// SPDX-License-Identifier: MIT // Copyright (c) 2015-2020 Zig Contributors // This file is part of [zig](https://ziglang.org/), which is MIT licensed. // The MIT license requires this copyright notice to be included in all copies // and substantial portions of the software. //! # General Purpose Allocator //! //! ## Design Priorities //! //! ### `OptimizationMode.debug` and `OptimizationMode.release_safe`: //! //! * Detect double free, and emit stack trace of: //! - Where it was first allocated //! - Where it was freed the first time //! - Where it was freed the second time //! //! * Detect leaks and emit stack trace of: //! - Where it was allocated //! //! * When a page of memory is no longer needed, give it back to resident memory //! as soon as possible, so that it causes page faults when used. //! //! * Do not re-use memory slots, so that memory safety is upheld. For small //! allocations, this is handled here; for larger ones it is handled in the //! backing allocator (by default `std.heap.page_allocator`). //! //! * Make pointer math errors unlikely to harm memory from //! unrelated allocations. //! //! * It's OK for these mechanisms to cost some extra overhead bytes. //! //! * It's OK for performance cost for these mechanisms. //! //! * Rogue memory writes should not harm the allocator's state. //! //! * Cross platform. Operates based on a backing allocator which makes it work //! everywhere, even freestanding. //! //! * Compile-time configuration. //! //! ### `OptimizationMode.release_fast` (note: not much work has gone into this use case yet): //! //! * Low fragmentation is primary concern //! * Performance of worst-case latency is secondary concern //! * Performance of average-case latency is next //! * Finally, having freed memory unmapped, and pointer math errors unlikely to //! harm memory from unrelated allocations are nice-to-haves. //! //! ### `OptimizationMode.release_small` (note: not much work has gone into this use case yet): //! //! * Small binary code size of the executable is the primary concern. //! * Next, defer to the `.release_fast` priority list. //! //! ## Basic Design: //! //! Small allocations are divided into buckets: //! //! ``` //! index obj_size //! 0 1 //! 1 2 //! 2 4 //! 3 8 //! 4 16 //! 5 32 //! 6 64 //! 7 128 //! 8 256 //! 9 512 //! 10 1024 //! 11 2048 //! ``` //! //! The main allocator state has an array of all the "current" buckets for each //! size class. Each slot in the array can be null, meaning the bucket for that //! size class is not allocated. When the first object is allocated for a given //! size class, it allocates 1 page of memory from the OS. This page is //! divided into "slots" - one per allocated object. Along with the page of memory //! for object slots, as many pages as necessary are allocated to store the //! BucketHeader, followed by "used bits", and two stack traces for each slot //! (allocation trace and free trace). //! //! The "used bits" are 1 bit per slot representing whether the slot is used. //! Allocations use the data to iterate to find a free slot. Frees assert that the //! corresponding bit is 1 and set it to 0. //! //! Buckets have prev and next pointers. When there is only one bucket for a given //! size class, both prev and next point to itself. When all slots of a bucket are //! used, a new bucket is allocated, and enters the doubly linked list. The main //! allocator state tracks the "current" bucket for each size class. Leak detection //! currently only checks the current bucket. //! //! Resizing detects if the size class is unchanged or smaller, in which case the same //! pointer is returned unmodified. If a larger size class is required, //! `error.OutOfMemory` is returned. //! //! Large objects are allocated directly using the backing