/***********************************************************************/ /* */ /* OCaml */ /* */ /* Xavier Leroy, projet Cristal, INRIA Rocquencourt */ /* */ /* Copyright 1996 Institut National de Recherche en Informatique et */ /* en Automatique. All rights reserved. This file is distributed */ /* under the terms of the GNU Library General Public License, with */ /* the special exception on linking described in file ../LICENSE. */ /* */ /***********************************************************************/ #include #include #include "alloc.h" #include "custom.h" #include "fail.h" #include "intext.h" #include "memory.h" #include "misc.h" #include "mlvalues.h" static char * parse_sign_and_base(char * p, /*out*/ int * base, /*out*/ int * sign) { *sign = 1; if (*p == '-') { *sign = -1; p++; } *base = 10; if (*p == '0') { switch (p[1]) { case 'x': case 'X': *base = 16; p += 2; break; case 'o': case 'O': *base = 8; p += 2; break; case 'b': case 'B': *base = 2; p += 2; break; } } return p; } static int parse_digit(char c) { if (c >= '0' && c <= '9') return c - '0'; else if (c >= 'A' && c <= 'F') return c - 'A' + 10; else if (c >= 'a' && c <= 'f') return c - 'a' + 10; else return -1; } static intnat parse_intnat(value s, int nbits) { char * p; uintnat res, threshold; int sign, base, d; p = parse_sign_and_base(String_val(s), &base, &sign); threshold = ((uintnat) -1) / base; d = parse_digit(*p); if (d < 0 || d >= base) caml_failwith("int_of_string"); for (p++, res = d; /*nothing*/; p++) { char c = *p; if (c == '_') continue; d = parse_digit(c); if (d < 0 || d >= base) break; /* Detect overflow in multiplication base * res */ if (res > threshold) caml_failwith("int_of_string"); res = base * res + d; /* Detect overflow in addition (base * res) + d */ if (res < (uintnat) d) caml_failwith("int_of_string"); } if (p != String_val(s) + caml_string_length(s)){ caml_failwith("int_of_string"); } if (base == 10) { /* Signed representation expected, allow -2^(nbits-1) to 2^(nbits-1) - 1 */ if (sign >= 0) { if (res >= (uintnat)1 << (nbits - 1)) caml_failwith("int_of_string"); } else { if (res > (uintnat)1 << (nbits - 1)) caml_failwith("int_of_string"); } } else { /* Unsigned representation expected, allow 0 to 2^nbits - 1 and tolerate -(2^nbits - 1) to 0 */ if (nbits < sizeof(uintnat) * 8 && res >= (uintnat)1 << nbits) caml_failwith("int_of_string"); } return sign < 0 ? -((intnat) res) : (intnat) res; } #ifdef NONSTANDARD_DIV_MOD intnat caml_safe_div(intnat p, intnat q) { uintnat ap = p >= 0 ? p : -p; uintnat aq = q >= 0 ? q : -q; uintnat ar = ap / aq; return (p ^ q) >= 0 ? ar : -ar; } intnat caml_safe_mod(intnat p, intnat q) { uintnat ap = p >= 0 ? p : -p; uintnat aq = q >= 0 ? q : -q; uintnat ar = ap % aq; return p >= 0 ? ar : -ar; } #endif value caml_bswap16_direct(value x) { return ((((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8))); } CAMLprim value caml_bswap16(value v) { intnat x = Int_val(v); return (Val_int ((((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8)))); } /* Tagged integers */ CAMLprim value caml_int_compare(value v1, value v2) { int res = (v1 > v2) - (v1 < v2); return Val_int(res); } CAMLprim value