(***********************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* $Id$ *) (* Emission of Intel 386 assembly code, MASM syntax. *) module StringSet = Set.Make(struct type t = string let compare = compare end) open Misc open Cmm open Arch open Proc open Reg open Mach open Linearize open Emitaux (* Tradeoff between code size and code speed *) let fastcode_flag = ref true (* Layout of the stack frame *) let stack_offset = ref 0 let frame_size () = (* includes return address *) !stack_offset + 4 * num_stack_slots.(0) + 8 * num_stack_slots.(1) + 4 let slot_offset loc cl = match loc with Incoming n -> assert (n >= 0); frame_size() + n | Local n -> if cl = 0 then !stack_offset + n * 4 else !stack_offset + num_stack_slots.(0) * 4 + n * 8 | Outgoing n -> assert (n >= 0); n (* Record symbols used and defined - at the end generate extern for those used but not defined *) let symbols_defined = ref StringSet.empty let symbols_used = ref StringSet.empty let add_def_symbol s = symbols_defined := StringSet.add s !symbols_defined let add_used_symbol s = symbols_used := StringSet.add s !symbols_used let emit_symbol s = emit_string "_"; Emitaux.emit_symbol '$' s let emit_int32 n = emit_printf "0%lxh" n (* Output a label *) let emit_label lbl = emit_string "L"; emit_int lbl let emit_data_label lbl = emit_string "Ld"; emit_int lbl (* Output an align directive. *) let emit_align n = ` ALIGN {emit_int n}\n` (* Output a pseudo-register *) let emit_reg = function { loc = Reg r } -> emit_string (register_name r) | { loc = Stack(Incoming n | Outgoing n) } when n < 0 -> `{emit_symbol "caml_extra_params"} + {emit_int (n + 64)}` | { loc = Stack s; typ = Float } as r -> let ofs = slot_offset s (register_class r) in `REAL8 PTR {emit_int ofs}[esp]` | { loc = Stack s } as r -> let ofs = slot_offset s (register_class r) in `DWORD PTR {emit_int ofs}[esp]` | { loc = Unknown } -> fatal_error "Emit.emit_reg" (* Output a reference to the lower 8 bits or lower 16 bits of a register *) let reg_low_byte_name = [| "al"; "bl"; "cl"; "dl" |] let reg_low_half_name = [| "ax"; "bx"; "cx"; "dx"; "si"; "di"; "bp" |] let emit_reg8 r = match r.loc with Reg r when r < 4 -> emit_string (reg_low_byte_name.(r)) | _ -> fatal_error "Emit.emit_reg8" let emit_reg16 r = match r.loc with Reg r when r < 7 -> emit_string (reg_low_half_name.(r)) | _ -> fatal_error "Emit.emit_reg16" (* Check if the given register overlaps (same location) with the given array of registers *) let register_overlap reg arr = try for i = 0 to Array.length arr - 1 do if reg.loc = arr.(i).loc then raise Exit done; false with Exit -> true (* Output an addressing mode *) let emit_signed_int d = if d > 0 then emit_char '+'; if d <> 0 then emit_int d let emit_addressing addr r n = match addr with Ibased(s, d) -> add_used_symbol s; `{emit_symbol s}{emit_signed_int d}` | Iindexed d -> `[{emit_reg r.(n)}{emit_signed_int d}]` | Iindexed2 d -> `[{emit_reg r.(n)}+{emit_reg r.(n+1)}{emit_signed_int d}]` | Iscaled(2, d) -> `[{emit_reg r.(n)}+{emit_reg r.(n)}{emit_signed_int d}]` | Iscaled(scale, d) -> `[{emit_reg r.