allocator and their metadata is stored //! in a `std.HashMap` using the backing allocator. const std = @import("std"); const log = std.log.scoped(.std); const math = std.math; const assert = std.debug.assert; const mem = std.mem; const Allocator = std.mem.Allocator; const page_size = std.mem.page_size; const StackTrace = std.builtin.StackTrace; /// Integer type for pointing to slots in a small allocation const SlotIndex = std.meta.Int(.unsigned, math.log2(page_size) + 1); const sys_can_stack_trace = switch (std.Target.current.cpu.arch) { // Observed to go into an infinite loop. // TODO: Make this work. .mips, .mipsel, => false, // `@returnAddress()` in LLVM 10 gives // "Non-Emscripten WebAssembly hasn't implemented __builtin_return_address". .wasm32, .wasm64, => std.Target.current.os.tag == .emscripten, else => true, }; const default_test_stack_trace_frames: usize = if (std.builtin.is_test) 8 else 4; const default_sys_stack_trace_frames: usize = if (sys_can_stack_trace) default_test_stack_trace_frames else 0; const default_stack_trace_frames: usize = switch (std.builtin.mode) { .Debug => default_sys_stack_trace_frames, else => 0, }; pub const Config = struct { /// Number of stack frames to capture. stack_trace_frames: usize = default_stack_trace_frames, /// If true, the allocator will have two fields: /// * `total_requested_bytes` which tracks the total allocated bytes of memory requested. /// * `requested_memory_limit` which causes allocations to return `error.OutOfMemory` /// when the `total_requested_bytes` exceeds this limit. /// If false, these fields will be `void`. enable_memory_limit: bool = false, /// Whether to enable safety checks. safety: bool = std.debug.runtime_safety, /// Whether the allocator may be used simultaneously from multiple threads. thread_safe: bool = !std.builtin.single_threaded, /// What type of mutex you'd like to use, for thread safety. /// when specfied, the mutex type must have the same shape as `std.Mutex` and /// `std.mutex.Dummy`, and have no required fields. Specifying this field causes /// the `thread_safe` field to be ignored. /// /// when null (default): /// * the mutex type defaults to `std.Mutex` when thread_safe is enabled. /// * the mutex type defaults to `std.mutex.Dummy` otherwise. MutexType: ?type = null, /// This is a temporary debugging trick you can use to turn segfaults into more helpful /// logged error messages with stack trace details. The downside is that every allocation /// will be leaked! never_unmap: bool = false, }; pub fn GeneralPurposeAllocator(comptime config: Config) type { return struct { allocator: Allocator = Allocator{ .allocFn = alloc, .resizeFn = resize, }, backing_allocator: *Allocator = std.heap.page_allocator, buckets: [small_bucket_count]?*BucketHeader = [1]?*BucketHeader{null} ** small_bucket_count, large_allocations: LargeAllocTable = .{}, total_requested_bytes: @TypeOf(total_requested_bytes_init) = total_requested_bytes_init, requested_memory_limit: @TypeOf(requested_memory_limit_init) = requested_memory_limit_init, mutex: @TypeOf(mutex_init) = mutex_init, const Self = @This(); const total_requested_bytes_init = if (config.enable_memory_limit) @as(usize, 0) else {}; const requested_memory_limit_init = if (config.enable_memory_limit) @as(usize, math.maxInt(usize)) else {}; const mutex_init = if (config.MutexType) |T| T{} else if (config.thread_safe) std.Mutex{} else std.mutex.Dummy{}; const stack_n = config.stack_trace_frames; const one_trace_size = @sizeOf(usize) * stack_n; const traces_per_slot = 2; pub const Error = mem.Allocator.Error; const small_bucket_count = math.log2(page_size); const largest_bucket_object_size = 1 << (small_bucket_count - 1); const LargeAlloc = struct { bytes: []u8, stack_addresses: [stack_n]usize, fn dumpStackTrace(self: *LargeAlloc) void { std.debug.dumpStackTrace(self.getStackTrace()); } fn getStackTrace(self: *LargeAlloc) std.builtin.StackTrace { var len: usize = 0; while (len < stack_n and self.stack_addresses[len] != 0) { len += 1; } return .