caml_int_of_string(value s) { return Val_long(parse_intnat(s, 8 * sizeof(value) - 1)); } #define FORMAT_BUFFER_SIZE 32 static char * parse_format(value fmt, char * suffix, char format_string[], char default_format_buffer[], char *conv) { int prec; char * p; char lastletter; mlsize_t len, len_suffix; /* Copy OCaml format fmt to format_string, adding the suffix before the last letter of the format */ len = caml_string_length(fmt); len_suffix = strlen(suffix); if (len + len_suffix + 1 >= FORMAT_BUFFER_SIZE) caml_invalid_argument("format_int: format too long"); memmove(format_string, String_val(fmt), len); p = format_string + len - 1; lastletter = *p; /* Compress two-letter formats, ignoring the [lnL] annotation */ if (p[-1] == 'l' || p[-1] == 'n' || p[-1] == 'L') p--; memmove(p, suffix, len_suffix); p += len_suffix; *p++ = lastletter; *p = 0; /* Determine space needed for result and allocate it dynamically if needed */ prec = 22 + 5; /* 22 digits for 64-bit number in octal + 5 extra */ for (p = String_val(fmt); *p != 0; p++) { if (*p >= '0' && *p <= '9') { prec = atoi(p) + 5; break; } } *conv = lastletter; if (prec < FORMAT_BUFFER_SIZE) return default_format_buffer; else return caml_stat_alloc(prec + 1); } CAMLprim value caml_format_int(value fmt, value arg) { char format_string[FORMAT_BUFFER_SIZE]; char default_format_buffer[FORMAT_BUFFER_SIZE]; char * buffer; char conv; value res; buffer = parse_format(fmt, ARCH_INTNAT_PRINTF_FORMAT, format_string, default_format_buffer, &conv); switch (conv) { case 'u': case 'x': case 'X': case 'o': sprintf(buffer, format_string, Unsigned_long_val(arg)); break; default: sprintf(buffer, format_string, Long_val(arg)); break; } res = caml_copy_string(buffer); if (buffer != default_format_buffer) caml_stat_free(buffer); return res; } /* 32-bit integers */ static int int32_cmp(value v1, value v2) { int32 i1 = Int32_val(v1); int32 i2 = Int32_val(v2); return (i1 > i2) - (i1 < i2); } static intnat int32_hash(value v) { return Int32_val(v); } static void int32_serialize(value v, uintnat * wsize_32, uintnat * wsize_64) { caml_serialize_int_4(Int32_val(v)); *wsize_32 = *wsize_64 = 4; } static uintnat int32_deserialize(void * dst) { *((int32 *) dst) = caml_deserialize_sint_4(); return 4; } CAMLexport struct custom_operations caml_int32_ops = { "_i", custom_finalize_default, int32_cmp, int32_hash, int32_serialize, int32_deserialize, custom_compare_ext_default }; CAMLexport value caml_copy_int32(int32 i) { value res = caml_alloc_custom(&caml_int32_ops, 4, 0, 1); Int32_val(res) = i; return res; } CAMLprim value caml_int32_neg(value v) { return caml_copy_int32(- Int32_val(v)); } CAMLprim value caml_int32_add(value v1, value v2) { return caml_copy_int32(Int32_val(v1) + Int32_val(v2)); } CAMLprim value caml_int32_sub(value v1, value v2) { return caml_copy_int32(Int32_val(v1) - Int32_val(v2)); } CAMLprim value caml_int32_mul(value v1, value v2) { return caml_copy_int32(Int32_val(v1) * Int32_val(v2)); } CAMLprim value caml_int32_div(value v1, value v2) { int32 dividend = Int32_val(v1); int32 divisor = Int32_val(v2); if (divisor == 0) caml_raise_zero_divide(); /* PR#4740: on some processors, division crashes on