(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* $Id$ *) (* Compiling a lexer definition *) open Syntax (* Deep abstract syntax for regular expressions *) type regexp = Empty | Chars of int | Action of int | Seq of regexp * regexp | Alt of regexp * regexp | Star of regexp type lexer_entry = { lex_name: string; lex_regexp: regexp; lex_actions: (int * location) list } (* Representation of automata *) type automata = Perform of int | Shift of automata_trans * automata_move array and automata_trans = No_remember | Remember of int and automata_move = Backtrack | Goto of int (* Representation of entry points *) type automata_entry = { auto_name: string; auto_initial_state: int; auto_actions: (int * location) list } (* From shallow to deep syntax *) let chars = ref ([] : int list list) let chars_count = ref 0 let actions = ref ([] : (int * location) list) let actions_count = ref 0 let rec encode_regexp = function Epsilon -> Empty | Characters cl -> let n = !chars_count in chars := cl :: !chars; incr chars_count; Chars(n) | Sequence(r1,r2) -> Seq(encode_regexp r1, encode_regexp r2) | Alternative(r1,r2) -> Alt(encode_regexp r1, encode_regexp r2) | Repetition r -> Star (encode_regexp r) let encode_casedef casedef = List.fold_left (fun reg (expr, act) -> let act_num = !actions_count in incr actions_count; actions := (act_num, act) :: !actions; Alt(reg, Seq(encode_regexp expr, Action act_num))) Empty casedef let encode_lexdef def = chars := []; chars_count := 0; let entry_list = List.map (fun (entry_name, casedef) -> actions := []; actions_count := 0; let re = encode_casedef casedef in { lex_name = entry_name; lex_regexp = re; lex_actions = List.rev !actions }) def.entrypoints in let chr = Array.of_list (List.rev !chars) in chars := []; actions := []; (chr, entry_list) (* To generate directly a NFA from a regular expression. Confer Aho-Sethi-Ullman, dragon book, chap. 3 *) type transition = OnChars of int | ToAction of int module TransSet = Set.Make(struct type t = transition let compare = compare end) let rec nullable = function Empty -> true | Chars _ -> false | Action _ -> false | Seq(r1,r2) -> nullable r1 & nullable r2 | Alt(r1,r2) -> nullable r1 or nullable r2 | Star r -> true let rec firstpos = function Empty -> TransSet.empty | Chars pos -> TransSet.add (OnChars pos) TransSet.empty | Action act -> TransSet.add (ToAction act) TransSet.empty | Seq(r1,r2) -> if nullable r1 then TransSet.union (firstpos r1) (firstpos r2) else firstpos r1 | Alt(r1,r2) -> TransSet.union (firstpos r1) (firstpos r2) | Star r -> firstpos r let rec lastpos = function Empty -> TransSet.empty | Chars pos -> TransSet.add (OnChars pos) TransSet.empty | Action act -> TransSet.add (ToAction act) TransSet.empty | Seq(r1,r2) -> if nullable r2 then TransSet.union (lastpos r1) (lastpos r2) else lastpos r2 | Alt(r1,r2) -> TransSet.union (lastpos r1) (lastpos r2) | Star r -> lastpos r let followpos size entry_list = let v = Array.create size TransSet.empty in let fill_pos first = function OnChars pos -> v.(pos) <- TransSet.union first v.(pos) | ToAction _ -> () in let rec fill = function Seq(r1,r2) -> fill r1; fill r2; TransSet.iter (fill_pos (firstpos r2)) (lastpos r1) | Alt(r1,r2) -> fill r1; fill r2 | Star r -> fill r; TransSet.iter (fill_pos (firstpos r)) (lastpos r) | _ -> () in List.iter (fun entry -> fill entry.lex_regexp) entry_list; v let no_action = max_int let split_trans_set trans_set = TransSet.fold (fun trans (act, pos_set as act_pos_set) -> match trans with OnChars pos -> (act, pos :: pos_set) | ToAction act1 -> if act1 < act then (act1, pos_set) else act_pos_set) trans_set (no_action, []) module StateMap = Map.Make(struct type t = TransSet.t let compare = TransSet.compare end) let state_map = ref (StateMap.empty : int StateMap.t) let todo = (Stack.create() : (TransSet.t * int) Stack.t) let next_state_num = ref 0 let reset_state_mem () = state_map := StateMap.empty; Stack.clear todo; next_state_num := 0 let get_state st = try StateMap.find st !state_map with Not_found -> let num = !next_state_num in incr next_state_num; state_map := StateMap.add st num !state_map; Stack.push (st, num) todo; num let map_on_all_states f = let res = ref [] in begin try while true do let (st, i) = Stack.pop todo in let r = f st in res := (r, i) :: !res done with Stack.Empty -> () end; !res let goto_state st = if TransSet.is_empty st then Backtrack else Goto (get_state st) let transition_from chars follow pos_set = let tr = Array.create 257 TransSet.empty in let shift = Array.create 257 Backtrack in List.iter (fun pos -> List.iter (fun c -> tr.(c) <- TransSet.union tr.(c) follow.(pos)) chars.(pos)) pos_set; for i = 0 to 256 do shift.(i) <- goto_state tr.(i) done; shift let translate_state chars follow state = match split_trans_set state with (n, []) -> Perform n | (n, ps) -> Shift((if n = no_action then No_remember else Remember n), transition_from chars follow ps) let make_dfa lexdef = let (chars, entry_list) = encode_lexdef lexdef in let follow = followpos (Array.length chars) entry_list in reset_state_mem(); let initial_states = List.map (fun le -> { auto_name = le.lex_name; auto_initial_state = get_state(firstpos le.lex_regexp); auto_actions = le.lex_actions }) entry_list in let states = map_on_all_states (translate_state chars follow) in let actions = Array.create !next_state_num (Perform 0) in List.iter (fun (act, i) -> actions.(i) <- act) states; reset_state_mem(); (initial_states, actions)