(n)}*{emit_int scale}{emit_signed_int d}]` | Iindexed2scaled(scale, d) -> `[{emit_reg r.(n)}+{emit_reg r.(n+1)}*{emit_int scale}{emit_signed_int d}]` (* Record live pointers at call points *) let record_frame_label live dbg = let lbl = new_label() in let live_offset = ref [] in Reg.Set.iter (function {typ = Addr; loc = Reg r} -> live_offset := ((r lsl 1) + 1) :: !live_offset | {typ = Addr; loc = Stack s} as reg -> live_offset := slot_offset s (register_class reg) :: !live_offset | _ -> ()) live; frame_descriptors := { fd_lbl = lbl; fd_frame_size = frame_size(); fd_live_offset = !live_offset; fd_debuginfo = dbg } :: !frame_descriptors; lbl let record_frame live dbg = let lbl = record_frame_label live dbg in `{emit_label lbl}:\n` (* Record calls to the GC -- we've moved them out of the way *) type gc_call = { gc_lbl: label; (* Entry label *) gc_return_lbl: label; (* Where to branch after GC *) gc_frame: label } (* Label of frame descriptor *) let call_gc_sites = ref ([] : gc_call list) let emit_call_gc gc = `{emit_label gc.gc_lbl}: call _caml_call_gc\n`; `{emit_label gc.gc_frame}: jmp {emit_label gc.gc_return_lbl}\n` (* Record calls to caml_ml_array_bound_error. In -g mode, we maintain one call to caml_ml_array_bound_error per bound check site. Without -g, we can share a single call. *) type bound_error_call = { bd_lbl: label; (* Entry label *) bd_frame: label } (* Label of frame descriptor *) let bound_error_sites = ref ([] : bound_error_call list) let bound_error_call = ref 0 let bound_error_label dbg = if !Clflags.debug then begin let lbl_bound_error = new_label() in let lbl_frame = record_frame_label Reg.Set.empty dbg in bound_error_sites := { bd_lbl = lbl_bound_error; bd_frame = lbl_frame } :: !bound_error_sites; lbl_bound_error end else begin if !bound_error_call = 0 then bound_error_call := new_label(); !bound_error_call end let emit_call_bound_error bd = `{emit_label bd.bd_lbl}: call _caml_ml_array_bound_error\n`; `{emit_label bd.bd_frame}:\n` let emit_call_bound_errors () = List.iter emit_call_bound_error !bound_error_sites; if !bound_error_call > 0 then `{emit_label !bound_error_call}: call _caml_ml_array_bound_error\n` (* Names for instructions *) let instr_for_intop = function Iadd -> "add" | Isub -> "sub" | Imul -> "imul" | Iand -> "and" | Ior -> "or" | Ixor -> "xor" | Ilsl -> "sal" | Ilsr -> "shr" | Iasr -> "sar" | _ -> fatal_error "Emit: instr_for_intop" let instr_for_floatop = function Inegf -> "fchs" | Iabsf -> "fabs" | Iaddf -> "fadd" | Isubf -> "fsub" | Imulf -> "fmul" | Idivf -> "fdiv" | Ispecific Isubfrev -> "fsubr" | Ispecific Idivfrev -> "fdivr" | _ -> fatal_error "Emit: instr_for_floatop" let instr_for_floatop_reversed = function Iaddf -> "fadd" | Isubf -> "fsubr" | Imulf -> "fmul" | Idivf -> "fdivr" | Ispecific Isubfrev -> "fsub" | Ispecific Idivfrev -> "fdiv" | _ -> fatal_error "Emit: instr_for_floatop_reversed" let instr_for_floatarithmem = function Ifloatadd -> "fadd" | Ifloatsub -> "fsub" | Ifloatsubrev -> "fsubr" | Ifloatmul -> "fmul" | Ifloatdiv -> "fdiv" | Ifloatdivrev -> "fdivr" let name_for_cond_branch = function Isigned Ceq -> "e" | Isigned Cne -> "ne" | Isigned Cle -> "le" | Isigned Cgt -> "g" | Isigned Clt -> "l" | Isigned Cge -> "ge" | Iunsigned Ceq -> "e" | Iunsigned Cne -> "ne" | Iunsigned Cle -> "be" | Iunsigned Cgt -> "a" | Iunsigned Clt -> "b" | Iunsigned Cge -> "ae" (* Output an = 0 or <> 0 test. *) let output_test_zero arg = match arg.loc with Reg r -> ` test {emit_reg arg}, {emit_reg arg}\n` | _ -> ` cmp {emit_reg arg}, 0\n` (* Deallocate the stack frame before a return or tail call *) let output_epilogue () = let n = frame_size() - 4 in if n > 0 then ` add esp, {emit_int n}\n` (* Determine if the given register is the top of the floating-point stack *) let is_tos = function { loc = Reg _; typ = Float } -> true | _ -> false (* Emit the code for a floating-point comparison *) let emit_float_test cmp neg arg lbl = let actual_cmp = match (is_tos arg.(0), is_tos arg.(1)) with (true, true) -> (* both args on top of FP stack *) ` fcompp\n`; cmp | (true, false) -> (* first arg on top of FP stack *) ` fcomp {emit_reg arg.(1)}\n`; cmp | (false, true) -> (* second arg on top of FP stack *) ` fcomp {emit_reg arg.(0)}\n`; Cmm.swap_comparison cmp | (false, false) -> ` fld {emit_reg arg.(0)}\n`; ` fcomp {emit_reg arg.(1)}\n`; cmp in ` fnstsw ax\n`; begin match actual_cmp with Ceq -> if neg then begin ` and ah, 68\n`; ` xor ah, 64\n`; ` jne ` end else begin ` and ah, 69\n`; ` cmp ah, 64\n`; ` je ` end | Cne -> if neg then begin ` and ah, 69\n`; ` cmp ah, 64\n`; ` je ` end else begin ` and ah, 68\n`; ` xor ah, 64\n`; ` jne ` end | Cle -> ` and ah, 69\n`; ` dec ah\n`; ` cmp ah, 64\n`; if neg then ` jae ` else ` jb ` | Cge -> ` and ah, 5\n`; if neg then ` jne ` else ` je ` | Clt -> ` and ah, 69\n`; ` cmp ah, 1\n`; if neg then ` jne ` else ` je ` | Cgt -> ` and ah, 69\n`; if neg then ` jne ` else ` je ` end; `{emit_label lbl}\n` (* Emit a Ifloatspecial instruction *) let emit_floatspecial = function "atan" -> ` fld1\n\tfpatan\n` | "atan2" -> ` fpatan\n` | "cos" -> ` fcos\n` | "log" -> ` fldln2\n\tfxch\n\tfyl2x\n` | "log10" -> ` fldlg2\n\tfxch\n\tfyl2x\n` | "sin" -> ` fsin\n` | "sqrt" -> ` fsqrt\n` | "tan" -> ` fptan\n\tfstp st(0)\n` | _ -> assert false (* Output the assembly code for an instruction *) (* Name of current function *) let function_name = ref "" (* Entry point for tail recursive calls *) let tailrec_entry_point = ref 0 (* Label of trap for out-of-range accesses *) let range_check_trap = ref 0 let float_constants = ref ([] : (int * string) list) let emit_instr i = match i.desc with Lend -> () | Lop(Imove | Ispill | Ireload) -> let src = i.arg.(0) and dst = i.res.(0) in if src.loc <> dst.loc then begin if src.typ = Float then if is_tos src then ` fstp {emit_reg dst}\n` else if is_tos dst then ` fld {emit_reg src}\n` else begin ` fld {emit_reg src}\n`; ` fstp {emit_reg dst}\n` end else ` mov {emit_reg dst}, {emit_reg src}\n` end | Lop(Iconst_int n) -> if n = 0n then begin match i.res.(0).loc with Reg n -> ` xor {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n` | _ -> ` mov {emit_reg i.res.