(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* $Id$ *) open Terms open Equations open Orderings open Kb (**** let group_rules = [ { number = 1; numvars = 1; lhs = Term("*", [Term("U",[]); Var 1]); rhs = Var 1 }; { number = 2; numvars = 1; lhs = Term("*", [Term("I",[Var 1]); Var 1]); rhs = Term("U",[]) }; { number = 3; numvars = 3; lhs = Term("*", [Term("*", [Var 1; Var 2]); Var 3]); rhs = Term("*", [Var 1; Term("*", [Var 2; Var 3])]) } ] ****) let geom_rules = [ { number = 1; numvars = 1; lhs = Term ("*",[(Term ("U",[])); (Var 1)]); rhs = Var 1 }; { number = 2; numvars = 1; lhs = Term ("*",[(Term ("I",[(Var 1)])); (Var 1)]); rhs = Term ("U",[]) }; { number = 3; numvars = 3; lhs = Term ("*",[(Term ("*",[(Var 1); (Var 2)])); (Var 3)]); rhs = Term ("*",[(Var 1); (Term ("*",[(Var 2); (Var 3)]))]) }; { number = 4; numvars = 0; lhs = Term ("*",[(Term ("A",[])); (Term ("B",[]))]); rhs = Term ("*",[(Term ("B",[])); (Term ("A",[]))]) }; { number = 5; numvars = 0; lhs = Term ("*",[(Term ("C",[])); (Term ("C",[]))]); rhs = Term ("U",[]) }; { number = 6; numvars = 0; lhs = Term("*", [(Term ("C",[])); (Term ("*",[(Term ("A",[])); (Term ("I",[(Term ("C",[]))]))]))]); rhs = Term ("I",[(Term ("A",[]))]) }; { number = 7; numvars = 0; lhs = Term("*", [(Term ("C",[])); (Term ("*",[(Term ("B",[])); (Term ("I",[(Term ("C",[]))]))]))]); rhs = Term ("B",[]) } ] let group_rank = function "U" -> 0 | "*" -> 1 | "I" -> 2 | "B" -> 3 | "C" -> 4 | "A" -> 5 | _ -> assert false let group_precedence op1 op2 = let r1 = group_rank op1 and r2 = group_rank op2 in if r1 = r2 then Equal else if r1 > r2 then Greater else NotGE let group_order = rpo group_precedence lex_ext let greater pair = match group_order pair with Greater -> true | _ -> false let _ = for i = 1 to 20 do kb_complete greater [] geom_rules done