/***********************************************************************/ /* */ /* Objective Caml */ /* */ /* Damien Doligez, projet Para, INRIA Rocquencourt */ /* */ /* Copyright 1996 Institut National de Recherche en Informatique et */ /* en Automatique. All rights reserved. This file is distributed */ /* under the terms of the GNU Library General Public License, with */ /* the special exception on linking described in file ../LICENSE. */ /* */ /***********************************************************************/ /* $Id$ */ #include "alloc.h" #include "compact.h" #include "custom.h" #include "finalise.h" #include "freelist.h" #include "gc.h" #include "gc_ctrl.h" #include "major_gc.h" #include "minor_gc.h" #include "misc.h" #include "mlvalues.h" #ifdef NATIVE_CODE #include "stack.h" #else #include "stacks.h" #endif #ifndef NATIVE_CODE extern uintnat caml_max_stack_size; /* defined in stacks.c */ #endif double caml_stat_minor_words = 0.0, caml_stat_promoted_words = 0.0, caml_stat_major_words = 0.0; intnat caml_stat_minor_collections = 0, caml_stat_major_collections = 0, caml_stat_heap_size = 0, /* bytes */ caml_stat_top_heap_size = 0, /* bytes */ caml_stat_compactions = 0, caml_stat_heap_chunks = 0; extern uintnat caml_major_heap_increment; /* bytes; see major_gc.c */ extern uintnat caml_percent_free; /* see major_gc.c */ extern uintnat caml_percent_max; /* see compact.c */ extern uintnat caml_allocation_policy; /* see freelist.c */ #define Next(hp) ((hp) + Bhsize_hp (hp)) #ifdef DEBUG /* Check that [v]'s header looks good. [v] must be a block in the heap. */ static void check_head (value v) { Assert (Is_block (v)); Assert (Is_in_heap (v)); Assert (Wosize_val (v) != 0); Assert (Color_hd (Hd_val (v)) != Caml_blue); Assert (Is_in_heap (v)); if (Tag_val (v) == Infix_tag){ int offset = Wsize_bsize (Infix_offset_val (v)); value trueval = Val_op (&Field (v, -offset)); Assert (Tag_val (trueval) == Closure_tag); Assert (Wosize_val (trueval) > offset); Assert (Is_in_heap (&Field (trueval, Wosize_val (trueval) - 1))); }else{ Assert (Is_in_heap (&Field (v, Wosize_val (v) - 1))); } if (Tag_val (v) == Double_tag){ Assert (Wosize_val (v) == Double_wosize); }else if (Tag_val (v) == Double_array_tag){ Assert (Wosize_val (v) % Double_wosize == 0); } } static void check_block (char *hp) { mlsize_t i; value v = Val_hp (hp); value f; check_head (v); switch (Tag_hp (hp)){ case Abstract_tag: break; case String_tag: break; case Double_tag: Assert (Wosize_val (v) == Double_wosize); break; case Double_array_tag: Assert (Wosize_val (v) % Double_wosize == 0); break; case Custom_tag: Assert (!Is_in_heap (Custom_ops_val (v))); break; case Infix_tag: Assert (0); break; default: Assert (Tag_hp (hp) < No_scan_tag); for (i = 0; i < Wosize_hp (hp); i++){ f = Field (v, i); if (Is_block (f) && Is_in_heap (f)){ check_head (f); Assert (Color_val (f) != Caml_blue); } } } } #endif /* DEBUG */ /* Check the heap structure (if compiled in debug mode) and gather statistics; return the stats if [returnstats] is true, otherwise return [Val_unit]. */ static value heap_stats (int returnstats) { CAMLparam0 (); intnat live_words = 0, live_blocks = 0, free_words = 0, free_blocks = 0, largest_free = 0, fragments = 0, heap_chunks = 0; char *chunk = caml_heap_start, *chunk_end; char *cur_hp, *prev_hp; header_t cur_hd; #ifdef DEBUG caml_gc_message (-1, "### O'Caml runtime: heap check ###\n", 0); #endif while (chunk != NULL){ ++ heap_chunks; chunk_end = chunk + Chunk_size (chunk); prev_hp = NULL; cur_hp = chunk; while (cur_hp < chunk_end){ cur_hd = Hd_hp (cur_hp); Assert (Next (cur_hp) <= chunk_end); switch (Color_hd (cur_hd)){ case Caml_white: if (Wosize_hd (cur_hd) == 0){ ++ fragments; Assert (prev_hp == NULL || Color_hp (prev_hp) != Caml_blue || cur_hp == caml_gc_sweep_hp); }else{ if (caml_gc_phase == Phase_sweep && cur_hp >= caml_gc_sweep_hp){ ++ free_blocks; free_words += Whsize_hd (cur_hd); if (Whsize_hd (cur_hd) > largest_free){ largest_free = Whsize_hd (cur_hd); } }else{ ++ live_blocks; live_words += Whsize_hd (cur_hd); #ifdef DEBUG check_block (cur_hp); #endif } } break; case Caml_gray: case Caml_black: Assert (Wosize_hd (cur_hd) > 0); ++ live_blocks; live_words += Whsize_hd (cur_hd); #ifdef DEBUG check_block (cur_hp); #endif break; case Caml_blue: Assert (Wosize_hd (cur_hd) > 0); ++ free_blocks; free_words += Whsize_hd (cur_hd); if (Whsize_hd (cur_hd) > largest_free){ largest_free = Whsize_hd (cur_hd); } /* not true any more with big heap chunks Assert (prev_hp == NULL || (Color_hp (prev_hp) != Caml_blue && Wosize_hp (prev_hp) > 0) || cur_hp == caml_gc_sweep_hp); Assert (Next (cur_hp) == chunk_end || (Color_hp (Next (cur_hp)) != Caml_blue && Wosize_hp (Next (cur_hp)) > 0) || (Whsize_hd (cur_hd) + Wosize_hp (Next (cur_hp)) > Max_wosize) || Next (cur_hp) == caml_gc_sweep_hp); */ break; } prev_hp = cur_hp; cur_hp = Next (cur_hp); } Assert (cur_hp == chunk_end); chunk = Chunk_next (chunk); } Assert (heap_chunks == caml_stat_heap_chunks); Assert (live_words + free_words + fragments == Wsize_bsize (caml_stat_heap_size)); if (returnstats){ CAMLlocal1 (res); /* get a copy of these before allocating anything... */ double minwords = caml_stat_minor_words + (double) Wsize_bsize (caml_young_end - caml_young_ptr); double prowords = caml_stat_promoted_words; double majwords = caml_stat_major_words + (double) caml_allocated_words; intnat mincoll = caml_stat_minor_collections; intnat majcoll = caml_stat_major_collections; intnat heap_words = Wsize_bsize (caml_stat_heap_size); intnat cpct = caml_stat_compactions; intnat top_heap_words = Wsize_bsize (caml_stat_top_heap_size); res = caml_alloc_tuple (16); Store_field (res, 0, caml_copy_double (minwords)); Store_field (res, 1, caml_copy_double (prowords)); Store_field (res, 2, caml_copy_double (majwords)); Store_field (res, 3, Val_long (mincoll)); Store_field (res, 4, Val_long (majcoll)); Store_field (res, 5, Val_long (heap_words)); Store_field (res, 6, Val_long (heap_chunks)); Store_field (res, 7, Val_long (live_words)); Store_field (res, 8, Val_long (live_blocks)); Store_field (res, 9, Val_long (free_words)); Store_field (res, 10, Val_long (free_blocks)); Store_field (res, 11, Val_long (largest_free)); Store_field (res, 12, Val_long (fragments)); Store_field (res, 13, Val_long (cpct)); Store_field (res, 14, Val_long (top_heap_words)); Store_field (res, 15, Val_long (caml_stack_usage())); CAMLreturn (res); }else{ CAMLreturn (Val_unit); } } #ifdef DEBUG void caml_heap_check (void) { heap_stats (0); } #endif CAMLprim value caml_gc_stat(value v) { Assert (v == Val_unit); return heap_stats (1); } CAMLprim value caml_gc_quick_stat(value v) { CAMLparam0 (); CAMLlocal1 (res); /* get a copy of these before allocating anything... */ double minwords = caml_stat_minor_words + (double) Wsize_bsize (caml_young_end - caml_young_ptr); double prowords = caml_stat_promoted_words; double majwords = caml_stat_major_words + (double) caml_allocated_words; intnat mincoll = caml_stat_minor_collections; intnat majcoll = caml_stat_major_collections; intnat heap_words = caml_stat_heap_size / sizeof (value); intnat top_heap_words = caml_stat_top_heap_size / sizeof (value); intnat cpct = caml_stat_compactions; intnat heap_chunks = caml_stat_heap_chunks; res = caml_alloc_tuple (16); Store_field (res, 0, caml_copy_double (minwords)); Store_field (res, 1, caml_copy_double (prowords)); Store_field (res, 2, caml_copy_double (majwords)); Store_field (res, 3, Val_long (mincoll)); Store_field (res, 4, Val_long (majcoll)); Store_field (res, 5, Val_long (heap_words)); Store_field (res, 6, Val_long (heap_chunks)); Store_field (res, 7, Val_long (0)); Store_field (res, 8, Val_long (0)); Store_field (res, 9, Val_long (0)); Store_field (res, 10, Val_long (0)); Store_field (res, 11, Val_long (0)); Store_field (res, 12, Val_long (0)); Store_field (res, 13, Val_long (cpct)); Store_field (res, 14, Val_long (top_heap_words)); Store_field (res, 15, Val_long (caml_stack_usage())); CAMLreturn (res); } CAMLprim value caml_gc_counters(value v) { CAMLparam0 (); /* v is ignored */ CAMLlocal1 (res); /* get a copy of these before allocating anything... */ double minwords = caml_stat_minor_words + (double) Wsize_bsize (caml_young_end - caml_young_ptr); double prowords = caml_stat_promoted_words; double majwords = caml_stat_major_words + (double) caml_allocated_words; res = caml_alloc_tuple (3); Store_field (res, 0, caml_copy_double (minwords)); Store_field (res, 1, caml_copy_double (prowords)); Store_field (res, 2, caml_copy_double (majwords)); CAMLreturn (res); } CAMLprim value caml_gc_get(value v) { CAMLparam0 (); /* v is ignored */ CAMLlocal1 (res); res = caml_alloc_tuple (7); Store_field (res, 0, Val_long (Wsize_bsize (caml_minor_heap_size))); /* s */ Store_field (res, 1,Val_long(Wsize_bsize(caml_major_heap_increment)));/* i */ Store_field (res, 2, Val_long (caml_percent_free)); /* o */ Store_field (res, 3, Val_long (caml_verb_gc)); /* v */ Store_field (res, 4, Val_long (caml_percent_max)); /* O */ #ifndef NATIVE_CODE Store_field (res, 5, Val_long (caml_max_stack_size)); /* l */ #else Store_field (res, 5, Val_long (0)); #endif Store_field (res, 6, Val_long (caml_allocation_policy)); /* a */ CAMLreturn (res); } #define Max(x,y) ((x) < (y) ? (y) : (x)) static uintnat norm_pfree (uintnat p) { return Max (p, 1); } static uintnat norm_pmax (uintnat p) { return p; } static intnat norm_heapincr (uintnat i) { #define Psv (Wsize_bsize (Page_size)) i = ((i + Psv - 1) / Psv) * Psv; if (i < Heap_chunk_min) i = Heap_chunk_min; return i; } static intnat norm_minsize (intnat s) { if (s < Minor_heap_min) s = Minor_heap_min; if (s > Minor_heap_max) s = Minor_heap_max; return s; } static intnat norm_policy (intnat p) { if (p >= 0 && p <= 1){ return p; }else{ return 1; } } CAMLprim value caml_gc_set(value v) { uintnat newpf, newpm; asize_t newheapincr; asize_t newminsize; uintnat newpolicy; caml_verb_gc = Long_val (Field (v, 3)); #ifndef NATIVE_CODE caml_change_max_stack_size (Long_val (Field (v, 5))); #endif newpf = norm_pfree (Long_val (Field (v, 2))); if (newpf != caml_percent_free){ caml_percent_free = newpf; caml_gc_message (0x20, "New space overhead: %d%%\n", caml_percent_free); } newpm = norm_pmax (Long_val (Field (v, 4))); if (newpm != caml_percent_max){ caml_percent_max = newpm; caml_gc_message (0x20, "New max overhead: %d%%\n", caml_percent_max); } newheapincr = Bsize_wsize (norm_heapincr (Long_val (Field (v, 1)))); if (newheapincr != caml_major_heap_increment){ caml_major_heap_increment = newheapincr; caml_gc_message (0x20, "New heap increment size: %luk bytes\n", caml_major_heap_increment/1024); } newpolicy = norm_policy (Long_val (Field (v, 6))); if (newpolicy != caml_allocation_policy){ caml_gc_message (0x20, "New allocation policy: %d\n", newpolicy); caml_set_allocation_policy (newpolicy); } /* Minor heap size comes last because it will trigger a minor collection (thus invalidating [v]) and it can raise [Out_of_memory]. */ newminsize = norm_minsize (Bsize_wsize (Long_val (Field (v, 0)))); if (newminsize != caml_minor_heap_size){ caml_gc_message (0x20, "New minor heap size: %luk bytes\n", newminsize/1024); caml_set_minor_heap_size (newminsize); } return Val_unit; } CAMLprim value caml_gc_minor(value v) { Assert (v == Val_unit); caml_minor_collection (); return Val_unit; } static void test_and_compact (void) { float fp; fp = 100.0 * caml_fl_cur_size / (Wsize_bsize (caml_stat_heap_size) - caml_fl_cur_size); if (fp > 999999.0) fp = 999999.0; caml_gc_message (0x200, "Estimated overhead (lower bound) = %" ARCH_INTNAT_PRINTF_FORMAT "u%%\n", (uintnat) fp); if (fp >= caml_percent_max && caml_stat_heap_chunks > 1){ caml_gc_message (0x200, "Automatic compaction triggered.\n", 0); caml_compact_heap (); } } CAMLprim value caml_gc_major(value v) { Assert (v == Val_unit); caml_gc_message (0x1, "Major GC cycle requested\n", 0); caml_empty_minor_heap (); caml_finish_major_cycle (); test_and_compact (); caml_final_do_calls (); return Val_unit; } CAMLprim value caml_gc_full_major(value v) { Assert (v == Val_unit); caml_gc_message (0x1, "Full major GC cycle requested\n", 0); caml_empty_minor_heap (); caml_finish_major_cycle (); caml_final_do_calls (); caml_empty_minor_heap (); caml_finish_major_cycle (); test_and_compact (); caml_final_do_calls (); return Val_unit; } CAMLprim value caml_gc_major_slice (value v) { Assert (Is_long (v)); caml_empty_minor_heap (); return Val_long (caml_major_collection_slice (Long_val (v))); } CAMLprim value caml_gc_compaction(value v) { Assert (v == Val_unit); caml_empty_minor_heap (); caml_finish_major_cycle (); caml_finish_major_cycle (); caml_compact_heap (); caml_final_do_calls (); return Val_unit; } void caml_init_gc (uintnat minor_size, uintnat major_size, uintnat major_incr, uintnat percent_fr, uintnat percent_m) { uintnat major_heap_size = Bsize_wsize (norm_heapincr (major_size)); caml_page_table_initialize(Bsize_wsize(minor_size) + major_heap_size); caml_set_minor_heap_size (Bsize_wsize (norm_minsize (minor_size))); caml_major_heap_increment = Bsize_wsize (norm_heapincr (major_incr)); caml_percent_free = norm_pfree (percent_fr); caml_percent_max = norm_pmax (percent_m); caml_init_major_heap (major_heap_size); caml_gc_message (0x20, "Initial minor heap size: %luk bytes\n", caml_minor_heap_size / 1024); caml_gc_message (0x20, "Initial major heap size: %luk bytes\n", major_heap_size / 1024); caml_gc_message (0x20, "Initial space overhead: %lu%%\n", caml_percent_free); caml_gc_message (0x20, "Initial max overhead: %lu%%\n", caml_percent_max); caml_gc_message (0x20, "Initial heap increment: %luk bytes\n", caml_major_heap_increment / 1024); caml_gc_message (0x20, "Initial allocation policy: %d\n", caml_allocation_policy); }