(0)}, 0\n` end else ` mov {emit_reg i.res.(0)}, {emit_nativeint n}\n` | Lop(Iconst_float s) -> begin match Int64.bits_of_float (float_of_string s) with | 0x0000_0000_0000_0000L -> (* +0.0 *) ` fldz\n` | 0x8000_0000_0000_0000L -> (* -0.0 *) ` fldz\n fchs\n` | 0x3FF0_0000_0000_0000L -> (* 1.0 *) ` fld1\n` | 0xBFF0_0000_0000_0000L -> (* -1.0 *) ` fld1\n fchs\n` | _ -> let lbl = new_label() in float_constants := (lbl, s) :: !float_constants; ` fld {emit_label lbl}\n` end | Lop(Iconst_symbol s) -> add_used_symbol s; ` mov {emit_reg i.res.(0)}, OFFSET {emit_symbol s}\n` | Lop(Icall_ind) -> ` call {emit_reg i.arg.(0)}\n`; record_frame i.live i.dbg | Lop(Icall_imm s) -> add_used_symbol s; ` call {emit_symbol s}\n`; record_frame i.live i.dbg | Lop(Itailcall_ind) -> output_epilogue(); ` jmp {emit_reg i.arg.(0)}\n` | Lop(Itailcall_imm s) -> if s = !function_name then ` jmp {emit_label !tailrec_entry_point}\n` else begin output_epilogue(); add_used_symbol s; ` jmp {emit_symbol s}\n` end | Lop(Iextcall(s, alloc)) -> add_used_symbol s ; if alloc then begin ` mov eax, OFFSET {emit_symbol s}\n`; ` call _caml_c_call\n`; record_frame i.live i.dbg end else begin ` call {emit_symbol s}\n` end | Lop(Istackoffset n) -> if n >= 0 then ` sub esp, {emit_int n}\n` else ` add esp, {emit_int(-n)}\n`; stack_offset := !stack_offset + n | Lop(Iload(chunk, addr)) -> let dest = i.res.(0) in begin match chunk with | Word | Thirtytwo_signed | Thirtytwo_unsigned -> ` mov {emit_reg dest}, DWORD PTR {emit_addressing addr i.arg 0}\n` | Byte_unsigned -> ` movzx {emit_reg dest}, BYTE PTR {emit_addressing addr i.arg 0}\n` | Byte_signed -> ` movsx {emit_reg dest}, BYTE PTR {emit_addressing addr i.arg 0}\n` | Sixteen_unsigned -> ` movzx {emit_reg dest}, WORD PTR {emit_addressing addr i.arg 0}\n` | Sixteen_signed -> ` movsx {emit_reg dest}, WORD PTR {emit_addressing addr i.arg 0}\n` | Single -> ` fld REAL4 PTR {emit_addressing addr i.arg 0}\n` | Double | Double_u -> ` fld REAL8 PTR {emit_addressing addr i.arg 0}\n` end | Lop(Istore(chunk, addr)) -> begin match chunk with | Word | Thirtytwo_signed | Thirtytwo_unsigned -> ` mov DWORD PTR {emit_addressing addr i.arg 1}, {emit_reg i.arg.(0)}\n` | Byte_unsigned | Byte_signed -> ` mov BYTE PTR {emit_addressing addr i.arg 1}, {emit_reg8 i.arg.(0)}\n` | Sixteen_unsigned | Sixteen_signed -> ` mov WORD PTR {emit_addressing addr i.arg 1}, {emit_reg16 i.arg.(0)}\n` | Single -> if is_tos i.arg.(0) then ` fstp REAL4 PTR {emit_addressing addr i.arg 1}\n` else begin ` fld {emit_reg i.arg.(0)}\n`; ` fstp REAL4 PTR {emit_addressing addr i.arg 1}\n` end | Double | Double_u -> if is_tos i.arg.(0) then ` fstp REAL8 PTR {emit_addressing addr i.arg 1}\n` else begin ` fld {emit_reg i.arg.(0)}\n`; ` fstp REAL8 PTR {emit_addressing addr i.arg 1}\n` end end | Lop(Ialloc n) -> if !fastcode_flag then begin let lbl_redo = new_label() in `{emit_label lbl_redo}: mov eax, _caml_young_ptr\n`; ` sub eax, {emit_int n}\n`; ` mov _caml_young_ptr, eax\n`; ` cmp eax, _caml_young_limit\n`; let lbl_call_gc = new_label() in let lbl_frame = record_frame_label i.live Debuginfo.none in ` jb {emit_label lbl_call_gc}\n`; ` lea {emit_reg i.res.