(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU Library General Public License. *) (* *) (***********************************************************************) (* $Id$ *) (* Module [Int64]: 64-bit integers *) (* This module provides operations on the type [int64] of signed 64-bit integers. Unlike the built-in [int] type, the type [int64] is guaranteed to be exactly 64-bit wide on all platforms. All arithmetic operations over [int64] are taken modulo $2^{64}$. The type [int64] is supported on all 64-bit platforms, as well as on all 32-bit platforms for which the C compiler supports 64-bit arithmetic. On 32-bit platforms without support for 64-bit arithmetic, all functions in this module raise an [Invalid_argument] exception. *) val zero : int64 val one : int64 val minus_one : int64 (* The 64-bit integers 0, 1, -1. *) external neg : int64 -> int64 = "%int64_neg" (* Unary negation. *) external add : int64 -> int64 -> int64 = "%int64_add" (* Addition. *) external sub : int64 -> int64 -> int64 = "%int64_sub" (* Subtraction. *) external mul : int64 -> int64 -> int64 = "%int64_mul" (* Multiplication. *) external div : int64 -> int64 -> int64 = "%int64_div" (* Integer division. Raise [Division_by_zero] if the second argument is zero. *) external rem : int64 -> int64 -> int64 = "%int64_mod" (* Integer remainder. If [x >= 0] and [y > 0], the result of [Int64.rem x y] satisfies the following properties: [0 <= Int64.rem x y < y] and [x = Int64.add (Int64.mul (Int64.div x y) y) (Int64.rem x y)]. If [y = 0], [Int64.rem x y] raises [Division_by_zero]. If [x < 0] or [y < 0], the result of [Int64.rem x y] is not specified and depends on the platform. *) val succ : int64 -> int64 (* Successor. [Int64.succ x] is [Int64.add x 1i]. *) val pred : int64 -> int64 (* Predecessor. [Int64.pred x] is [Int64.sub x 1i]. *) val abs : int64 -> int64 (* Return the absolute value of its argument. *) val max_int : int64 (* The greatest representable 64-bit integer, $2^{63} - 1$. *) val min_int : int64 (* The smallest representable 64-bit integer, $-2^{63}$. *) external logand : int64 -> int64 -> int64 = "%int64_and" (* Bitwise logical and. *) external logor : int64 -> int64 -> int64 = "%int64_or" (* Bitwise logical or. *) external logxor : int64 -> int64 -> int64 = "%int64_xor" (* Bitwise logical exclusive or. *) val lognot : int64 -> int64 (* Bitwise logical negation *) external shift_left : int64 -> int -> int64 = "%int64_lsl" (* [Int64.shift_left x y] shifts [x] to the left by [y] bits. *) external shift_right : int64 -> int -> int64 = "%int64_asr" (* [Int64.shift_right x y] shifts [x] to the right by [y] bits. This is an arithmetic shift: the sign bit of [x] is replicated and inserted in the vacated bits. *) external shift_right_logical : int64 -> int -> int64 = "%int64_lsr" (* [Int64.shift_right_logical x y] shifts [x] to the right by [y] bits. This is a logical shift: zeroes are inserted in the vacated bits regardless of the sign of [x]. *) external of_int : int -> int64 = "%int64_of_int" (* Convert the given integer (type [int]) to a 64-bit integer (type [int64]). *) external to_int : int64 -> int = "%int64_to_int" (* Convert the given 64-bit integer (type [int64]) to an integer (type [int]). On 64-bit platforms, the 64-bit integer is taken modulo $2^{63}$, i.e. the high-order bit is lost during the conversion. On 32-bit platforms, the 64-bit integer is taken modulo $2^{31}$, i.e. the top 33 bits are lost during the conversion. *) external of_float : float -> int64 = "int64_of_float" (* Convert the given floating-point number to a 64-bit integer, discarding the fractional part (truncate towards 0). The result of the conversion is undefined if, after truncation, the number is outside the range [Int64.min_int, Int64.max_int]. *) external to_float : int64 -> float = "int64_to_float" (* Convert the given 64-bit integer to a floating-point number. *) external of_int32 : int32 -> int64 = "%int64_of_int32" (* Convert the given 32-bit integer (type [int32]) to a 64-bit integer (type [int64]). *) external to_int32 : int64 -> int32 = "%int64_to_int32" (* Convert the given 64-bit integer (type [int64]) to a 32-bit integer (type [int32]). The 64-bit integer is taken modulo $2^{32}$, i.e. the top 32 bits are lost during the conversion. *) external of_nativeint : nativeint -> int64 = "%int64_of_nativeint" (* Convert the given native integer (type [nativeint]) to a 64-bit integer (type [int64]). *) external to_nativeint : int64 -> nativeint = "%int64_to_nativeint" (* Convert the given 64-bit integer (type [int64]) to a native integer. On 32-bit platforms, the 64-bit integer is taken modulo $2^{32}$. On 64-bit platforms, the conversion is exact. *) external of_string : string -> int64 = "int64_of_string" (* Convert the given string to a 64-bit integer. The string is read in decimal (by default) or in hexadecimal, octal or binary if the string begins with [0x], [0o] or [0b] respectively. Raise [Failure "int_of_string"] if the given string is not a valid representation of an integer. *) val to_string : int64 -> string (* Return the string representation of its argument, in decimal. *) external format : string -> int64 -> string = "int64_format" (* [Int64.format fmt n] return the string representation of the 64-bit integer [n] in the format specified by [fmt]. [fmt] is a [Printf]-style format containing exactly one [%d], [%i], [%u], [%x], [%X] or [%o] conversion specification. See the documentation of the [Printf] module for more information, *)