(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1998 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* $Id$ *) (* Emission of ARM assembly code *) open Misc open Cmm open Arch open Proc open Reg open Mach open Linearize open Emitaux (* Tradeoff between code size and code speed *) let fastcode_flag = ref true (* Output a label *) let emit_label lbl = emit_string ".L"; emit_int lbl (* Output a symbol *) let emit_symbol s = Emitaux.emit_symbol '$' s (* Output a pseudo-register *) let emit_reg r = match r.loc with Reg r -> emit_string (register_name r) | _ -> fatal_error "Emit_arm.emit_reg" (* Output the next register after the given pseudo-register *) let emit_next_reg r = match r.loc with Reg r -> emit_string (register_name(r + 1)) | _ -> fatal_error "Emit_arm.emit_next_reg" (* Layout of the stack frame *) let stack_offset = ref 0 let frame_size () = !stack_offset + 4 * num_stack_slots.(0) + 8 * num_stack_slots.(1) + (if !contains_calls then 4 else 0) let slot_offset loc cl = match loc with Incoming n -> frame_size() + n | Local n -> if cl = 0 then !stack_offset + num_stack_slots.(1) * 8 + n * 4 else !stack_offset + n * 8 | Outgoing n -> n (* Output a stack reference *) let emit_stack r = match r.loc with Stack s -> let ofs = slot_offset s (register_class r) in `[sp, #{emit_int ofs}]` | _ -> fatal_error "Emit_arm.emit_stack" (* Output an addressing mode *) let emit_addressing addr r n = match addr with Iindexed ofs -> `[{emit_reg r.(n)}, #{emit_int ofs}]` (* Record live pointers at call points *) type frame_descr = { fd_lbl: int; (* Return address *) fd_frame_size: int; (* Size of stack frame *) fd_live_offset: int list } (* Offsets/regs of live addresses *) let frame_descriptors = ref([] : frame_descr list) let record_frame live = let lbl = new_label() in let live_offset = ref [] in Reg.Set.iter (function {typ = Addr; loc = Reg r} -> live_offset := (r lsl 1) + 1 :: !live_offset | {typ = Addr; loc = Stack s} as reg -> live_offset := slot_offset s (register_class reg) :: !live_offset | _ -> ()) live; frame_descriptors := { fd_lbl = lbl; fd_frame_size = frame_size(); fd_live_offset = !live_offset } :: !frame_descriptors; `{emit_label lbl}:` let emit_frame fd = ` .word {emit_label fd.fd_lbl} + 4\n`; ` .short {emit_int fd.fd_frame_size}\n`; ` .short {emit_int (List.length fd.fd_live_offset)}\n`; List.iter (fun n -> ` .short {emit_int n}\n`) fd.fd_live_offset; ` .align 2\n` (* Names of various instructions *) let name_for_comparison = function Isigned Ceq -> "eq" | Isigned Cne -> "ne" | Isigned Cle -> "le" | Isigned Cge -> "ge" | Isigned Clt -> "lt" | Isigned Cgt -> "gt" | Iunsigned Ceq -> "eq" | Iunsigned Cne -> "ne" | Iunsigned Cle -> "ls" | Iunsigned Cge -> "cs" | Iunsigned Clt -> "cc" | Iunsigned Cgt -> "hi" let name_for_float_comparison cmp neg = match cmp with Ceq -> if neg then "ne" else "eq" | Cne -> if neg then "eq" else "ne" | Cle -> if neg then "hi" else "ls" | Cge -> if neg then "lt" else "ge" | Clt -> if neg then "pl" else "mi" | Cgt -> if neg then "le" else "gt" let name_for_int_operation = function Iadd -> "add" | Isub -> "sub" | Imul -> "mul" | Iand -> "and" | Ior -> "orr" | Ixor -> "eor" | _ -> assert false let name_for_shift_operation = function Ilsl -> "lsl" | Ilsr -> "lsr" | Iasr -> "asr" | _ -> assert false let name_for_shift_int_operation = function Ishiftadd -> "add" | Ishiftsub -> "sub" | Ishiftsubrev -> "rsb" let name_for_float_operation = function Inegf -> "mnfd" | Iabsf -> "absd" | Iaddf -> "adfd" | Isubf -> "sufd" | Imulf -> "mufd" | Idivf -> "dvfd" | Ifloatofint -> "fltd" | Iintoffloat -> "fixz" | _ -> assert false (* Recognize immediate operands *) (* Immediate operands are 8-bit immediate values, zero-extended, and rotated right by 0, 2, 4, ... 30 bits. We check only with 8-bit values shifted left 0 to 24 bits. *) let rec is_immed n shift = shift <= 24 && (Nativeint.logand n (Nativeint.shift_left (Nativeint.of_int 0xFF) shift) = n || is_immed n (shift + 2)) let is_immediate n = is_immed n 0 (* General functional to decompose a non-immediate integer constant into 8-bit chunks shifted left 0 ... 24 bits *) let decompose_intconst n fn = let i = ref n in let shift = ref 0 in let ninstr = ref 0 in while !i <> Nativeint.zero do if Nativeint.to_int (Nativeint.shift_right !i !shift) land 3 = 0 then shift := !shift + 2 else begin let mask = Nativeint.shift_left (Nativeint.of_int 0xFF) !shift in let bits = Nativeint.logand !i mask in fn bits; shift := !shift + 8; i := Nativeint.sub !i bits; incr ninstr end done; !ninstr (* Emit a non-immediate integer constant *) let emit_complex_intconst r n = let first = ref true in decompose_intconst n (fun bits -> if !first then ` mov {emit_reg r}, #{emit_nativeint bits} @ {emit_nativeint n}\n` else ` add {emit_reg r}, {emit_reg r}, #{emit_nativeint bits}\n`; first := false) (* Adjust sp (up or down) by the given byte amount *) let emit_stack_adjustment instr n = decompose_intconst (Nativeint.of_int n) (fun bits -> ` {emit_string instr} sp, sp, #{emit_nativeint !bits}\n`) (* Adjust alloc_ptr down by the given byte amount *) let emit_alloc_decrement n = decompose_intconst (Nativeint.of_int n) (fun bits -> ` sub alloc_ptr, alloc_ptr, #{emit_nativeint !bits}\n`) (* Name of current function *) let function_name = ref "" (* Entry point for tail recursive calls *) let tailrec_entry_point = ref 0 (* Table of symbols referenced *) let symbol_constants = (Hashtbl.create 11 : (string, int) Hashtbl.t) (* Table of floating-point literals *) let float_constants = (Hashtbl.create 11 : (string, int) Hashtbl.t) (* Total space (in word) occupied by pending literals *) let num_literals = ref 0 (* True if we've at least one pending float literal *) let pending_float = ref false (* Label a symbol or float constant *) let label_constant tbl s size = try Hashtbl.find tbl s with Not_found -> let lbl = new_label() in Hashtbl.add tbl s lbl; num_literals := !num_literals + size; lbl (* Emit all pending constants *) let emit_constants () = Hashtbl.iter (fun s lbl -> `{emit_label lbl}: .word {emit_symbol s}\n`) symbol_constants; Hashtbl.iter (fun s lbl -> `{emit_label lbl}: .double {emit_string s}\n`) float_constants; Hashtbl.clear symbol_constants; Hashtbl.clear float_constants; num_literals := 0; pending_float := false (* Output the assembly code for an instruction *) let emit_instr i = match i.desc with Lend -> 0 | Lop(Imove | Ispill | Ireload) -> let src = i.arg.