OS_SEP CACHE_OUT_SUBDIR OS_SEP "%s", buf_ptr(g->cache_dir), buf_ptr(&digest)); if ((err = os_make_path(g->output_dir))) { fprintf(stderr, "Unable to create output directory: %s\n", err_str(err)); exit(1); } } resolve_out_paths(g); if (need_llvm_module(g)) { codegen_add_time_event(g, "Code Generation"); do_code_gen(g); codegen_add_time_event(g, "LLVM Emit Output"); zig_llvm_emit_output(g); if (!g->disable_gen_h && (g->out_type == OutTypeObj || g->out_type == OutTypeLib)) { codegen_add_time_event(g, "Generate .h"); gen_h_file(g); } } // If we're outputting assembly or llvm IR we skip linking. // If we're making a library or executable we must link. // If there is more than one object, we have to link them (with -r). // Finally, if we didn't make an object from zig source, and we don't have caching enabled, // then we have an object from C source that we must copy to the output dir which we do with a -r link. if (g->emit_file_type == EmitFileTypeBinary && (g->out_type != OutTypeObj || g->link_objects.length > 1 || (!need_llvm_module(g) && !g->enable_cache))) { codegen_link(g); } } while (g->caches_to_release.length != 0) { cache_release(g->caches_to_release.pop()); } codegen_add_time_event(g, "Done"); } ZigPackage *codegen_create_package(CodeGen *g, const char *root_src_dir, const char *root_src_path, const char *pkg_path) { init(g); ZigPackage *pkg = new_package(root_src_dir, root_src_path, pkg_path); if (g->std_package != nullptr) { assert(g->compile_var_package != nullptr); pkg->package_table.put(buf_create_from_str("std"), g->std_package); pkg->package_table.put(buf_create_from_str("builtin"), g->compile_var_package); } return pkg; }