(0)}, [eax+4]\n`; call_gc_sites := { gc_lbl = lbl_call_gc; gc_return_lbl = lbl_redo; gc_frame = lbl_frame } :: !call_gc_sites end else begin begin match n with 8 -> ` call _caml_alloc1\n` | 12 -> ` call _caml_alloc2\n` | 16 -> ` call _caml_alloc3\n` | _ -> ` mov eax, {emit_int n}\n`; ` call _caml_allocN\n` end; `{record_frame i.live Debuginfo.none} lea {emit_reg i.res.(0)}, [eax+4]\n` end | Lop(Iintop(Icomp cmp)) -> ` cmp {emit_reg i.arg.(0)},{emit_reg i.arg.(1)}\n`; let b = name_for_cond_branch cmp in ` set{emit_string b} al\n`; ` movzx {emit_reg i.res.(0)}, al\n` | Lop(Iintop_imm(Icomp cmp, n)) -> ` cmp {emit_reg i.arg.(0)}, {emit_int n}\n`; let b = name_for_cond_branch cmp in ` set{emit_string b} al\n`; ` movzx {emit_reg i.res.(0)}, al\n` | Lop(Iintop Icheckbound) -> let lbl = bound_error_label i.dbg in ` cmp {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`; ` jbe {emit_label lbl}\n` | Lop(Iintop_imm(Icheckbound, n)) -> let lbl = bound_error_label i.dbg in ` cmp {emit_reg i.arg.(0)}, {emit_int n}\n`; ` jbe {emit_label lbl}\n` | Lop(Iintop(Idiv | Imod)) -> ` cdq\n`; ` idiv {emit_reg i.arg.(1)}\n` | Lop(Iintop(Ilsl | Ilsr | Iasr as op)) -> (* We have i.arg.(0) = i.res.(0) and i.arg.(1) = %ecx *) ` {emit_string(instr_for_intop op)} {emit_reg i.res.(0)}, cl\n` | Lop(Iintop op) -> (* We have i.arg.(0) = i.res.(0) *) ` {emit_string(instr_for_intop op)} {emit_reg i.res.(0)}, {emit_reg i.arg.(1)}\n` | Lop(Iintop_imm(Iadd, n)) when i.arg.(0).loc <> i.res.(0).loc -> ` lea {emit_reg i.res.(0)}, [{emit_reg i.arg.(0)}+{emit_int n}]\n` | Lop(Iintop_imm(Iadd, 1) | Iintop_imm(Isub, -1)) -> ` inc {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Iadd, -1) | Iintop_imm(Isub, 1)) -> ` dec {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Idiv, n)) -> let l = Misc.log2 n in let lbl = new_label() in output_test_zero i.arg.(0); ` jge {emit_label lbl}\n`; ` add {emit_reg i.arg.(0)}, {emit_int(n-1)}\n`; `{emit_label lbl}: sar {emit_reg i.arg.(0)}, {emit_int l}\n` | Lop(Iintop_imm(Imod, n)) -> let lbl = new_label() in ` mov eax, {emit_reg i.arg.(0)}\n`; ` test eax, eax\n`; ` jge {emit_label lbl}\n`; ` add eax, {emit_int(n-1)}\n`; `{emit_label lbl}: and eax, {emit_int(-n)}\n`; ` sub {emit_reg i.arg.(0)}, eax\n` | Lop(Iintop_imm(op, n)) -> (* We have i.arg.(0) = i.res.(0) *) ` {emit_string(instr_for_intop op)} {emit_reg i.res.(0)}, {emit_int n}\n` | Lop(Inegf | Iabsf as floatop) -> if not (is_tos i.arg.(0)) then ` fld {emit_reg i.arg.(0)}\n`; ` {emit_string(instr_for_floatop floatop)}\n` | Lop(Iaddf | Isubf | Imulf | Idivf | Ispecific(Isubfrev | Idivfrev) as floatop) -> begin match (is_tos i.arg.(0), is_tos i.arg.(1)) with (true, true) -> (* both operands on top of FP stack *) ` {emit_string(instr_for_floatop_reversed floatop)}\n` | (true, false) -> (* first operand on stack *) ` {emit_string(instr_for_floatop floatop)} {emit_reg i.arg.(1)}\n` | (false, true) -> (* second operand on stack *) ` {emit_string(instr_for_floatop_reversed floatop)} {emit_reg i.arg.