(***********************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 2002 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU Library General Public License, with *) (* the special exception on linking described in file ../LICENSE. *) (* *) (***********************************************************************) (* $Id$ *) (* Complex numbers *) type t = { re: float; im: float } let zero = { re = 0.0; im = 0.0 } let one = { re = 1.0; im = 0.0 } let i = { re = 0.0; im = 1.0 } let add x y = { re = x.re +. y.re; im = x.im +. y.im } let sub x y = { re = x.re -. y.re; im = x.im -. y.im } let neg x = { re = -. x.re; im = -. x.im } let conj x = { re = x.re; im = -. x.im } let mul x y = { re = x.re *. y.re -. x.im *. y.im; im = x.re *. y.im +. x.im *. y.re } let div x y = if abs_float y.re >= abs_float y.im then let r = y.im /. y.re in let d = y.re +. r *. y.im in { re = (x.re +. r *. x.im) /. d; im = (x.im -. r *. x.re) /. d } else let r = y.re /. y.im in let d = y.im +. r *. y.re in { re = (r *. x.re +. x.im) /. d; im = (r *. x.im -. x.re) /. d } let inv x = div one x let norm2 x = x.re *. x.re +. x.im *. x.im let norm x = (* Watch out for overflow in computing re^2 + im^2 *) let r = abs_float x.re and i = abs_float x.im in if r = 0.0 then i else if i = 0.0 then r else if r >= i then let q = i /. r in r *. sqrt(1.0 +. q *. q) else let q = r /. i in i *. sqrt(1.0 +. q *. q) let arg x = atan2 x.im x.re let polar n a = { re = cos a *. n; im = sin a *. n } let sqrt x = if x.re = 0.0 && x.im = 0.0 then { re = 0.0; im = 0.0 } else begin let r = abs_float x.re and i = abs_float x.im in let w = if r >= i then begin let q = i /. r in sqrt(r) *. sqrt(0.5 *. (1.0 +. sqrt(1.0 +. q *. q))) end else begin let q = r /. i in sqrt(i) *. sqrt(0.5 *. (q +. sqrt(1.0 +. q *. q))) end in if x.re >= 0.0 then { re = w; im = 0.5 *. x.im /. w } else { re = 0.5 *. i /. w; im = if x.im >= 0.0 then w else -. w } end let exp x = let e = exp x.re in { re = e *. cos x.im; im = e *. sin x.im } let log x = { re = log (norm x); im = atan2 x.im x.re } let pow x y = exp (mul y (log x))