(0) and dst = i.res.(0) in if src.loc = dst.loc then 0 else begin match (src, dst) with {loc = Reg rs; typ = Int|Addr}, {loc = Reg rd; typ = Int|Addr} -> ` mov {emit_reg dst}, {emit_reg src}\n`; 1 | {loc = Reg rs; typ = Float}, {loc = Reg rd; typ = Float} -> ` mvfd {emit_reg dst}, {emit_reg src}\n`; 1 | {loc = Reg rs; typ = Float}, {loc = Reg rd; typ = Int|Addr} -> ` stfd {emit_reg src}, [sp, #-8]!\n`; ` ldmfd sp!, \{{emit_reg dst}, {emit_next_reg dst}}\n`; 2 | {loc = Reg rs; typ = Int|Addr}, {loc = Stack sd} -> ` str {emit_reg src}, {emit_stack dst}\n`; 1 | {loc = Reg rs; typ = Float}, {loc = Stack sd} -> ` stfd {emit_reg src}, {emit_stack dst}\n`; 1 | {loc = Stack ss; typ = Int|Addr}, {loc = Reg rd} -> ` ldr {emit_reg dst}, {emit_stack src}\n`; 1 | {loc = Stack ss; typ = Float}, {loc = Reg rd} -> ` ldfd {emit_reg dst}, {emit_stack src}\n`; 1 | _ -> assert false end | Lop(Iconst_int n) -> let r = i.res.(0) in let nr = Nativeint.lognot n in if is_immediate n then begin ` mov {emit_reg r}, #{emit_nativeint n}\n`; 1 end else if is_immediate nr then begin ` mvn {emit_reg r}, #{emit_nativeint nr}\n`; 1 end else emit_complex_intconst r n | Lop(Iconst_float s) -> if float_of_string s = 0.0 then ` mvfd {emit_reg i.res.(0)}, #0.0\n` else begin let lbl = label_constant float_constants s 2 in pending_float := true; ` ldfd {emit_reg i.res.(0)}, {emit_label lbl} @ {emit_string s}\n` end; 1 | Lop(Iconst_symbol s) -> let lbl = label_constant symbol_constants s 1 in ` ldr {emit_reg i.res.(0)}, {emit_label lbl} @ {emit_symbol s}\n`; 1 | Lop(Icall_ind) -> ` mov lr, pc\n`; `{record_frame i.live} mov pc, {emit_reg i.arg.(0)}\n`; 2 | Lop(Icall_imm s) -> `{record_frame i.live} bl {emit_symbol s}\n`; 1 | Lop(Itailcall_ind) -> let n = frame_size() in if !contains_calls then ` ldr lr, [sp, #{emit_int (n-4)}]\n`; if n > 0 then ` add sp, sp, #{emit_int n}\n`; ` mov pc, {emit_reg i.arg.(0)}\n`; 3 | Lop(Itailcall_imm s) -> if s = !function_name then begin ` b {emit_label !tailrec_entry_point}\n`; 1 end else begin let n = frame_size() in if !contains_calls then ` ldr lr, [sp, #{emit_int (n-4)}]\n`; if n > 0 then ` add sp, sp, #{emit_int n}\n`; ` b {emit_symbol s}\n`; 3 end | Lop(Iextcall(s, alloc)) -> if alloc then begin let lbl = label_constant symbol_constants s 1 in ` ldr r10, {emit_label lbl} @ {emit_symbol s}\n`; `{record_frame i.live} bl caml_c_call\n`; 2 end else begin ` bl {emit_symbol s}\n`; 1 end | Lop(Istackoffset n) -> let ninstr = if n >= 0 then emit_stack_adjustment "sub" n else emit_stack_adjustment "add" (-n) in stack_offset := !stack_offset + n; ninstr | Lop(Iload(Single, addr)) -> let r = i.res.(0) in ` ldfs {emit_reg r}, {emit_addressing addr i.arg 0}\n`; ` mvfd {emit_reg r}, {emit_reg r}\n`; 2 | Lop(Iload(size, addr)) -> let r = i.res.