{ .instruction_addresses = &self.stack_addresses, .index = len, }; } }; const LargeAllocTable = std.AutoHashMapUnmanaged(usize, LargeAlloc); // Bucket: In memory, in order: // * BucketHeader // * bucket_used_bits: [N]u8, // 1 bit for every slot; 1 byte for every 8 slots // * stack_trace_addresses: [N]usize, // traces_per_slot for every allocation const BucketHeader = struct { prev: *BucketHeader, next: *BucketHeader, page: [*]align(page_size) u8, alloc_cursor: SlotIndex, used_count: SlotIndex, fn usedBits(bucket: *BucketHeader, index: usize) *u8 { return @intToPtr(*u8, @ptrToInt(bucket) + @sizeOf(BucketHeader) + index); } fn stackTracePtr( bucket: *BucketHeader, size_class: usize, slot_index: SlotIndex, trace_kind: TraceKind, ) *[stack_n]usize { const start_ptr = @ptrCast([*]u8, bucket) + bucketStackFramesStart(size_class); const addr = start_ptr + one_trace_size * traces_per_slot * slot_index + @enumToInt(trace_kind) * @as(usize, one_trace_size); return @ptrCast(*[stack_n]usize, @alignCast(@alignOf(usize), addr)); } fn captureStackTrace( bucket: *BucketHeader, ret_addr: usize, size_class: usize, slot_index: SlotIndex, trace_kind: TraceKind, ) void { // Initialize them to 0. When determining the count we must look // for non zero addresses. const stack_addresses = bucket.stackTracePtr(size_class, slot_index, trace_kind); collectStackTrace(ret_addr, stack_addresses); } }; fn bucketStackTrace( bucket: *BucketHeader, size_class: usize, slot_index: SlotIndex, trace_kind: TraceKind, ) StackTrace { const stack_addresses = bucket.stackTracePtr(size_class, slot_index, trace_kind); var len: usize = 0; while (len < stack_n and stack_addresses[len] != 0) { len += 1; } return StackTrace{ .instruction_addresses = stack_addresses, .index = len, }; } fn bucketStackFramesStart(size_class: usize) usize { return mem.alignForward( @sizeOf(BucketHeader) + usedBitsCount(size_class), @alignOf(usize), ); } fn bucketSize(size_class: usize) usize { const slot_count = @divExact(page_size, size_class); return bucketStackFramesStart(size_class) + one_trace_size * traces_per_slot * slot_count; } fn usedBitsCount(size_class: usize) usize { const slot_count = @divExact(page_size, size_class); if (slot_count < 8) return 1; return @divExact(slot_count, 8); } fn detectLeaksInBucket( bucket: *BucketHeader, size_class: usize, used_bits_count: usize, ) bool { var leaks = false; var used_bits_byte: usize = 0; while (used_bits_byte < used_bits_count) : (used_bits_byte += 1) { const used_byte = bucket.usedBits(used_bits_byte).*; if (used_byte != 0) { var bit_index: u3 = 0; while (true) : (bit_index += 1) { const is_used = @truncate(u1, used_byte >> bit_index) != 0; if (is_used) { const slot_index = @intCast(SlotIndex, used_bits_byte * 8 + bit_index); const stack_trace = bucketStackTrace(bucket, size_class, slot_index, .alloc); log.err("Memory leak detected: {}", .{stack_trace}); leaks = true; } if (bit_index == math.maxInt(u3)) break; } } } return leaks; } /// Emits log messages for leaks and then returns whether there were any leaks. pub fn detectLeaks(self: *Self) bool { var leaks = false; for (self.buckets) |optional_bucket, bucket_i| { const first_bucket = optional_bucket orelse continue; const size_class = @as(usize, 1) << @intCast(math.Log2Int(usize), bucket_i); const used_bits_count = usedBitsCount(size_class); var bucket = first_bucket; while (true) { leaks = detectLeaksInBucket(bucket, size_class, used_bits_count) or leaks; bucket = bucket.next; if (bucket == first_bucket) break; } } var it = self.large_allocations.iterator(); while (it.next()) |large_alloc| { log.err("Memory leak detected: {}", .