overflow. Implement the same behavior as for type "int". */ if (dividend == (1<<31) && divisor == -1) return v1; #ifdef NONSTANDARD_DIV_MOD return caml_copy_int32(caml_safe_div(dividend, divisor)); #else return caml_copy_int32(dividend / divisor); #endif } CAMLprim value caml_int32_mod(value v1, value v2) { int32 dividend = Int32_val(v1); int32 divisor = Int32_val(v2); if (divisor == 0) caml_raise_zero_divide(); /* PR#4740: on some processors, modulus crashes if division overflows. Implement the same behavior as for type "int". */ if (dividend == (1<<31) && divisor == -1) return caml_copy_int32(0); #ifdef NONSTANDARD_DIV_MOD return caml_copy_int32(caml_safe_mod(dividend, divisor)); #else return caml_copy_int32(dividend % divisor); #endif } CAMLprim value caml_int32_and(value v1, value v2) { return caml_copy_int32(Int32_val(v1) & Int32_val(v2)); } CAMLprim value caml_int32_or(value v1, value v2) { return caml_copy_int32(Int32_val(v1) | Int32_val(v2)); } CAMLprim value caml_int32_xor(value v1, value v2) { return caml_copy_int32(Int32_val(v1) ^ Int32_val(v2)); } CAMLprim value caml_int32_shift_left(value v1, value v2) { return caml_copy_int32(Int32_val(v1) << Int_val(v2)); } CAMLprim value caml_int32_shift_right(value v1, value v2) { return caml_copy_int32(Int32_val(v1) >> Int_val(v2)); } CAMLprim value caml_int32_shift_right_unsigned(value v1, value v2) { return caml_copy_int32((uint32)Int32_val(v1) >> Int_val(v2)); } static int32 swap32(int32 x) { return (((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24)); } value caml_int32_direct_bswap(value v) { return swap32(v); } CAMLprim value caml_int32_bswap(value v) { return caml_copy_int32(swap32(Int32_val(v))); } CAMLprim value caml_int32_of_int(value v) { return caml_copy_int32(Long_val(v)); } CAMLprim value caml_int32_to_int(value v) { return Val_long(Int32_val(v)); } CAMLprim value caml_int32_of_float(value v) { return caml_copy_int32((int32)(Double_val(v))); } CAMLprim value caml_int32_to_float(value v) { return caml_copy_double((double)(Int32_val(v))); } CAMLprim value caml_int32_compare(value v1, value v2) { int32 i1 = Int32_val(v1); int32 i2 = Int32_val(v2); int res = (i1 > i2) - (i1 < i2); return Val_int(res); } CAMLprim value caml_int32_format(value fmt, value arg) { char format_string[FORMAT_BUFFER_SIZE]; char default_format_buffer[FORMAT_BUFFER_SIZE]; char * buffer; char conv; value res; buffer = parse_format(fmt, ARCH_INT32_PRINTF_FORMAT, format_string, default_format_buffer, &conv); sprintf(buffer, format_string, Int32_val(arg)); res = caml_copy_string(buffer); if (buffer != default_format_buffer) caml_stat_free(buffer); return res; } CAMLprim value caml_int32_of_string(value s) { return caml_copy_int32(parse_intnat(s, 32)); } CAMLprim value caml_int32_bits_of_float(value vd) { union { float d; int32 i; } u; u.d = Double_val(vd); return caml_copy_int32(u.i); } CAMLprim value caml_int32_float_of_bits(value vi) { union { float d; int32 i; } u; u.i = Int32_val(vi); return caml_copy_double(u.d); } /* 64-bit integers */ #ifdef ARCH_INT64_TYPE #include "int64_native.h" #else #include "int64_emul.h" #endif #ifdef ARCH_ALIGN_INT64 CAMLexport int64 caml_Int64_val(value