(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt*) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* $Id$ *) (* Printing functions *) open Misc open Ctype open Format open Longident open Path open Asttypes open Types open Btype open Outcometree (* Redefine it here since goal differs *) let rec opened_object ty = match (repr ty).desc with Tobject (t, _) -> opened_object t | Tfield(_, _, _, t) -> opened_object t | Tvar -> true | Tunivar -> true | _ -> false (* Print a long identifier *) let rec longident ppf = function | Lident s -> fprintf ppf "%s" s | Ldot(p, s) -> fprintf ppf "%a.%s" longident p s | Lapply(p1, p2) -> fprintf ppf "%a(%a)" longident p1 longident p2 (* Print an identifier *) let ident ppf id = fprintf ppf "%s" (Ident.name id) (* Print a path *) let ident_pervasive = Ident.create_persistent "Pervasives" let rec tree_of_path = function | Pident id -> Oide_ident (Ident.name id) | Pdot(Pident id, s, pos) when Ident.same id ident_pervasive -> Oide_ident s | Pdot(p, s, pos) -> Oide_dot (tree_of_path p, s) | Papply(p1, p2) -> Oide_apply (tree_of_path p1, tree_of_path p2) let rec path ppf = function | Pident id -> ident ppf id | Pdot(Pident id, s, pos) when Ident.same id ident_pervasive -> fprintf ppf "%s" s | Pdot(p, s, pos) -> fprintf ppf "%a.%s" path p s | Papply(p1, p2) -> fprintf ppf "%a(%a)" path p1 path p2 (* Print a type expression *) let names = ref ([] : (type_expr * string) list) let name_counter = ref 0 let reset_names () = names := []; name_counter := 0 let new_name () = let name = if !name_counter < 26 then String.make 1 (Char.chr(97 + !name_counter)) else String.make 1 (Char.chr(97 + !name_counter mod 26)) ^ string_of_int(!name_counter / 26) in incr name_counter; name let name_of_type t = try List.assq t !names with Not_found -> let name = new_name () in names := (t, name) :: !names; name let check_name_of_type t = ignore(name_of_type t) let non_gen_mark sch ty = if sch && ty.desc = Tvar && ty.level <> generic_level then "_" else "" let print_name_of_type sch ppf t = fprintf ppf "'%s%s" (non_gen_mark sch t) (name_of_type t) let visited_objects = ref ([] : type_expr list) let aliased = ref ([] : type_expr list) let delayed = ref ([] : type_expr list) let is_aliased ty = List.memq (proxy ty) !aliased let add_alias ty = let px = proxy ty in if not (is_aliased px) then aliased := px :: !aliased let namable_row row = row.row_name <> None && List.for_all (fun (_, f) -> match row_field_repr f with | Reither(c, l, _, _) -> row.row_closed && if c then l = [] else List.length l = 1 | _ -> true) row.row_fields let rec mark_loops_rec visited ty = let ty = repr ty in let px = proxy ty in if List.memq px visited then add_alias px else let visited = px :: visited in match ty.desc with | Tvar -> () | Tarrow(_, ty1, ty2, _) -> mark_loops_rec visited ty1; mark_loops_rec visited ty2 | Ttuple tyl -> List.iter (mark_loops_rec visited) tyl | Tconstr(_, tyl, _) -> List.iter (mark_loops_rec visited) tyl | Tvariant row -> let row = row_repr row in if List.memq px !visited_objects then add_alias px else begin if not (static_row row) then visited_objects := px :: !visited_objects; match row.row_name with | Some(p, tyl) when namable_row row -> List.iter (mark_loops_rec visited) tyl | _ -> iter_row (mark_loops_rec visited) {row with row_bound = []} end | Tobject (fi, nm) -> if List.memq px !visited_objects then add_alias px else begin if opened_object ty then visited_objects := px :: !visited_objects; begin match !nm with | None -> let fields, _ = flatten_fields fi in List.iter (fun (_, kind, ty) -> if field_kind_repr kind = Fpresent then mark_loops_rec visited ty) fields | Some (_, l) -> List.iter (mark_loops_rec visited) (List.tl l) end end | Tfield(_, kind, ty1, ty2) when field_kind_repr kind = Fpresent -> mark_loops_rec visited ty1; mark_loops_rec visited ty2 | Tfield(_, _, _, ty2) -> mark_loops_rec visited ty2 | Tnil -> () | Tsubst ty -> mark_loops_rec visited ty | Tlink _ -> fatal_error "Printtyp.mark_loops_rec (2)" | Tpoly (ty, tyl) -> List.iter (fun t -> add_alias