{large_alloc.value.getStackTrace()}); leaks = true; } return leaks; } pub fn deinit(self: *Self) bool { const leaks = if (config.safety) self.detectLeaks() else false; self.large_allocations.deinit(self.backing_allocator); self.* = undefined; return leaks; } fn collectStackTrace(first_trace_addr: usize, addresses: *[stack_n]usize) void { if (stack_n == 0) return; mem.set(usize, addresses, 0); var stack_trace = StackTrace{ .instruction_addresses = addresses, .index = 0, }; std.debug.captureStackTrace(first_trace_addr, &stack_trace); } fn allocSlot(self: *Self, size_class: usize, trace_addr: usize) Error![*]u8 { const bucket_index = math.log2(size_class); const first_bucket = self.buckets[bucket_index] orelse try self.createBucket( size_class, bucket_index, ); var bucket = first_bucket; const slot_count = @divExact(page_size, size_class); while (bucket.alloc_cursor == slot_count) { const prev_bucket = bucket; bucket = prev_bucket.next; if (bucket == first_bucket) { // make a new one bucket = try self.createBucket(size_class, bucket_index); bucket.prev = prev_bucket; bucket.next = prev_bucket.next; prev_bucket.next = bucket; bucket.next.prev = bucket; } } // change the allocator's current bucket to be this one self.buckets[bucket_index] = bucket; const slot_index = bucket.alloc_cursor; bucket.alloc_cursor += 1; var used_bits_byte = bucket.usedBits(slot_index / 8); const used_bit_index: u3 = @intCast(u3, slot_index % 8); // TODO cast should be unnecessary used_bits_byte.* |= (@as(u8, 1) << used_bit_index); bucket.used_count += 1; bucket.captureStackTrace(trace_addr, size_class, slot_index, .alloc); return bucket.page + slot_index * size_class; } fn searchBucket( self: *Self, bucket_index: usize, addr: usize, ) ?*BucketHeader { const first_bucket = self.buckets[bucket_index] orelse return null; var bucket = first_bucket; while (true) { const in_bucket_range = (addr >= @ptrToInt(bucket.page) and addr < @ptrToInt(bucket.page) + page_size); if (in_bucket_range) return bucket; bucket = bucket.prev; if (bucket == first_bucket) { return null; } self.buckets[bucket_index] = bucket; } } /// This function assumes the object is in the large object storage regardless /// of the parameters. fn resizeLarge( self: *Self, old_mem: []u8, old_align: u29, new_size: usize, len_align: u29, ret_addr: usize, ) Error!usize { const entry = self.large_allocations.getEntry(@ptrToInt(old_mem.ptr)) orelse { if (config.safety) { @panic("Invalid free"); } else { unreachable; } }; if (config.safety and old_mem.len != entry.value.bytes.len) { var addresses: [stack_n]usize = [1]usize{0} ** stack_n; var free_stack_trace = StackTrace{ .instruction_addresses = &addresses, .index = 0, }; std.debug.captureStackTrace(ret_addr, &free_stack_trace); log.err("Allocation size {} bytes does not match free size {}. Allocation: {} Free: {}", .{ entry.value.bytes.len, old_mem.len, entry.value.getStackTrace(), free_stack_trace, }); } const result_len = try self.backing_allocator.resizeFn(self.backing_allocator, old_mem, old_align, new_size, len_align, ret_addr); if (result_len == 0) { self.large_allocations.removeAssertDiscard(@ptrToInt(old_mem.ptr)); return 0; } entry.value.bytes = old_mem.ptr[0..result_len]; collectStackTrace(ret_addr, &entry.value.stack_addresses); return result_len; } pub fn setRequestedMemoryLimit(self: *Self, limit: usize) void { self.requested_memory_limit = limit; } fn resize( allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, len_align: u29, ret_addr: usize, ) Error!usize { const self = @fieldParentPtr(Self, "allocator", allocator); const held = self.mutex.acquire(); defer held.release(); const prev_req_bytes = self.total_requested_bytes; if (config.enable_memory_limit) { const new_req_bytes = prev_req_bytes + new_size - old_mem.len; if (new_req_bytes > prev_req_bytes and new_req_bytes > self.requested_memory_limit) { return error.OutOfMemory; } self.total_requested_bytes = new_req_bytes; } errdefer if (config.enable_memory_limit) { self.total_requested_bytes = prev_req_bytes; }; assert(old_mem.len != 0); const aligned_size = math.max(old_mem.len, old_align); if (aligned_size > largest_bucket_object_size) { return self.resizeLarge(old_mem, old_align, new_size, len_align, ret_addr); } const size_class_hint = math.ceilPowerOfTwoAssert(usize, aligned_size); var bucket_index = math.log2(size_class_hint); var size_class: usize = size_class_hint; const bucket = while (bucket_index < small_bucket_count) : (bucket_index += 1) { if (self.searchBucket(bucket_index, @ptrToInt(old_mem.ptr))) |bucket| { break bucket; } size_class *= 2; } else { return self.resizeLarge(old_mem, old_align, new_size, len_align, ret_addr); }; const byte_offset = @ptrToInt(old_mem.ptr) - @ptrToInt(bucket.page); const slot_index = @intCast(SlotIndex, byte_offset / size_class); const used_byte_index = slot_index / 8; const used_bit_index = @intCast(u3, slot_index % 8); const used_byte = bucket.usedBits(used_byte_index); const is_used = @truncate(u1, used_byte.* >> used_bit_index) != 0; if (!is_used) { if (config.safety) { const alloc_stack_trace = bucketStackTrace(bucket, size_class, slot_index, .alloc); const free_stack_trace = bucketStackTrace(bucket, size_class, slot_index, .free); var addresses: [stack_n]usize = [1]usize{0} ** stack_n; var second_free_stack_trace = StackTrace{ .instruction_addresses = &addresses, .index = 0, }; std.debug.captureStackTrace(ret_addr, &second_free_stack_trace); log.err("Double free detected. Allocation: {} First free: {} Second free: {}", .{ alloc_stack_trace, free_stack_trace, second_free_stack_trace, }); if (new_size == 0) { // Recoverable. return @as(usize, 0); } @panic("Unrecoverable double free"); } else { unreachable; } } if (new_size == 0) { // Capture stack trace to be the "first free", in case a double free happens. bucket.captureStackTrace(ret_addr, size_class, slot_index, .free); used_byte.* &= ~(@as(u8, 1) << used_bit_index); bucket.used_count -= 1; if (bucket.used_count == 0) { if (bucket.next == bucket) { // it's the only bucket and therefore the current one self.buckets[bucket_index] = null; } else { bucket.next.prev = bucket.prev; bucket.prev.next = bucket.next; self.buckets[bucket_index] = bucket.prev; } if (!config.never_unmap) { self.backing_allocator.free(bucket.page[0..page_size]); } const bucket_size = bucketSize(size_class); const bucket_slice = @ptrCast([*]align(@alignOf(BucketHeader)) u8, bucket)[0..bucket_size]; self.backing_allocator.free(bucket_slice); } else { @memset(old_mem.ptr, undefined, old_mem.len); } return @as(usize, 0); } const new_aligned_size = math.max(new_size, old_align); const new_size_class = math.ceilPowerOfTwoAssert(usize, new_aligned_size); if (new_size_class <= size_class) { if (old_mem.len > new_size) { @memset(old_mem.ptr + new_size, undefined, old_mem.len - new_size); } return new_size; } return error.OutOfMemory; } // Returns true if an allocation of `size` bytes is within the specified // limits if enable_memory_limit is true fn isAllocationAllowed(self: *Self, size: usize) bool { if (config.enable_memory_limit) { const new_req_bytes = self.total_requested_bytes + size; if (new_req_bytes > self.requested_memory_limit) return false; self.total_requested_bytes = new_req_bytes; } return true; } fn alloc(allocator: *Allocator, len: usize, ptr_align: u29, len_align: u29, ret_addr: usize) Error![]u8 { const self = @fieldParentPtr(Self, "allocator", allocator); const held = self.mutex.acquire(); defer held.release(); const