(0) in let instr = match size with Byte_unsigned -> "ldrb" | Byte_signed -> "ldrsb" | Sixteen_unsigned -> "ldrh" | Sixteen_signed -> "ldrsh" | Double | Double_u -> "ldfd" | _ (* Word | Thirtytwo_signed | Thirtytwo_unsigned *) -> "ldr" in ` {emit_string instr} {emit_reg r}, {emit_addressing addr i.arg 0}\n`; 1 | Lop(Istore(Single, addr)) -> let r = i.arg.(0) in ` mvfs f7, {emit_reg r}\n`; ` stfs f7, {emit_addressing addr i.arg 1}\n`; 2 | Lop(Istore(size, addr)) -> let r = i.arg.(0) in let instr = match size with Byte_unsigned | Byte_signed -> "strb" | Sixteen_unsigned | Sixteen_signed -> "strh" | Double | Double_u -> "stfd" | _ (* Word | Thirtytwo_signed | Thirtytwo_unsigned *) -> "str" in ` {emit_string instr} {emit_reg r}, {emit_addressing addr i.arg 1}\n`; 1 | Lop(Ialloc n) -> if !fastcode_flag then begin ` ldr r10, [alloc_limit, #0]\n`; let ni = emit_alloc_decrement n in ` cmp alloc_ptr, r10\n`; `{record_frame i.live} blcc caml_call_gc\n`; ` add {emit_reg i.res.(0)}, alloc_ptr, #4\n`; 4 + ni end else if n = 8 || n = 12 || n = 16 then begin `{record_frame i.live} bl caml_alloc{emit_int ((n-4)/4)}\n`; ` add {emit_reg i.res.(0)}, alloc_ptr, #4\n`; 2 end else begin let nn = Nativeint.of_int n in let ni = if is_immediate nn then begin ` mov r10, #{emit_int n}\n`; 1 end else emit_complex_intconst (phys_reg 8 (*r10*)) nn in `{record_frame i.live} bl caml_alloc\n`; ` add {emit_reg i.res.(0)}, alloc_ptr, #4\n`; 2 + ni end | Lop(Iintop(Ilsl | Ilsr | Iasr as op)) -> let shift = name_for_shift_operation op in ` mov {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_string shift} {emit_reg i.arg.(1)}\n`; 1 | Lop(Iintop(Icomp cmp)) -> let comp = name_for_comparison cmp in ` cmp {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`; ` mov {emit_reg i.res.(0)}, #0\n`; ` mov{emit_string comp} {emit_reg i.res.(0)}, #1\n`; 3 | Lop(Iintop(Icheckbound)) -> ` cmp {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`; ` blls caml_array_bound_error\n`; 2 | Lop(Iintop op) -> let instr = name_for_int_operation op in ` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`; 1 | Lop(Iintop_imm(Idiv, n)) -> (* n is a power of 2 *) let l = Misc.log2 n in let r = i.res.(0) in ` movs {emit_reg r}, {emit_reg i.arg.(0)}\n`; if n <= 256 then ` addlt {emit_reg r}, {emit_reg r}, #{emit_int (n-1)}\n` else begin ` addlt {emit_reg r}, {emit_reg r}, #{emit_int n}\n`; ` sublt {emit_reg r}, {emit_reg r}, #1\n` end; ` mov {emit_reg r}, {emit_reg r}, asr #{emit_int l}\n`; 4 | Lop(Iintop_imm(Imod, n)) -> (* n is a power of 2 *) let l = Misc.log2 n in let a = i.arg.(0) in let r = i.res.(0) in let lbl = new_label() in ` cmp {emit_reg a}, #0\n`; ` mov {emit_reg r}, {emit_reg a}, lsl #{emit_int (32-l)}\n`; ` mov {emit_reg r}, {emit_reg r}, lsr #{emit_int (32-l)}\n`; ` bpl {emit_label lbl}\n`; ` cmp {emit_reg r}, #0\n`; ` subne {emit_reg r}, {emit_reg r}, #{emit_int n}\n`; `{emit_label lbl}:\n`; 6 | Lop(Iintop_imm((Ilsl | Ilsr | Iasr as op), n)) -> let shift = name_for_shift_operation op in ` mov {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_string shift} #{emit_int n}\n`; 1 | Lop(Iintop_imm(Icomp cmp, n)) -> let comp = name_for_comparison cmp in ` cmp {emit_reg i.arg.(0)}, #{emit_int n}\n`; ` mov {emit_reg i.res.