v) { union { int32 i[2]; int64 j; } buffer; buffer.i[0] = ((int32 *) Data_custom_val(v))[0]; buffer.i[1] = ((int32 *) Data_custom_val(v))[1]; return buffer.j; } #endif static int int64_cmp(value v1, value v2) { int64 i1 = Int64_val(v1); int64 i2 = Int64_val(v2); return I64_compare(i1, i2); } static intnat int64_hash(value v) { int64 x = Int64_val(v); uint32 lo, hi; I64_split(x, hi, lo); return hi ^ lo; } static void int64_serialize(value v, uintnat * wsize_32, uintnat * wsize_64) { caml_serialize_int_8(Int64_val(v)); *wsize_32 = *wsize_64 = 8; } static uintnat int64_deserialize(void * dst) { #ifndef ARCH_ALIGN_INT64 *((int64 *) dst) = caml_deserialize_sint_8(); #else union { int32 i[2]; int64 j; } buffer; buffer.j = caml_deserialize_sint_8(); ((int32 *) dst)[0] = buffer.i[0]; ((int32 *) dst)[1] = buffer.i[1]; #endif return 8; } CAMLexport struct custom_operations caml_int64_ops = { "_j", custom_finalize_default, int64_cmp, int64_hash, int64_serialize, int64_deserialize, custom_compare_ext_default }; CAMLexport value caml_copy_int64(int64 i) { value res = caml_alloc_custom(&caml_int64_ops, 8, 0, 1); #ifndef ARCH_ALIGN_INT64 Int64_val(res) = i; #else union { int32 i[2]; int64 j; } buffer; buffer.j = i; ((int32 *) Data_custom_val(res))[0] = buffer.i[0]; ((int32 *) Data_custom_val(res))[1] = buffer.i[1]; #endif return res; } CAMLprim value caml_int64_neg(value v) { return caml_copy_int64(I64_neg(Int64_val(v))); } CAMLprim value caml_int64_add(value v1, value v2) { return caml_copy_int64(I64_add(Int64_val(v1), Int64_val(v2))); } CAMLprim value caml_int64_sub(value v1, value v2) { return caml_copy_int64(I64_sub(Int64_val(v1), Int64_val(v2))); } CAMLprim value caml_int64_mul(value v1, value v2) { return caml_copy_int64(I64_mul(Int64_val(v1), Int64_val(v2))); } CAMLprim value caml_int64_div(value v1, value v2) { int64 dividend = Int64_val(v1); int64 divisor = Int64_val(v2); if (I64_is_zero(divisor)) caml_raise_zero_divide(); /* PR#4740: on some processors, division crashes on overflow. Implement the same behavior as for type "int". */ if (I64_is_min_int(dividend) && I64_is_minus_one(divisor)) return v1; return caml_copy_int64(I64_div(Int64_val(v1), divisor)); } CAMLprim value caml_int64_mod(value v1, value v2) { int64 dividend = Int64_val(v1); int64 divisor = Int64_val(v2); if (I64_is_zero(divisor)) caml_raise_zero_divide(); /* PR#4740: on some processors, division crashes on overflow. Implement the same behavior as for type "int". */ if (I64_is_min_int(dividend) && I64_is_minus_one(divisor)) { int64 zero = I64_literal(0,0); return caml_copy_int64(zero); } return caml_copy_int64(I64_mod(Int64_val(v1), divisor)); } CAMLprim value caml_int64_and(value v1, value v2) { return caml_copy_int64(I64_and(Int64_val(v1), Int64_val(v2))); } CAMLprim value caml_int64_or(value v1, value v2) { return caml_copy_int64(I64_or(Int64_val(v1), Int64_val(v2))); } CAMLprim value caml_int64_xor(value v1, value v2) { return caml_copy_int64(I64_xor(Int64_val(v1), Int64_val(v2))); } CAMLprim value caml_int64_shift_left(value v1, value v2) { return caml_copy_int64(I64_lsl(Int64_val(v1), Int_val(v2))); } CAMLprim value caml_int64_shift_right(value v1, value