(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 2000 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* $Id$ *) (* Instruction selection for the AMD64 *) open Misc open Arch open Proc open Cmm open Reg open Mach (* Auxiliary for recognizing addressing modes *) type addressing_expr = Asymbol of string | Alinear of expression | Aadd of expression * expression | Ascale of expression * int | Ascaledadd of expression * expression * int let rec select_addr exp = match exp with Cconst_symbol s when not !Clflags.dlcode -> (Asymbol s, 0) | Cop((Caddi | Cadda), [arg; Cconst_int m]) -> let (a, n) = select_addr arg in (a, n + m) | Cop((Csubi | Csuba), [arg; Cconst_int m]) -> let (a, n) = select_addr arg in (a, n - m) | Cop((Caddi | Cadda), [Cconst_int m; arg]) -> let (a, n) = select_addr arg in (a, n + m) | Cop(Clsl, [arg; Cconst_int(1|2|3 as shift)]) -> begin match select_addr arg with (Alinear e, n) -> (Ascale(e, 1 lsl shift), n lsl shift) | _ -> (Alinear exp, 0) end | Cop(Cmuli, [arg; Cconst_int(2|4|8 as mult)]) -> begin match select_addr arg with (Alinear e, n) -> (Ascale(e, mult), n * mult) | _ -> (Alinear exp, 0) end | Cop(Cmuli, [Cconst_int(2|4|8 as mult); arg]) -> begin match select_addr arg with (Alinear e, n) -> (Ascale(e, mult), n * mult) | _ -> (Alinear exp, 0) end | Cop((Caddi | Cadda), [arg1; arg2]) -> begin match (select_addr arg1, select_addr arg2) with ((Alinear e1, n1), (Alinear e2, n2)) -> (Aadd(e1, e2), n1 + n2) | ((Alinear e1, n1), (Ascale(e2, scale), n2)) -> (Ascaledadd(e1, e2, scale), n1 + n2) | ((Ascale(e1, scale), n1), (Alinear e2, n2)) -> (Ascaledadd(e2, e1, scale), n1 + n2) | (_, (Ascale(e2, scale), n2)) -> (Ascaledadd(arg1, e2, scale), n2) | ((Ascale(e1, scale), n1), _) -> (Ascaledadd(arg2, e1, scale), n1) | _ -> (Aadd(arg1, arg2), 0) end | arg -> (Alinear arg, 0) (* Special constraints on operand and result registers *) exception Use_default let rax = phys_reg 0 let rcx = phys_reg 5 let rdx = phys_reg 4 let pseudoregs_for_operation op arg res = match op with (* Two-address binary operations: arg.(0) and res.(0) must be the same *) Iintop(Iadd|Isub|Imul|Iand|Ior|Ixor) | Iaddf|Isubf|Imulf|Idivf -> ([|res.(0); arg.(1)|], res) (* One-address unary operations: arg.(0) and res.(0) must be the same *) | Iintop_imm((Iadd|Isub|Imul|Iand|Ior|Ixor|Ilsl|Ilsr|Iasr), _) | Iabsf | Inegf -> (res, res) | Ispecific(Ifloatarithmem(_,_)) -> let arg' = Array.copy arg in arg'.(0) <- res.(0); (arg', res) (* For shifts with variable shift count, second arg must be in rcx *) | Iintop(Ilsl|Ilsr|Iasr) -> ([|res.(0); rcx|], res) (* For div and mod, first arg must be in rax, rdx is clobbered, and result is in rax or rdx respectively. Keep it simple, just force second argument in rcx. *) | Iintop(Idiv) -> ([| rax; rcx |], [| rax |]) | Iintop(Imod) -> ([| rax; rcx |], [| rdx |]) (* For div and mod with immediate operand, arg must not be in rax. Keep it simple, force it in rdx. *) | Iintop_imm((Idiv|Imod), _) -> ([| rdx |], [| rdx |]) (* Other instructions are regular *) | _ -> raise Use_default (* The selector class *) class selector = object (self) inherit Selectgen.selector_generic as super method is_immediate n = n <= 0x7FFFFFFF && n >= -0x80000000 method is_immediate_natint n = n <= 0x7FFFFFFFn && n >= -0x80000000n method select_addressing exp = match select_addr exp with (Asymbol s, d) -> (Ibased(s, d), Ctuple []) | (Alinear e, d) -> (Iindexed d, e) | (Aadd(e1, e2), d) -> (Iindexed2 d, Ctuple[e1; e2]) | (Ascale(e, scale), d) -> (Iscaled(scale, d), e) | (Ascaledadd(e1, e2, scale), d) -> (Iindexed2scaled(scale, d), Ctuple[e1; e2]) method select_store addr exp = match exp with Cconst_int n when self#is_immediate n -> (Ispecific(Istore_int(Nativeint.of_int n, addr)), Ctuple []) | Cconst_natint n when self#is_immediate_natint n -> (Ispecific(Istore_int(n, addr)), Ctuple []) | Cconst_pointer n when self#is_immediate n -> (Ispecific(Istore_int(Nativeint.of_int n, addr)), Ctuple []) | Cconst_natpointer n when self#is_immediate_natint n -> (Ispecific(Istore_int(n, addr)), Ctuple []) | Cconst_symbol s when not (!pic_code || !Clflags.dlcode) -> (Ispecific(Istore_symbol(s, addr)), Ctuple []) | _ -> super#select_store addr exp method select_operation op args = match op with (* Recognize the LEA instruction *) Caddi | Cadda | Csubi | Csuba -> begin match self#select_addressing (Cop(op, args)) with (Iindexed d, _) -> super#select_operation op args | (Iindexed2 0, _) -> super#select_operation op args | (addr, arg) -> (Ispecific(Ilea addr), [arg]) end (* Recognize (x / cst) and (x % cst) only if cst is a power of 2. *) | Cdivi -> begin match args with [arg1; Cconst_int n] when self#is_immediate n && n = 1 lsl (Misc.log2 n) -> (Iintop_imm(Idiv, n), [arg1]) | _ -> (Iintop Idiv, args) end | Cmodi -> begin match args with [arg1; Cconst_int n] when self#is_immediate n && n = 1 lsl (Misc.log2 n) -> (Iintop_imm(Imod, n), [arg1]) | _ -> (Iintop Imod, args) end (* Recognize float arithmetic with memory. *) | Caddf -> self#select_floatarith true Iaddf Ifloatadd args | Csubf -> self#select_floatarith false Isubf Ifloatsub args | Cmulf -> self#select_floatarith true Imulf Ifloatmul args | Cdivf -> self#select_floatarith false Idivf Ifloatdiv args (* Recognize store instructions *) | Cstore Word -> begin match args with [loc; Cop(Caddi, [Cop(Cload _, [loc']); Cconst_int n])] when loc = loc' && self#is_immediate n -> let (addr, arg) = self#select_addressing loc in (Ispecific(Ioffset_loc(n, addr)), [arg]) | _ -> super#select_operation op args end | _ -> super#select_operation op args (* Recognize float arithmetic with mem *) method select_floatarith commutative regular_op mem_op args = match args with [arg1; Cop(Cload (Double|Double_u), [loc2])] -> let (addr, arg2) = self#select_addressing loc2 in (Ispecific(Ifloatarithmem(mem_op, addr)), [arg1; arg2]) | [Cop(Cload (Double|Double_u), [loc1]); arg2] when commutative -> let (addr, arg1) = self#select_addressing loc1 in (Ispecific(Ifloatarithmem(mem_op, addr)), [arg2; arg1]) | [arg1; arg2] -> (regular_op, [arg1; arg2]) | _ -> assert false (* Deal with register constraints *) method insert_op_debug op dbg rs rd = try let (rsrc, rdst) = pseudoregs_for_operation op rs rd in self#insert_moves rs rsrc; self#insert_debug (Iop op) dbg rsrc rdst; self#insert_moves rdst rd; rd with Use_default -> super#insert_op_debug op dbg rs rd method insert_op op rs rd = self#insert_op_debug op Debuginfo.none rs rd end let fundecl f = (new selector)#emit_fundecl f