t) tyl; mark_loops_rec visited ty | Tunivar -> () let mark_loops ty = normalize_type Env.empty ty; mark_loops_rec [] ty;; let reset_loop_marks () = visited_objects := []; aliased := []; delayed := [] let reset () = reset_names (); reset_loop_marks () let reset_and_mark_loops ty = reset (); mark_loops ty let reset_and_mark_loops_list tyl = reset (); List.iter mark_loops tyl (* Disabled in classic mode when printing an unification error *) let print_labels = ref true let print_label ppf l = if !print_labels && l <> "" || is_optional l then fprintf ppf "%s:" l let rec tree_of_typexp sch ty = let ty = repr ty in let px = proxy ty in if List.mem_assq px !names && not (List.memq px !delayed) then let mark = is_non_gen sch ty in Otyp_var (mark, name_of_type px) else let pr_typ () = match ty.desc with | Tvar -> Otyp_var (is_non_gen sch ty, name_of_type ty) | Tarrow(l, ty1, ty2, _) -> let pr_arrow l ty1 ty2 = let lab = if !print_labels && l <> "" || is_optional l then l else "" in let t1 = if is_optional l then match (repr ty1).desc with | Tconstr(path, [ty], _) when Path.same path Predef.path_option -> tree_of_typexp sch ty | _ -> Otyp_stuff "" else tree_of_typexp sch ty1 in Otyp_arrow (lab, t1, tree_of_typexp sch ty2) in pr_arrow l ty1 ty2 | Ttuple tyl -> Otyp_tuple (tree_of_typlist sch tyl) | Tconstr(p, tyl, abbrev) -> Otyp_constr (tree_of_path p, tree_of_typlist sch tyl) | Tvariant row -> let row = row_repr row in let fields = if row.row_closed then List.filter (fun (_, f) -> row_field_repr f <> Rabsent) row.row_fields else row.row_fields in let present = List.filter (fun (_, f) -> match row_field_repr f with | Rpresent _ -> true | _ -> false) fields in let all_present = List.length present = List.length fields in begin match row.row_name with | Some(p, tyl) when namable_row row -> let id = tree_of_path p in let args = tree_of_typlist sch tyl in if row.row_closed && all_present then Otyp_constr (id, args) else let non_gen = is_non_gen sch px in let tags = if all_present then None else Some (List.map fst present) in Otyp_variant (non_gen, Ovar_name(tree_of_path p, args), row.row_closed, tags) | _ -> let non_gen = not (row.row_closed && all_present) && is_non_gen sch px in let fields = List.map (tree_of_row_field sch) fields in let tags = if all_present then None else Some (List.map fst present) in Otyp_variant (non_gen, Ovar_fields fields, row.row_closed, tags) end | Tobject (fi, nm) -> tree_of_typobject sch fi nm | Tsubst ty -> tree_of_typexp sch ty | Tlink _ | Tnil | Tfield _ -> fatal_error "Printtyp.tree_of_typexp" | Tpoly (ty, []) -> tree_of_typexp sch ty | Tpoly (ty, tyl) -> let tyl = List.map repr tyl in (* let tyl = List.filter is_aliased tyl in *) if tyl = [] then tree_of_typexp sch ty else let tl = List.map name_of_type tyl in delayed := tyl @ !delayed; Otyp_poly (tl, tree_of_typexp sch ty) | Tunivar -> Otyp_var (false, name_of_type ty) in if List.memq px !delayed then delayed := List.filter ((!=) px) !delayed; if is_aliased px && ty.desc <> Tvar && ty.desc <> Tunivar then begin check_name_of_type px; Otyp_alias (pr_typ (), name_of_type px) end else pr_typ () and tree_of_row_field sch (l, f) = match row_field_repr f with | Rpresent None | Reither(true, [], _, _) -> (l, false, []) | Rpresent(Some ty) -> (l, false, [tree_of_typexp sch ty]) | Reither(c, tyl, _, _) -> if c (* contradiction: un constructeur constant qui a un argument *) then (l, true, tree_of_typlist sch tyl) else (l, false, tree_of_typlist sch tyl) | Rabsent -> (l, false, [] (* une erreur, en fait *)) and tree_of_typlist sch = function | [] -> [] | ty :: tyl -> let tr = tree_of_typexp sch ty in tr :: tree_of_typlist sch tyl and tree_of_typobject sch fi nm = begin match !nm with | None -> let pr_fields fi = let (fields, rest) = flatten_fields fi in let present_fields = List.fold_right (fun (n, k, t) l -> match field_kind_repr k with | Fpresent -> (n, t) :: l | _ -> l) fields [] in let sorted_fields = Sort.list (fun (n, _) (n', _) -> n <= n') present_fields in tree_of_typfields sch rest sorted_fields in let (fields, rest) = pr_fields fi in Otyp_object (fields, rest) | Some (p, ty :: tyl) -> let non_gen = is_non_gen sch (repr ty) in let args = tree_of_typlist sch tyl in Otyp_class (non_gen, tree_of_path p, args) | _ -> fatal_error "Printtyp.tree_of_typobject" end and is_non_gen sch ty = sch && ty.desc = Tvar && ty.level <> generic_level and tree_of_typfields sch rest = function | [] -> let rest = match rest.desc with | Tvar | Tunivar -> Some (is_non_gen sch rest) | Tnil -> None | _ -> fatal_error "typfields (1)" in ([], rest) | (s, t) :: l -> let field = (s, tree_of_typexp sch t) in let (fields, rest) = tree_of_typfields sch rest l in (field :: fields, rest) let typexp sch prio ppf ty = !Oprint.out_type ppf (tree_of_typexp sch ty) let type_expr ppf ty = typexp false 0 ppf ty and type_sch ppf ty = typexp true 0 ppf ty and type_scheme ppf ty = reset_and_mark_loops ty; typexp true 0 ppf ty (* Maxence *) let type_scheme_max ?(b_reset_names=true) ppf ty = if b_reset_names then reset_names () ; typexp true 0 ppf ty (* Fin Maxence *) let tree_of_type_scheme ty = reset_and_mark_loops ty; tree_of_typexp true ty (* Print one type declaration *) let tree_of_constraints params = List.fold_right (fun ty list -> let ty' = unalias ty in if proxy ty != proxy ty' then let tr = tree_of_typexp true ty in (tr, tree_of_typexp true ty') :: list else list) params [] let filter_params tyl = let params = List.fold_left (fun tyl ty -> let ty = repr ty in if List.memq ty tyl then Btype.newgenty (Tsubst ty) :: tyl else ty :: tyl) [] tyl in List.rev params let string_of_mutable = function | Immutable -> "" | Mutable -> "mutable " let rec tree_of_type_decl id decl = reset(); let params = filter_params decl.type_params in List.iter add_alias params; List.iter mark_loops params; List.iter check_name_of_type (List.map proxy params); begin match decl.type_manifest with | None -> () | Some ty -> mark_loops ty end; let rec mark = function | Type_abstract -> () | Type_variant [] -> () | Type_variant cstrs -> List.iter (fun (_, args) -> List.iter mark_loops args) cstrs | Type_record(l, rep) -> List.iter (fun (_, _, ty) -> mark_loops ty) l | Type_private tkind -> mark tkind in mark decl.type_kind; let type_param = function | Otyp_var (_, id) -> id | _ -> "?" in let type_defined decl = if decl.type_kind = Type_abstract && decl.type_manifest = None && List.exists (fun x -> x <> (true, true)) decl.type_variance then (Ident.name id, List.combine (List.map (fun ty -> type_param (tree_of_typexp false ty)) params) decl.type_variance) else let ty = tree_of_typexp false (Btype.newgenty (Tconstr(Pident id, params, ref Mnil))) in match ty with | Otyp_constr (Oide_ident id, tyl) -> (id, List.map (fun ty -> (type_param ty, (true, true))) tyl) | _ -> ("?", []) in let tree_of_manifest decl ty1 = match decl.type_manifest with | None -> ty1 | Some ty -> Otyp_manifest (tree_of_typexp false ty, ty1) in let (name, args) = type_defined decl in let constraints = tree_of_constraints params in let rec tree_of_tkind = function | Type_abstract -> begin match decl.type_manifest with | None -> Otyp_abstract | Some ty -> tree_of_typexp false ty end | Type_variant cstrs -> tree_of_manifest decl (Otyp_sum (List.map tree_of_constructor cstrs)) | Type_record(lbls, rep) -> tree_of_manifest decl (Otyp_record (List.map tree_of_label lbls)) | Type_private tkind -> Otyp_private (tree_of_tkind tkind) in let ty = tree_of_tkind decl.type_kind in (name, args, ty, constraints) and tree_of_constructor (name, args) = (name, tree_of_typlist false args) and tree_of_label (name, mut, arg) = (name, mut = Mutable, tree_of_typexp false arg) let tree_of_type_declaration id decl = Osig_type [tree_of_type_decl id decl] let type_declaration id ppf decl = !Oprint.out_sig_item ppf (tree_of_type_declaration id decl) (* Print an exception declaration *) let tree_of_exception_declaration id decl = let tyl = tree_of_typlist false decl in Osig_exception (Ident.name id, tyl) let exception_declaration id ppf decl = !Oprint.out_sig_item ppf (tree_of_exception_declaration id decl) (* Print