(0)}, #0\n`; ` mov{emit_string comp} {emit_reg i.res.(0)}, #1\n`; 3 | Lop(Iintop_imm(Icheckbound, n)) -> ` cmp {emit_reg i.arg.(0)}, #{emit_int n}\n`; ` blls caml_array_bound_error\n`; 2 | Lop(Iintop_imm(op, n)) -> let instr = name_for_int_operation op in ` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, #{emit_int n}\n`; 1 | Lop(Inegf | Iabsf | Ifloatofint | Iintoffloat as op) -> let instr = name_for_float_operation op in ` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}\n`; 1 | Lop(Iaddf | Isubf | Imulf | Idivf as op) -> let instr = name_for_float_operation op in ` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`; 1 | Lop(Ispecific(Ishiftarith(op, shift))) -> let instr = name_for_shift_int_operation op in ` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}`; if shift >= 0 then `, lsl #{emit_int shift}\n` else `, asr #{emit_int (-shift)}\n`; 1 | Lop(Ispecific(Ishiftcheckbound shift)) -> ` cmp {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}, lsr #{emit_int shift}\n`; ` blcs caml_array_bound_error\n`; 2 | Lop(Ispecific(Irevsubimm n)) -> ` rsb {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, #{emit_int n}\n`; 1 | Lreloadretaddr -> let n = frame_size() in ` ldr lr, [sp, #{emit_int(n-4)}]\n`; 1 | Lreturn -> let n = frame_size() in if n > 0 then ` add sp, sp, #{emit_int n}\n`; ` mov pc, lr\n`; 2 | Llabel lbl -> `{emit_label lbl}:\n`; 0 | Lbranch lbl -> ` b {emit_label lbl}\n`; 1 | Lcondbranch(tst, lbl) -> begin match tst with Itruetest -> ` cmp {emit_reg i.arg.(0)}, #0\n`; ` bne {emit_label lbl}\n` | Ifalsetest -> ` cmp {emit_reg i.arg.(0)}, #0\n`; ` beq {emit_label lbl}\n` | Iinttest cmp -> ` cmp {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`; let comp = name_for_comparison cmp in ` b{emit_string comp} {emit_label lbl}\n` | Iinttest_imm(cmp, n) -> ` cmp {emit_reg i.arg.(0)}, #{emit_int n}\n`; let comp = name_for_comparison cmp in ` b{emit_string comp} {emit_label lbl}\n` | Ifloattest(cmp, neg) -> begin match cmp with Ceq | Cne -> ` cmf {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n` | _ -> ` cmfe {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n` end; let comp = name_for_float_comparison cmp neg in ` b{emit_string comp} {emit_label lbl}\n` | Ioddtest -> ` tst {emit_reg i.arg.(0)}, #1\n`; ` bne {emit_label lbl}\n` | Ieventest -> ` tst {emit_reg i.arg.(0)}, #1\n`; ` beq {emit_label lbl}\n` end; 2 | Lcondbranch3(lbl0, lbl1, lbl2) -> ` cmp {emit_reg i.arg.(0)}, #1\n`; begin match lbl0 with None -> () | Some lbl -> ` blt {emit_label lbl}\n` end; begin match lbl1 with None -> () | Some lbl -> ` beq {emit_label lbl}\n` end; begin match lbl2 with None -> () | Some lbl -> ` bgt {emit_label lbl}\n` end; 4 | Lswitch jumptbl -> ` ldr pc, [pc, {emit_reg i.arg.(0)}, lsl #2]\n`; ` mov r0, r0\n`; (* nop *) for i = 0 to Array.length jumptbl - 1 do ` .word {emit_label jumptbl.