// SPDX-License-Identifier: MIT // Copyright (c) 2015-2020 Zig Contributors // This file is part of [zig](https://ziglang.org/), which is MIT licensed. // The MIT license requires this copyright notice to be included in all copies // and substantial portions of the software. // Ported from: // // https://github.com/llvm/llvm-project/commit/d674d96bc56c0f377879d01c9d8dfdaaa7859cdb/compiler-rt/lib/builtins/comparesf2.c const std = @import("std"); const builtin = @import("builtin"); const LE = extern enum(i32) { Less = -1, Equal = 0, Greater = 1, Unordered = 1, }; const GE = extern enum(i32) { Less = -1, Equal = 0, Greater = 1, Unordered = -1, }; pub fn cmp(comptime T: type, comptime RT: type, a: T, b: T) RT { @setRuntimeSafety(builtin.is_test); const bits = @typeInfo(T).Float.bits; const srep_t = std.meta.Int(.signed, bits); const rep_t = std.meta.Int(.unsigned, bits); const significandBits = std.math.floatMantissaBits(T); const exponentBits = std.math.floatExponentBits(T); const signBit = (@as(rep_t, 1) << (significandBits + exponentBits)); const absMask = signBit - 1; const infRep = @bitCast(rep_t, std.math.inf(T)); const aInt = @bitCast(srep_t, a); const bInt = @bitCast(srep_t, b); const aAbs = @bitCast(rep_t, aInt) & absMask; const bAbs = @bitCast(rep_t, bInt) & absMask; // If either a or b is NaN, they are unordered. if (aAbs > infRep or bAbs > infRep) return .Unordered; // If a and b are both zeros, they are equal. if ((aAbs | bAbs) == 0) return .Equal; // If at least one of a and b is positive, we get the same result comparing // a and b as signed integers as we would with a fp_ting-point compare. if ((aInt & bInt) >= 0) { if (aInt < bInt) { return .Less; } else if (aInt == bInt) { return .Equal; } else return .Greater; } // Otherwise, both are negative, so we need to flip the sense of the // comparison to get the correct result. (This assumes a twos- or ones- // complement integer representation; if integers are represented in a // sign-magnitude representation, then this flip is incorrect). else { if (aInt > bInt) { return .Less; } else if (aInt == bInt) { return .Equal; } else return .Greater; } } pub fn unordcmp(comptime T: type, a: T, b: T) i32 { @setRuntimeSafety(builtin.is_test); const rep_t = std.meta.Int(.unsigned, @typeInfo(T).Float.bits); const significandBits = std.math.floatMantissaBits(T); const exponentBits = std.math.floatExponentBits(T); const signBit = (@as(rep_t, 1) << (significandBits + exponentBits)); const absMask = signBit - 1; const infRep = @bitCast(rep_t, std.math.inf(T)); const aAbs: rep_t = @bitCast(rep_t, a) & absMask; const bAbs: rep_t = @bitCast(rep_t, b) & absMask; return @boolToInt(aAbs > infRep or bAbs > infRep); } // Comparison between f32 pub fn __lesf2(a: f32, b: f32) callconv(.C) i32 { @setRuntimeSafety(builtin.is_test); return @bitCast(i32, @call(.{ .modifier = .always_inline }, cmp, .{ f32, LE, a, b })); } pub fn __gesf2(a: f32, b: f32) callconv(.C) i32 { @setRuntimeSafety(builtin.is_test); return @bitCast(i32, @call(.{ .modifier = .always_inline }, cmp, .{ f32, GE, a, b })); } pub fn __eqsf2(a: f32, b: f32) callconv(.C) i32 { return __lesf2(a, b); } pub fn __ltsf2(a: f32, b: f32) callconv(.C) i32 { return __lesf2(a, b); } pub fn __nesf2(a: f32, b: f32) callconv(.C) i32 { return __lesf2(a, b); } pub fn __gtsf2(a: f32, b: f32) callconv(.C) i32 { return __gesf2(a, b); } // Comparison between f64 pub fn __ledf2(a: f64, b: f64) callconv(.C) i32 { @setRuntimeSafety(builtin.is_test); return @bitCast(i32, @call(.{ .modifier = .always_inline }, cmp, .{ f64, LE, a, b })); } pub fn __gedf2(a: f64, b: f64) callconv(.C) i32 { @setRuntimeSafety(builtin.is_test); return @bitCast(i32, @call(.{ .modifier = .always_inline }, cmp, .