(0)}\n` | (false, false) -> (* both operands in memory *) ` fld {emit_reg i.arg.(0)}\n`; ` {emit_string(instr_for_floatop floatop)} {emit_reg i.arg.(1)}\n` end | Lop(Ifloatofint) -> begin match i.arg.(0).loc with Stack s -> ` fild {emit_reg i.arg.(0)}\n` | _ -> ` push {emit_reg i.arg.(0)}\n`; ` fild DWORD PTR [esp]\n`; ` add esp, 4\n` end | Lop(Iintoffloat) -> if not (is_tos i.arg.(0)) then ` fld {emit_reg i.arg.(0)}\n`; stack_offset := !stack_offset - 8; ` sub esp, 8\n`; ` fnstcw [esp+4]\n`; ` mov ax, [esp+4]\n`; ` mov ah, 12\n`; ` mov [esp], ax\n`; ` fldcw [esp]\n`; begin match i.res.(0).loc with Stack s -> ` fistp {emit_reg i.res.(0)}\n` | _ -> ` fistp DWORD PTR [esp]\n`; ` mov {emit_reg i.res.(0)}, [esp]\n` end; ` fldcw [esp+4]\n`; ` add esp, 8\n`; stack_offset := !stack_offset + 8 | Lop(Ispecific(Ilea addr)) -> ` lea {emit_reg i.res.(0)}, DWORD PTR {emit_addressing addr i.arg 0}\n` | Lop(Ispecific(Istore_int(n, addr))) -> ` mov DWORD PTR {emit_addressing addr i.arg 0},{emit_nativeint n}\n` | Lop(Ispecific(Istore_symbol(s, addr))) -> add_used_symbol s ; ` mov DWORD PTR {emit_addressing addr i.arg 0},OFFSET {emit_symbol s}\n` | Lop(Ispecific(Ioffset_loc(n, addr))) -> ` add DWORD PTR {emit_addressing addr i.arg 0},{emit_int n}\n` | Lop(Ispecific(Ipush)) -> (* Push arguments in reverse order *) for n = Array.length i.arg - 1 downto 0 do let r = i.arg.(n) in match r with {loc = Reg rn; typ = Float} -> ` sub esp, 8\n`; ` fstp REAL8 PTR 0[esp]\n`; stack_offset := !stack_offset + 8 | {loc = Stack sl; typ = Float} -> let ofs = slot_offset sl 1 in ` push DWORD PTR {emit_int (ofs + 4)}[esp]\n`; ` push DWORD PTR {emit_int (ofs + 4)}[esp]\n`; stack_offset := !stack_offset + 8 | _ -> ` push {emit_reg r}\n`; stack_offset := !stack_offset + 4 done | Lop(Ispecific(Ipush_int n)) -> ` push {emit_nativeint n}\n`; stack_offset := !stack_offset + 4 | Lop(Ispecific(Ipush_symbol s)) -> add_used_symbol s; ` push OFFSET {emit_symbol s}\n`; stack_offset := !stack_offset + 4 | Lop(Ispecific(Ipush_load addr)) -> ` push DWORD PTR {emit_addressing addr i.arg 0}\n`; stack_offset := !stack_offset + 4 | Lop(Ispecific(Ipush_load_float addr)) -> ` push DWORD PTR {emit_addressing (offset_addressing addr 4) i.arg 0}\n`; ` push DWORD PTR {emit_addressing addr i.arg 0}\n`; stack_offset := !stack_offset + 8 | Lop(Ispecific(Ifloatarithmem(double, op, addr))) -> if not (is_tos i.arg.(0)) then ` fld {emit_reg i.arg.(0)}\n`; let size = if double then "REAL8" else "REAL4" in ` {emit_string(instr_for_floatarithmem op)} {emit_string size} PTR {emit_addressing addr i.arg 1}\n` | Lop(Ispecific(Ifloatspecial s)) -> (* Push args on float stack if necessary *) for k = 0 to Array.length i.arg - 1 do if not (is_tos i.arg.(k)) then ` fld {emit_reg i.arg.(k)}\n` done; (* Fix-up for binary instrs whose args were swapped *) if Array.length i.arg = 2 && is_tos i.arg.(1) then ` fxch st(1)\n`; emit_floatspecial s | Lreloadretaddr -> () | Lreturn -> output_epilogue(); ` ret\n` | Llabel lbl -> `{emit_label lbl}:\n` | Lbranch lbl -> ` jmp {emit_label lbl}\n` | Lcondbranch(tst, lbl) -> begin match tst with Itruetest -> output_test_zero i.arg.