(i)}\n` done; 2 + Array.length jumptbl | Lsetuptrap lbl -> ` bl {emit_label lbl}\n`; 1 | Lpushtrap -> stack_offset := !stack_offset + 8; ` stmfd sp!, \{trap_ptr, lr}\n`; ` mov trap_ptr, sp\n`; 2 | Lpoptrap -> ` ldmfd sp!, \{trap_ptr, lr}\n`; stack_offset := !stack_offset - 8; 1 | Lraise -> ` mov sp, trap_ptr\n`; ` ldmfd sp!, \{trap_ptr, pc}\n`; 2 (* Emission of an instruction sequence *) let no_fallthrough = function Lop(Itailcall_ind | Itailcall_imm _) -> true | Lreturn -> true | Lbranch _ -> true | Lswitch _ -> true | Lraise -> true | _ -> false let rec emit_all ninstr i = if i.desc = Lend then () else begin let n = emit_instr i in let ninstr' = ninstr + n in let limit = (if !pending_float then 127 else 511) - !num_literals in if ninstr' >= limit - 32 && no_fallthrough i.desc then begin emit_constants(); emit_all 0 i.next end else if ninstr' >= limit then begin let lbl = new_label() in ` b {emit_label lbl}\n`; emit_constants(); `{emit_label lbl}:\n`; emit_all 0 i.next end else emit_all ninstr' i.next end (* Emission of a function declaration *) let fundecl fundecl = function_name := fundecl.fun_name; fastcode_flag := fundecl.fun_fast; tailrec_entry_point := new_label(); stack_offset := 0; Hashtbl.clear symbol_constants; Hashtbl.clear float_constants; ` .text\n`; ` .align 0\n`; ` .global {emit_symbol fundecl.fun_name}\n`; `{emit_symbol fundecl.fun_name}:\n`; let n = frame_size() in if n > 0 then ` sub sp, sp, #{emit_int n}\n`; if !contains_calls then ` str lr, [sp, #{emit_int(n - 4)}]\n`; `{emit_label !tailrec_entry_point}:\n`; emit_all 0 fundecl.fun_body; emit_constants() (* Emission of data *) let emit_item = function Cdefine_symbol s -> ` .global {emit_symbol s}\n`; `{emit_symbol s}:\n` | Cdefine_label lbl -> `{emit_label (10000 + lbl)}:\n` | Cint8 n -> ` .byte {emit_int n}\n` | Cint16 n -> ` .short {emit_int n}\n` | Cint32 n -> ` .word {emit_nativeint n}\n` | Cint n -> ` .word {emit_nativeint n}\n` | Csingle f -> ` .float {emit_string f}\n` | Cdouble f -> ` .align 0\n`; ` .double {emit_string f}\n` | Csymbol_address s -> ` .word {emit_symbol s}\n` | Clabel_address lbl -> ` .word {emit_label (10000 + lbl)}\n` | Cstring s -> emit_string_directive " .ascii " s | Cskip n -> if n > 0 then ` .space {emit_int n}\n` | Calign n -> ` .align {emit_int(Misc.log2 n)}\n` let data l = ` .data\n`; List.iter emit_item l (* Beginning / end of an assembly file *) let begin_assembly() = `trap_ptr .req r11\n`; `alloc_ptr .req r8\n`; `alloc_limit .req r9\n`; `sp .req r13\n`; `lr .req r14\n`; `pc .req r15\n`; let lbl_begin = Compilenv.current_unit_name() ^ "_data_begin" in ` .data\n`; ` .global {emit_symbol lbl_begin}\n`; `{emit_symbol lbl_begin}:\n`; let lbl_begin = Compilenv.current_unit_name() ^ "_code_begin" in ` .text\n`; ` .global {emit_symbol lbl_begin}\n`; `{emit_symbol lbl_begin}:\n` let end_assembly () = let lbl_end = Compilenv.current_unit_name() ^ "_code_end" in ` .text\n`; ` .global {emit_symbol lbl_end}\n`; `{emit_symbol lbl_end}:\n`; let lbl_end = Compilenv.current_unit_name() ^ "_data_end" in ` .data\n`; ` .global {emit_symbol lbl_end}\n`; `{emit_symbol lbl_end}:\n`; ` .word 0\n`; let lbl = Compilenv.current_unit_name() ^ "_frametable" in ` .data\n`; ` .global {emit_symbol lbl}\n`; `{emit_symbol lbl}:\n`; ` .word {emit_int (List.length !frame_descriptors)}\n`; List.iter emit_frame !frame_descriptors; frame_descriptors := []