// Special Cases: // // - sqrt(+inf) = +inf // - sqrt(+-0) = +-0 // - sqrt(x) = nan if x < 0 // - sqrt(nan) = nan const std = @import("../index.zig"); const math = std.math; const assert = std.debug.assert; const builtin = @import("builtin"); const TypeId = builtin.TypeId; pub fn sqrt(x: var) (if (@typeId(@typeOf(x)) == TypeId.Int) @IntType(false, @typeOf(x).bit_count / 2) else @typeOf(x)) { const T = @typeOf(x); switch (@typeId(T)) { TypeId.ComptimeFloat => return T(@sqrt(f64, x)), // TODO upgrade to f128 TypeId.Float => return @sqrt(T, x), TypeId.ComptimeInt => comptime { if (x > @maxValue(u128)) { @compileError("sqrt not implemented for comptime_int greater than 128 bits"); } if (x < 0) { @compileError("sqrt on negative number"); } return T(sqrt_int(u128, x)); }, TypeId.Int => return sqrt_int(T, x), else => @compileError("sqrt not implemented for " ++ @typeName(T)), } } test "math.sqrt" { assert(sqrt(f32(0.0)) == @sqrt(f32, 0.0)); assert(sqrt(f64(0.0)) == @sqrt(f64, 0.0)); } test "math.sqrt32" { const epsilon = 0.000001; assert(@sqrt(f32, 0.0) == 0.0); assert(math.approxEq(f32, @sqrt(f32, 2.0), 1.414214, epsilon)); assert(math.approxEq(f32, @sqrt(f32, 3.6), 1.897367, epsilon)); assert(@sqrt(f32, 4.0) == 2.0); assert(math.approxEq(f32, @sqrt(f32, 7.539840), 2.745877, epsilon)); assert(math.approxEq(f32, @sqrt(f32, 19.230934), 4.385309, epsilon)); assert(@sqrt(f32, 64.0) == 8.0); assert(math.approxEq(f32, @sqrt(f32, 64.1), 8.006248, epsilon)); assert(math.approxEq(f32, @sqrt(f32, 8942.230469), 94.563370, epsilon)); } test "math.sqrt64" { const epsilon = 0.000001; assert(@sqrt(f64, 0.0) == 0.0); assert(math.approxEq(f64, @sqrt(f64, 2.0), 1.414214, epsilon)); assert(math.approxEq(f64, @sqrt(f64, 3.6), 1.897367, epsilon)); assert(@sqrt(f64, 4.0) == 2.0); assert(math.approxEq(f64, @sqrt(f64, 7.539840), 2.745877, epsilon)); assert(math.approxEq(f64, @sqrt(f64, 19.230934), 4.385309, epsilon)); assert(@sqrt(f64, 64.0) == 8.0); assert(math.approxEq(f64, @sqrt(f64, 64.1), 8.006248, epsilon)); assert(math.approxEq(f64, @sqrt(f64, 8942.230469), 94.563367, epsilon)); } test "math.sqrt32.special" { assert(math.isPositiveInf(@sqrt(f32, math.inf(f32)))); assert(@sqrt(f32, 0.0) == 0.0); assert(@sqrt(f32, -0.0) == -0.0); assert(math.isNan(@sqrt(f32, -1.0))); assert(math.isNan(@sqrt(f32, math.nan(f32)))); } test "math.sqrt64.special" { assert(math.isPositiveInf(@sqrt(f64, math.inf(f64)))); assert(@sqrt(f64, 0.0) == 0.0); assert(@sqrt(f64, -0.0) == -0.0); assert(math.isNan(@sqrt(f64, -1.0))); assert(math.isNan(@sqrt(f64, math.nan(f64)))); } fn sqrt_int(comptime T: type, value: T) @IntType(false, T.bit_count / 2) { var op = value; var res: T = 0; var one: T = 1 << (T.bit_count - 2); // "one" starts at the highest power of four <= than the argument. while (one > op) { one >>= 2; } while (one != 0) { if (op >= res + one) { op -= res + one; res += 2 * one; } res >>= 1; one >>= 2; } const ResultType = @IntType(false, T.bit_count / 2); return @intCast(ResultType, res); } test "math.sqrt_int" { assert(sqrt_int(u32, 3) == 1); assert(sqrt_int(u32, 4) == 2); assert(sqrt_int(u32, 5) == 2); assert(sqrt_int(u32, 8) == 2); assert(sqrt_int(u32, 9) == 3); assert(sqrt_int(u32, 10) == 3); }