v2) { return caml_copy_int64(I64_asr(Int64_val(v1), Int_val(v2))); } CAMLprim value caml_int64_shift_right_unsigned(value v1, value v2) { return caml_copy_int64(I64_lsr(Int64_val(v1), Int_val(v2))); } #ifdef ARCH_SIXTYFOUR static value swap64(value x) { return (((((x) & 0x00000000000000FF) << 56) | (((x) & 0x000000000000FF00) << 40) | (((x) & 0x0000000000FF0000) << 24) | (((x) & 0x00000000FF000000) << 8) | (((x) & 0x000000FF00000000) >> 8) | (((x) & 0x0000FF0000000000) >> 24) | (((x) & 0x00FF000000000000) >> 40) | (((x) & 0xFF00000000000000) >> 56))); } value caml_int64_direct_bswap(value v) { return swap64(v); } #endif CAMLprim value caml_int64_bswap(value v) { return caml_copy_int64(I64_bswap(Int64_val(v))); } CAMLprim value caml_int64_of_int(value v) { return caml_copy_int64(I64_of_intnat(Long_val(v))); } CAMLprim value caml_int64_to_int(value v) { return Val_long(I64_to_intnat(Int64_val(v))); } CAMLprim value caml_int64_of_float(value v) { return caml_copy_int64(I64_of_double(Double_val(v))); } CAMLprim value caml_int64_to_float(value v) { int64 i = Int64_val(v); return caml_copy_double(I64_to_double(i)); } CAMLprim value caml_int64_of_int32(value v) { return caml_copy_int64(I64_of_int32(Int32_val(v))); } CAMLprim value caml_int64_to_int32(value v) { return caml_copy_int32(I64_to_int32(Int64_val(v))); } CAMLprim value caml_int64_of_nativeint(value v) { return caml_copy_int64(I64_of_intnat(Nativeint_val(v))); } CAMLprim value caml_int64_to_nativeint(value v) { return caml_copy_nativeint(I64_to_intnat(Int64_val(v))); } CAMLprim value caml_int64_compare(value v1, value v2) { int64 i1 = Int64_val(v1); int64 i2 = Int64_val(v2); return Val_int(I64_compare(i1, i2)); } #ifdef ARCH_INT64_PRINTF_FORMAT #define I64_format(buf,fmt,x) sprintf(buf,fmt,x) #else #include "int64_format.h" #define ARCH_INT64_PRINTF_FORMAT "" #endif CAMLprim value caml_int64_format(value fmt, value arg) { char format_string[FORMAT_BUFFER_SIZE]; char default_format_buffer[FORMAT_BUFFER_SIZE]; char * buffer; char conv; value res; buffer = parse_format(fmt, ARCH_INT64_PRINTF_FORMAT, format_string, default_format_buffer, &conv); I64_format(buffer, format_string, Int64_val(arg)); res = caml_copy_string(buffer); if (buffer != default_format_buffer) caml_stat_free(buffer); return res; } CAMLprim value caml_int64_of_string(value s) { char * p; uint64 max_uint64 = I64_literal(0xFFFFFFFF, 0xFFFFFFFF); uint64 max_int64_pos = I64_literal(0x7FFFFFFF, 0xFFFFFFFF); uint64 max_int64_neg = I64_literal(0x80000000, 0x00000000); uint64 res, threshold; int sign, base, d; p = parse_sign_and_base(String_val(s), &base, &sign); I64_udivmod(max_uint64, I64_of_int32(base), &threshold, &res); d = parse_digit(*p); if (d < 0 || d >= base) caml_failwith("int_of_string"); res = I64_of_int32(d); for (p++; /*nothing*/; p++) { char c = *p; if (c == '_') continue; d = parse_digit(c); if (d < 0 || d >= base) break; /* Detect overflow in multiplication base * res */ if (I64_ult(threshold, res)) caml_failwith("int_of_string"); res = I64_add(I64_mul(I64_of_int32(base), res), I64_of_int32(d)); /* Detect overflow in addition (base * res) + d */ if (I64_ult(res, I64_of_int32(d))) caml_failwith("int_of_string"); } if (p != String_val(s) + caml_string_length(s)){ caml_failwith("int_of_string"); } if (base == 10) { if (I64_ult((sign >= 0 ? max_int64_pos : max_int64_neg), res)) caml_failwith("int_of_string"); } if (sign < 0) res = I64_neg(res); return caml_copy_int64(res); } CAMLprim value caml_int64_bits_of_float(value vd) { union { double d; int64 i; int32 h[2]; } u; u.d = Double_val(vd); #if defined(__arm__) && !defined(__ARM_EABI__) { int32 t = u.h[0]; u.h[0] = u.h[1]; u.h[1] = t; } #endif return caml_copy_int64(u.i); } CAMLprim value caml_int64_float_of_bits(value vi) { union { double d; int64 i; int32 h[2]; } u; u.i = Int64_val(vi); #if defined(__arm__) && !defined(__ARM_EABI__) { int32 t = u.h[0]; u.h[0] = u.h[1]; u.h[1] = t; } #endif return caml_copy_double(u.d); } /* Native integers */ static int nativeint_cmp(value v1, value v2) { intnat i1 = Nativeint_val(v1); intnat i2 = Nativeint_val(v2); return (i1 > i2) - (i1 < i2); } static intnat nativeint_hash(value v) { intnat n = Nativeint_val(v); #ifdef ARCH_SIXTYFOUR /* 32/64 bits compatibility trick. See explanations in file "hash.c", function caml_hash_mix_intnat. */ return (n >> 32) ^ (n >> 63) ^ n; #else return n; #endif } static void nativeint_serialize(value v, uintnat * wsize_32, uintnat * wsize_64) { intnat l = Nativeint_val(v); #ifdef ARCH_SIXTYFOUR if (l >= -((intnat)1 << 31) && l < ((intnat)1 << 31)) { caml_serialize_int_1(1); caml_serialize_int_4((int32) l); } else { caml_serialize_int_1(2); caml_serialize_int_8(l); } #else caml_serialize_int_1(1); caml_serialize_int_4(l); #endif *wsize_32 = 4; *wsize_64 = 8; } static uintnat nativeint_deserialize(void * dst) { switch (caml_deserialize_uint_1()) { case 1: *((intnat *) dst) = caml_deserialize_sint_4(); break; case 2: #ifdef ARCH_SIXTYFOUR *((intnat *) dst) = caml_deserialize_sint_8(); #else caml_deserialize_error("input_value: native integer value too large"); #endif break; default: caml_deserialize_error("input_value: ill-formed native integer"); } return sizeof(long); } CAMLexport struct custom_operations caml_nativeint_ops = { "_n", custom_finalize_default, nativeint_cmp, nativeint_hash, nativeint_serialize, nativeint_deserialize, custom_compare_ext_default }; CAMLexport value caml_copy_nativeint(intnat i) { value res = caml_alloc_custom(&caml_nativeint_ops, sizeof(intnat), 0, 1); Nativeint_val(res) = i; return res; } CAMLprim value caml_nativeint_neg(value v) { return caml_copy_nativeint(- Nativeint_val(v)); } CAMLprim value caml_nativeint_add(value v1, value v2) { return caml_copy_nativeint(Nativeint_val(v1) + Nativeint_val(v2)); } CAMLprim value caml_nativeint_sub(value v1, value v2) { return caml_copy_nativeint(Nativeint_val(v1) - Nativeint_val(v2)); } CAMLprim value caml_nativeint_mul(value v1, value v2) { return caml_copy_nativeint(Nativeint_val(v1) * Nativeint_val(v2)); } #define Nativeint_min_int ((intnat) 1 << (sizeof(intnat) * 8 - 1)) CAMLprim value caml_nativeint_div(value v1, value v2) { intnat dividend = Nativeint_val(v1); intnat divisor = Nativeint_val(v2); if (divisor == 0) caml_raise_zero_divide(); /* PR#4740: on some processors, modulus crashes if division overflows. Implement the