(0); ` jne {emit_label lbl}\n` | Ifalsetest -> output_test_zero i.arg.(0); ` je {emit_label lbl}\n` | Iinttest cmp -> ` cmp {emit_reg i.arg.(0)},{emit_reg i.arg.(1)}\n`; let b = name_for_cond_branch cmp in ` j{emit_string b} {emit_label lbl}\n` | Iinttest_imm((Isigned Ceq | Isigned Cne | Iunsigned Ceq | Iunsigned Cne) as cmp, 0) -> output_test_zero i.arg.(0); let b = name_for_cond_branch cmp in ` j{emit_string b} {emit_label lbl}\n` | Iinttest_imm(cmp, n) -> ` cmp {emit_reg i.arg.(0)}, {emit_int n}\n`; let b = name_for_cond_branch cmp in ` j{emit_string b} {emit_label lbl}\n` | Ifloattest(cmp, neg) -> emit_float_test cmp neg i.arg lbl | Ioddtest -> ` test {emit_reg i.arg.(0)}, 1\n`; ` jne {emit_label lbl}\n` | Ieventest -> ` test {emit_reg i.arg.(0)}, 1\n`; ` je {emit_label lbl}\n` end | Lcondbranch3(lbl0, lbl1, lbl2) -> ` cmp {emit_reg i.arg.(0)}, 1\n`; begin match lbl0 with None -> () | Some lbl -> ` jb {emit_label lbl}\n` end; begin match lbl1 with None -> () | Some lbl -> ` je {emit_label lbl}\n` end; begin match lbl2 with None -> () | Some lbl -> ` jg {emit_label lbl}\n` end | Lswitch jumptbl -> let lbl = new_label() in ` jmp [{emit_reg i.arg.(0)} * 4 + {emit_label lbl}]\n`; ` .DATA\n`; `{emit_label lbl}`; for i = 0 to Array.length jumptbl - 1 do ` DWORD {emit_label jumptbl.(i)}\n` done; ` .CODE\n` | Lsetuptrap lbl -> ` call {emit_label lbl}\n` | Lpushtrap -> ` push _caml_exception_pointer\n`; ` mov _caml_exception_pointer, esp\n`; stack_offset := !stack_offset + 8 | Lpoptrap -> ` pop _caml_exception_pointer\n`; ` add esp, 4\n`; stack_offset := !stack_offset - 8 | Lraise -> if !Clflags.debug then begin ` call _caml_raise_exn\n`; record_frame Reg.Set.empty i.dbg end else begin ` mov esp, _caml_exception_pointer\n`; ` pop _caml_exception_pointer\n`; ` ret\n` end let rec emit_all i = match i.desc with Lend -> () | _ -> emit_instr i; emit_all i.next (* Emission of the floating-point constants *) let emit_float s = (* MASM doesn't like floating-point constants such as 2e9. Turn them into 2.0e9. *) let pos_e = ref (-1) and pos_dot = ref (-1) in for i = 0 to String.length s - 1 do match s.[i] with 'e'|'E' -> pos_e := i | '.' -> pos_dot := i | _ -> () done; if !pos_dot < 0 && !pos_e >= 0 then begin emit_string (String.sub s 0 !pos_e); emit_string ".0"; emit_string (String.sub s !pos_e (String.length s - !pos_e)) end else emit_string s let emit_float_constant (lbl, cst) = `{emit_label lbl} REAL8 {emit_float cst}\n` (* Emission of a function declaration *) let fundecl fundecl = function_name := fundecl.fun_name; fastcode_flag := fundecl.fun_fast; tailrec_entry_point := new_label(); stack_offset := 0; float_constants := []; call_gc_sites := []; bound_error_sites := []; bound_error_call := 0; ` .CODE\n`; add_def_symbol fundecl.fun_name; emit_align 4; ` PUBLIC {emit_symbol fundecl.fun_name}\n`; `{emit_symbol fundecl.fun_name}:\n`; let n = frame_size() - 4 in if n > 0 then ` sub esp, {emit_int n}\n`; `{emit_label !tailrec_entry_point}:\n`; emit_all fundecl.fun_body; List.iter emit_call_gc !call_gc_sites; emit_call_bound_errors (); begin match !float_constants with [] -> () | _ -> ` .DATA\n`; List.iter emit_float_constant !float_constants; float_constants := [] end (* Emission of data *) let emit_item = function Cglobal_symbol s -> ` PUBLIC {emit_symbol s}\n`; | Cdefine_symbol s -> add_def_symbol s ; `{emit_symbol s} LABEL DWORD\n` | Cdefine_label lbl -> `{emit_data_label lbl} LABEL DWORD\n` | Cint8 n -> ` BYTE {emit_int n}\n` | Cint16 n -> ` WORD {emit_int n}\n` | Cint n -> ` DWORD {emit_nativeint n}\n` | Cint32 n -> ` DWORD {emit_nativeint n}\n` | Csingle f -> ` REAL4 {emit_float f}\n` | Cdouble f -> ` REAL8 {emit_float f}\n` | Csymbol_address s -> add_used_symbol s ; ` DWORD {emit_symbol s}\n` | Clabel_address lbl -> ` DWORD {emit_data_label lbl}\n` | Cstring s -> emit_bytes_directive " BYTE " s | Cskip n -> if n > 0 then ` BYTE {emit_int n} DUP (?)\n` | Calign n -> emit_align n let data l = ` .DATA\n`; List.iter emit_item l (* Beginning / end of an assembly file *) let begin_assembly() = `.386\n`; ` .MODEL FLAT\n\n`; ` EXTERN _caml_young_ptr: DWORD\n`; ` EXTERN _caml_young_limit: DWORD\n`; ` EXTERN _caml_exception_pointer: DWORD\n`; ` EXTERN _caml_extra_params: DWORD\n`; ` EXTERN _caml_call_gc: PROC\n`; ` EXTERN _caml_c_call: PROC\n`; ` EXTERN _caml_allocN: PROC\n`; ` EXTERN _caml_alloc1: PROC\n`; ` EXTERN _caml_alloc2: PROC\n`; ` EXTERN _caml_alloc3: PROC\n`; ` EXTERN _caml_ml_array_bound_error: PROC\n`; ` EXTERN _caml_raise_exn: PROC\n`; ` .DATA\n`; let lbl_begin = Compilenv.make_symbol (Some "data_begin") in add_def_symbol lbl_begin; ` PUBLIC {emit_symbol lbl_begin}\n`; `{emit_symbol lbl_begin} LABEL DWORD\n`; ` .CODE\n`; let lbl_begin = Compilenv.make_symbol (Some "code_begin") in add_def_symbol lbl_begin; ` PUBLIC {emit_symbol lbl_begin}\n`; `{emit_symbol lbl_begin} LABEL DWORD\n` let end_assembly() = ` .CODE\n`; let lbl_end = Compilenv.make_symbol (Some "code_end") in add_def_symbol lbl_end; ` PUBLIC {emit_symbol lbl_end}\n`; `{emit_symbol lbl_end} LABEL DWORD\n`; ` .DATA\n`; let lbl_end = Compilenv.make_symbol (Some "data_end") in add_def_symbol lbl_end; ` PUBLIC {emit_symbol lbl_end}\n`; `{emit_symbol lbl_end} LABEL DWORD\n`; ` DWORD 0\n`; let lbl = Compilenv.make_symbol (Some "frametable") in add_def_symbol lbl; ` PUBLIC {emit_symbol lbl}\n`; `{emit_symbol lbl}`; emit_frames { efa_label = (fun l -> ` DWORD {emit_label l}\n`); efa_16 = (fun n -> ` WORD {emit_int n}\n`); efa_32 = (fun n -> ` DWORD {emit_int32 n}\n`); efa_word = (fun n -> ` DWORD {emit_int n}\n`); efa_align = emit_align; efa_label_rel = (fun lbl ofs -> ` DWORD {emit_label lbl} - THIS BYTE + {emit_int32 ofs}\n`); efa_def_label = (fun l -> `{emit_label l} LABEL DWORD\n`); efa_string = (fun s -> emit_bytes_directive " BYTE " (s ^ "\000")) }; `\n;External functions\n\n`; StringSet.iter (fun s -> if not (StringSet.mem s !symbols_defined) then ` EXTERN {emit_symbol s}: PROC\n`) !symbols_used; symbols_used := StringSet.empty; symbols_defined := StringSet.empty; `END\n`