{ f64, GE, a, b })); } pub fn __eqdf2(a: f64, b: f64) callconv(.C) i32 { return __ledf2(a, b); } pub fn __ltdf2(a: f64, b: f64) callconv(.C) i32 { return __ledf2(a, b); } pub fn __nedf2(a: f64, b: f64) callconv(.C) i32 { return __ledf2(a, b); } pub fn __gtdf2(a: f64, b: f64) callconv(.C) i32 { return __gedf2(a, b); } // Comparison between f128 pub fn __letf2(a: f128, b: f128) callconv(.C) i32 { @setRuntimeSafety(builtin.is_test); return @bitCast(i32, @call(.{ .modifier = .always_inline }, cmp, .{ f128, LE, a, b })); } pub fn __getf2(a: f128, b: f128) callconv(.C) i32 { @setRuntimeSafety(builtin.is_test); return @bitCast(i32, @call(.{ .modifier = .always_inline }, cmp, .{ f128, GE, a, b })); } pub fn __eqtf2(a: f128, b: f128) callconv(.C) i32 { return __letf2(a, b); } pub fn __lttf2(a: f128, b: f128) callconv(.C) i32 { return __letf2(a, b); } pub fn __netf2(a: f128, b: f128) callconv(.C) i32 { return __letf2(a, b); } pub fn __gttf2(a: f128, b: f128) callconv(.C) i32 { return __getf2(a, b); } // Unordered comparison between f32/f64/f128 pub fn __unordsf2(a: f32, b: f32) callconv(.C) i32 { @setRuntimeSafety(builtin.is_test); return @call(.{ .modifier = .always_inline }, unordcmp, .{ f32, a, b }); } pub fn __unorddf2(a: f64, b: f64) callconv(.C) i32 { @setRuntimeSafety(builtin.is_test); return @call(.{ .modifier = .always_inline }, unordcmp, .{ f64, a, b }); } pub fn __unordtf2(a: f128, b: f128) callconv(.C) i32 { @setRuntimeSafety(builtin.is_test); return @call(.{ .modifier = .always_inline }, unordcmp, .{ f128, a, b }); } // ARM EABI intrinsics pub fn __aeabi_fcmpeq(a: f32, b: f32) callconv(.AAPCS) i32 { @setRuntimeSafety(false); return @boolToInt(@call(.{ .modifier = .always_inline }, __eqsf2, .{ a, b }) == 0); } pub fn __aeabi_fcmplt(a: f32, b: f32) callconv(.AAPCS) i32 { @setRuntimeSafety(false); return @boolToInt(@call(.{ .modifier = .always_inline }, __ltsf2, .{ a, b }) < 0); } pub fn __aeabi_fcmple(a: f32, b: f32) callconv(.AAPCS) i32 { @setRuntimeSafety(false); return @boolToInt(@call(.{ .modifier = .always_inline }, __lesf2, .{ a, b }) <= 0); } pub fn __aeabi_fcmpge(a: f32, b: f32) callconv(.AAPCS) i32 { @setRuntimeSafety(false); return @boolToInt(@call(.{ .modifier = .always_inline }, __gesf2, .{ a, b }) >= 0); } pub fn __aeabi_fcmpgt(a: f32, b: f32) callconv(.AAPCS) i32 { @setRuntimeSafety(false); return @boolToInt(@call(.{ .modifier = .always_inline }, __gtsf2, .{ a, b }) > 0); } pub fn __aeabi_fcmpun(a: f32, b: f32) callconv(.AAPCS) i32 { @setRuntimeSafety(false); return @call(.{ .modifier = .always_inline }, __unordsf2, .{ a, b }); } pub fn __aeabi_dcmpeq(a: f64, b: f64) callconv(.AAPCS) i32 { @setRuntimeSafety(false); return @boolToInt(@call(.{ .modifier = .always_inline }, __eqdf2, .{ a, b }) == 0); } pub fn __aeabi_dcmplt(a: f64, b: f64) callconv(.AAPCS) i32 { @setRuntimeSafety(false); return @boolToInt(@call(.{ .modifier = .always_inline }, __ltdf2, .{ a, b }) < 0); } pub fn __aeabi_dcmple(a: f64, b: f64) callconv(.AAPCS) i32 { @setRuntimeSafety(false); return @boolToInt(@call(.{ .modifier = .always_inline }, __ledf2, .{ a, b }) <= 0); } pub fn __aeabi_dcmpge(a: f64, b: f64) callconv(.AAPCS) i32 { @setRuntimeSafety(false); return @boolToInt(@call(.{ .modifier = .always_inline }, __gedf2, .{ a, b }) >= 0); } pub fn __aeabi_dcmpgt(a: f64, b: f64) callconv(.AAPCS) i32 { @setRuntimeSafety(false); return @boolToInt(@call(.{ .modifier = .always_inline }, __gtdf2, .{ a, b }) > 0); } pub fn __aeabi_dcmpun(a: f64, b: f64) callconv(.AAPCS) i32 { @setRuntimeSafety(false); return @call(.{ .modifier = .always_inline }, __unorddf2, .{ a, b }); } test "comparesf2" { _ = @import("comparesf2_test.zig"); } test "comparedf2" { _ = @import("comparedf2_test.zig"); }