same behavior as for type "int". */ if (dividend == Nativeint_min_int && divisor == -1) return v1; #ifdef NONSTANDARD_DIV_MOD return caml_copy_nativeint(caml_safe_div(dividend, divisor)); #else return caml_copy_nativeint(dividend / divisor); #endif } CAMLprim value caml_nativeint_mod(value v1, value v2) { intnat dividend = Nativeint_val(v1); intnat divisor = Nativeint_val(v2); if (divisor == 0) caml_raise_zero_divide(); /* PR#4740: on some processors, modulus crashes if division overflows. Implement the same behavior as for type "int". */ if (dividend == Nativeint_min_int && divisor == -1) return caml_copy_nativeint(0); #ifdef NONSTANDARD_DIV_MOD return caml_copy_nativeint(caml_safe_mod(dividend, divisor)); #else return caml_copy_nativeint(dividend % divisor); #endif } CAMLprim value caml_nativeint_and(value v1, value v2) { return caml_copy_nativeint(Nativeint_val(v1) & Nativeint_val(v2)); } CAMLprim value caml_nativeint_or(value v1, value v2) { return caml_copy_nativeint(Nativeint_val(v1) | Nativeint_val(v2)); } CAMLprim value caml_nativeint_xor(value v1, value v2) { return caml_copy_nativeint(Nativeint_val(v1) ^ Nativeint_val(v2)); } CAMLprim value caml_nativeint_shift_left(value v1, value v2) { return caml_copy_nativeint(Nativeint_val(v1) << Int_val(v2)); } CAMLprim value caml_nativeint_shift_right(value v1, value v2) { return caml_copy_nativeint(Nativeint_val(v1) >> Int_val(v2)); } CAMLprim value caml_nativeint_shift_right_unsigned(value v1, value v2) { return caml_copy_nativeint((uintnat)Nativeint_val(v1) >> Int_val(v2)); } value caml_nativeint_direct_bswap(value v) { #ifdef ARCH_SIXTYFOUR return swap64(v); #else return swap32(v); #endif } CAMLprim value caml_nativeint_bswap(value v) { #ifdef ARCH_SIXTYFOUR return caml_copy_nativeint(swap64(Nativeint_val(v))); #else return caml_copy_nativeint(swap32(Nativeint_val(v))); #endif } CAMLprim value caml_nativeint_of_int(value v) { return caml_copy_nativeint(Long_val(v)); } CAMLprim value caml_nativeint_to_int(value v) { return Val_long(Nativeint_val(v)); } CAMLprim value caml_nativeint_of_float(value v) { return caml_copy_nativeint((intnat)(Double_val(v))); } CAMLprim value caml_nativeint_to_float(value v) { return caml_copy_double((double)(Nativeint_val(v))); } CAMLprim value caml_nativeint_of_int32(value v) { return caml_copy_nativeint(Int32_val(v)); } CAMLprim value caml_nativeint_to_int32(value v) { return caml_copy_int32(Nativeint_val(v)); } CAMLprim value caml_nativeint_compare(value v1, value v2) { intnat i1 = Nativeint_val(v1); intnat i2 = Nativeint_val(v2); int res = (i1 > i2) - (i1 < i2); return Val_int(res); } CAMLprim value caml_nativeint_format(value fmt, value arg) { char format_string[FORMAT_BUFFER_SIZE]; char default_format_buffer[FORMAT_BUFFER_SIZE]; char * buffer; char conv; value res; buffer = parse_format(fmt, ARCH_INTNAT_PRINTF_FORMAT, format_string, default_format_buffer, &conv); sprintf(buffer, format_string, Nativeint_val(arg)); res = caml_copy_string(buffer); if (buffer != default_format_buffer) caml_stat_free(buffer); return res; } CAMLprim value caml_nativeint_of_string(value s) { return caml_copy_nativeint(parse_intnat(s, 8 * sizeof(value))); }