new_aligned_size = math.max(len, ptr_align); if (new_aligned_size > largest_bucket_object_size) { try self.large_allocations.ensureCapacity( self.backing_allocator, self.large_allocations.count() + 1, ); const slice = try self.backing_allocator.allocFn(self.backing_allocator, len, ptr_align, len_align, ret_addr); // The backing allocator may return a memory block bigger than // `len`, use the effective size for bookkeeping purposes if (!self.isAllocationAllowed(slice.len)) { // Free the block so no memory is leaked const new_len = try self.backing_allocator.resizeFn(self.backing_allocator, slice, ptr_align, 0, 0, ret_addr); assert(new_len == 0); return error.OutOfMemory; } const gop = self.large_allocations.getOrPutAssumeCapacity(@ptrToInt(slice.ptr)); assert(!gop.found_existing); // This would mean the kernel double-mapped pages. gop.entry.value.bytes = slice; collectStackTrace(ret_addr, &gop.entry.value.stack_addresses); return slice; } if (!self.isAllocationAllowed(len)) { return error.OutOfMemory; } const new_size_class = math.ceilPowerOfTwoAssert(usize, new_aligned_size); const ptr = try self.allocSlot(new_size_class, ret_addr); return ptr[0..len]; } fn createBucket(self: *Self, size_class: usize, bucket_index: usize) Error!*BucketHeader { const page = try self.backing_allocator.allocAdvanced(u8, page_size, page_size, .exact); errdefer self.backing_allocator.free(page); const bucket_size = bucketSize(size_class); const bucket_bytes = try self.backing_allocator.allocAdvanced(u8, @alignOf(BucketHeader), bucket_size, .exact); const ptr = @ptrCast(*BucketHeader, bucket_bytes.ptr); ptr.* = BucketHeader{ .prev = ptr, .next = ptr, .page = page.ptr, .alloc_cursor = 0, .used_count = 0, }; self.buckets[bucket_index] = ptr; // Set the used bits to all zeroes @memset(@as(*[1]u8, ptr.usedBits(0)), 0, usedBitsCount(size_class)); return ptr; } }; } const TraceKind = enum { alloc, free, }; const test_config = Config{}; test "small allocations - free in same order" { var gpa = GeneralPurposeAllocator(test_config){}; defer std.testing.expect(!gpa.deinit()); const allocator = &gpa.allocator; var list = std.ArrayList(*u64).init(std.testing.allocator); defer list.deinit(); var i: usize = 0; while (i < 513) : (i += 1) { const ptr = try allocator.create(u64); try list.append(ptr); } for (list.items) |ptr| { allocator.destroy(ptr); } } test "small allocations - free in reverse order" { var gpa = GeneralPurposeAllocator(test_config){}; defer std.testing.expect(!gpa.deinit()); const allocator = &gpa.allocator; var list = std.ArrayList(*u64).init(std.testing.allocator); defer list.deinit(); var i: usize = 0; while (i < 513) : (i += 1) { const ptr = try allocator.create(u64); try list.append(ptr); } while (list.popOrNull()) |ptr| { allocator.destroy(ptr); } } test "large allocations" { var gpa = GeneralPurposeAllocator(test_config){}; defer std.testing.expect(!gpa.deinit()); const allocator = &gpa.allocator; const ptr1 = try allocator.alloc(u64, 42768); const ptr2 = try allocator.alloc(u64, 52768); allocator.free(ptr1); const ptr3 = try allocator.alloc(u64, 62768); allocator.free(ptr3); allocator.free(ptr2); } test "realloc" { var gpa = GeneralPurposeAllocator(test_config){}; defer std.testing.expect(!gpa.deinit()); const allocator = &gpa.allocator; var slice = try allocator.alignedAlloc(u8, @alignOf(u32), 1); defer allocator.free(slice); slice[0] = 0x12; // This reallocation should keep its pointer address. const old_slice = slice; slice = try allocator.realloc(slice, 2); std.testing.expect(old_slice.ptr == slice.ptr); std.testing.expect(slice[0] == 0x12); slice[1] = 0x34; // This requires upgrading to a larger size class slice = try allocator.realloc(slice, 17); std.testing.expect(slice[0] == 0x12); std.testing.expect(slice[1] == 0x34); } test "shrink" { var gpa = GeneralPurposeAllocator(test_config){}; defer std.testing.expect(!gpa.deinit()); const allocator = &gpa.allocator; var slice = try allocator.alloc(u8, 20); defer allocator.free(slice); mem.set(u8, slice, 0x11); slice = allocator.shrink(slice, 17); for (slice) |b| { std.testing.expect(b == 0x11); } slice = allocator.shrink(slice, 16); for (slice) |b| { std.testing.expect(b == 0x11); } } test "large object - grow" { var gpa = GeneralPurposeAllocator(test_config){}; defer std.testing.expect(!gpa.deinit()); const allocator = &gpa.allocator; var slice1 = try allocator.alloc(u8, page_size * 2 - 20); defer allocator.free(slice1); const old = slice1; slice1 = try allocator.realloc(slice1, page_size * 2 - 10); std.testing.expect(slice1.ptr == old.ptr); slice1 = try allocator.realloc(slice1, page_size * 2); std.testing.expect(slice1.ptr == old.ptr); slice1 = try allocator.realloc(slice1, page_size * 2 + 1); } test "realloc small object to large object" { var gpa = GeneralPurposeAllocator(test_config){}; defer std.testing.expect(!gpa.deinit()); const allocator = &gpa.allocator; var slice = try allocator.alloc(u8, 70); defer allocator.free(slice); slice[0] = 0x12; slice[60] = 0x34; // This requires upgrading to a large object const large_object_size = page_size * 2 + 50; slice = try allocator.realloc(slice, large_object_size); std.testing.expect(slice[0] == 0x12); std.testing.expect(slice[60] == 0x34); } test "shrink large object to large object" { var gpa = GeneralPurposeAllocator(test_config){}; defer std.testing.expect(!gpa.deinit()); const allocator = &gpa.allocator; var slice = try allocator.alloc(u8, page_size * 2 + 50); defer allocator.free(slice); slice[0] = 0x12; slice[60] = 0x34; slice = try allocator.resize(slice, page_size * 2 + 1); std.testing.expect(slice[0] == 0x12); std.testing.expect(slice[60] == 0x34); slice = allocator.shrink(slice, page_size * 2 + 1); std.testing.expect(slice[0] == 0x12); std.testing.expect(slice[60] == 0x34); slice = try allocator.realloc(slice, page_size * 2); std.testing.expect(slice[0] == 0x12); std.testing.expect(slice[60] == 0x34); } test "shrink large object to large object with larger alignment" { var gpa = GeneralPurposeAllocator(test_config){}; defer std.testing.expect(!gpa.deinit()); const allocator = &gpa.allocator; var debug_buffer: [1000]u8 = undefined; const debug_allocator = &std.heap.FixedBufferAllocator.init(&debug_buffer).allocator; const alloc_size = page_size * 2 + 50; var slice = try allocator.alignedAlloc(u8, 16, alloc_size); defer allocator.free(slice); const big_alignment: usize = switch (std.Target.current.os.tag) { .windows => page_size * 32, // Windows aligns to 64K. else => page_size * 2, }; // This loop allocates until we find a page that is not aligned to the big // alignment. Then we shrink the allocation after the loop, but increase the // alignment to the higher one, that we know will force it to realloc. var stuff_to_free = std.ArrayList([]align(16) u8).init(debug_allocator); while (mem.isAligned(@ptrToInt(slice.ptr), big_alignment)) { try stuff_to_free.append(slice); slice = try allocator.alignedAlloc(u8, 16, alloc_size); } while (stuff_to_free.popOrNull()) |item| { allocator.free(item); } slice[0] = 0x12; slice[60] = 0x34; slice = try allocator.reallocAdvanced(slice, big_alignment, alloc_size / 2, .exact); std.testing.expect(slice[0] == 0x12); std.testing.expect(slice[60] == 0x34); } test "realloc large object to small object" { var gpa = GeneralPurposeAllocator(test_config){}; defer std.testing.expect(!gpa.deinit()); const allocator = &gpa.allocator; var slice = try allocator.alloc(u8, page_size * 2 + 50); defer allocator.free(slice); slice[0] = 0x12; slice[16] = 0x34; slice = try allocator.realloc(slice, 19); std.testing.expect(slice[0] == 0x12); std.testing.expect(slice[16] == 0x34); } test "overrideable mutexes" { var gpa = GeneralPurposeAllocator(.{.MutexType = std.Mutex}){ .backing_allocator = std.testing.allocator, .mutex = std.Mutex{} }; defer std.testing.expect(!gpa.deinit()); const allocator = &gpa.allocator; const ptr = try allocator.create(i32); defer allocator.destroy(ptr); } test "non-page-allocator backing allocator" { var gpa = GeneralPurposeAllocator(.{}){ .backing_allocator = std.testing.allocator }; defer std.testing.expect(!gpa.deinit()); const allocator = &gpa.allocator; const ptr = try allocator.create(i32); defer allocator.destroy(ptr); } test "realloc large object to larger alignment" { var gpa = GeneralPurposeAllocator(test_config){}; defer std.testing.expect(!gpa.deinit()); const allocator = &gpa.allocator; var debug_buffer: [1000]u8 = undefined; const debug_allocator = &std.heap.FixedBufferAllocator.init(&debug_buffer).allocator; var slice = try allocator.alignedAlloc(u8, 16, page_size * 2 + 50); defer allocator.free(slice); const big_alignment: usize = switch (std.Target.current.os.tag) { .windows => page_size * 32, // Windows aligns to 64K. else => page_size * 2, }; // This loop allocates until we find a page that is not aligned to the big alignment. var stuff_to_free = std.ArrayList([]align(16) u8).init(debug_allocator); while (mem.isAligned(@ptrToInt(slice.ptr), big_alignment)) { try stuff_to_free.append(slice); slice = try allocator.alignedAlloc(u8, 16, page_size * 2 + 50); } while (stuff_to_free.popOrNull()) |item| { allocator.free(item); } slice[0] = 0x12; slice[16] = 0x34; slice = try allocator.reallocAdvanced(slice, 32, page_size * 2 + 100, .exact); std.testing.expect(slice[0] == 0x12); std.testing.expect(slice[16] == 0x34); slice = try allocator.reallocAdvanced(slice, 32, page_size * 2 + 25, .exact); std.testing.expect(slice[0] == 0x12); std.testing.expect(slice[16] == 0x34); slice = try allocator.reallocAdvanced(slice, big_alignment, page_size * 2 + 100, .exact); std.testing.expect(slice[0] == 0x12); std.testing.expect(slice[16] == 0x34); } test "large object shrinks to small but allocation fails during shrink" { var failing_allocator = std.testing.FailingAllocator.init(std.heap.page_allocator, 3); var gpa = GeneralPurposeAllocator(.{}){ .backing_allocator = &failing_allocator.allocator }; defer std.testing.expect(!gpa.deinit()); const allocator = &gpa.allocator; var slice = try allocator.alloc(u8, page_size * 2 + 50); defer allocator.free(slice); slice[0] = 0x12; slice[3] = 0x34; // Next allocation will fail in the backing allocator of the GeneralPurposeAllocator slice = allocator.shrink(slice, 4); std.testing.expect(slice[0] == 0x12); std.testing.expect(slice[3] == 0x34); } test "objects of size 1024 and 2048" { var gpa = GeneralPurposeAllocator(test_config){}; defer std.testing.expect(!gpa.deinit()); const allocator = &gpa.allocator; const slice = try allocator.alloc(u8, 1025); const slice2 = try allocator.alloc(u8, 3000); allocator.free(slice); allocator.free(slice2); } test "setting a memory cap" { var gpa = GeneralPurposeAllocator(.{ .enable_memory_limit = true }){}; defer std.testing.expect(!gpa.deinit()); const allocator = &gpa.allocator; gpa.setRequestedMemoryLimit(1010); const small = try allocator.create(i32); std.testing.expect(gpa.total_requested_bytes == 4); const big = try allocator.alloc(u8, 1000); std.testing.expect(gpa.total_requested_bytes == 1004); std.testing.expectError(error.OutOfMemory, allocator.create(u64)); allocator.destroy(small); std.testing.expect(gpa.total_requested_bytes == 1000); allocator.free(big); std.testing.expect(gpa.total_requested_bytes == 0); const exact = try allocator.alloc(u8, 1010); std.testing.expect(gpa.total_requested_bytes == 1010); allocator.free(exact); }