a value declaration *) let tree_of_value_description id decl = let id = Ident.name id in let ty = tree_of_type_scheme decl.val_type in let prims = match decl.val_kind with | Val_prim p -> Primitive.description_list p | _ -> [] in Osig_value (id, ty, prims) let value_description id ppf decl = !Oprint.out_sig_item ppf (tree_of_value_description id decl) (* Print a class type *) let class_var sch ppf l (m, t) = fprintf ppf "@ @[<2>val %s%s :@ %a@]" (string_of_mutable m) l (typexp sch 0) t let metho sch concrete ppf (lab, kind, ty) = if lab <> "*dummy method*" then begin let priv = match field_kind_repr kind with | Fvar _ (* {contents = None} *) -> "private " | _ (* Fpresent *) -> "" in let virt = if Concr.mem lab concrete then "" else "virtual " in fprintf ppf "@ @[<2>method %s%s%s :@ %a@]" priv virt lab (typexp sch 0) ty end let method_type ty = let ty = repr ty in match ty.desc with Tpoly(ty, _) -> ty | _ -> ty let tree_of_metho sch concrete csil (lab, kind, ty) = if lab <> "*dummy method*" then begin let priv = match field_kind_repr kind with | Fvar _ (* {contents = None} *) -> true | _ (* Fpresent *) -> false in let virt = not (Concr.mem lab concrete) in let ty = method_type ty in Ocsg_method (lab, priv, virt, tree_of_typexp sch ty) :: csil end else csil let rec prepare_class_type params = function | Tcty_constr (p, tyl, cty) -> let sty = Ctype.self_type cty in if List.memq (proxy sty) !visited_objects || List.exists (fun ty -> (repr ty).desc <> Tvar) params || List.exists (deep_occur sty) tyl then prepare_class_type params cty else List.iter mark_loops tyl | Tcty_signature sign -> let sty = repr sign.cty_self in (* Self may have a name *) let px = proxy sty in if List.memq px !visited_objects then add_alias sty else visited_objects := px :: !visited_objects; let (fields, _) = Ctype.flatten_fields (Ctype.object_fields sign.cty_self) in List.iter (fun (_, _, ty) -> mark_loops (method_type ty)) fields; Vars.iter (fun _ (_, ty) -> mark_loops ty) sign.cty_vars | Tcty_fun (_, ty, cty) -> mark_loops ty; prepare_class_type params cty let rec tree_of_class_type sch params = function | Tcty_constr (p', tyl, cty) -> let sty = Ctype.self_type cty in if List.memq (proxy sty) !visited_objects || List.exists (fun ty -> (repr ty).desc <> Tvar) params then tree_of_class_type sch params cty else Octy_constr (tree_of_path p', tree_of_typlist true tyl) | Tcty_signature sign -> let sty = repr sign.cty_self in let self_ty = if is_aliased sty then Some (Otyp_var (false, name_of_type (proxy sty))) else None in let (fields, _) = Ctype.flatten_fields (Ctype.object_fields sign.cty_self) in let csil = [] in let csil = List.fold_left (fun csil (ty1, ty2) -> Ocsg_constraint (ty1, ty2) :: csil) csil (tree_of_constraints params) in let all_vars = Vars.fold (fun l (m, t) all -> (l, m, t) :: all) sign.cty_vars [] in let csil = List.fold_left (fun csil (l, m, t) -> Ocsg_value (l, m = Mutable, tree_of_typexp sch t) :: csil) csil all_vars in let csil = List.fold_left (tree_of_metho sch sign.cty_concr) csil fields in Octy_signature (self_ty, List.rev csil) | Tcty_fun (l, ty, cty) -> let lab = if !print_labels && l <> "" || is_optional l then l else "" in let ty = if is_optional l then match (repr ty).desc with | Tconstr(path, [ty], _) when Path.same path Predef.path_option -> ty | _ -> newconstr (Path.Pident(Ident.create "")) [] else ty in let tr = tree_of_typexp sch ty in Octy_fun (lab, tr, tree_of_class_type sch params cty) let class_type ppf cty = reset (); prepare_class_type [] cty; !Oprint.out_class_type ppf (tree_of_class_type false [] cty) let tree_of_class_params = function | [] -> [] | params -> let tyl = tree_of_typlist true params in List.map (function Otyp_var (_, s) -> s | _ -> "?") tyl let tree_of_class_declaration id cl = let params = filter_params cl.cty_params in reset (); List.iter add_alias params; prepare_class_type params cl.cty_type; let sty = self_type cl.cty_type in List.iter mark_loops params; List.iter check_name_of_type (List.map proxy params); if is_aliased sty then check_name_of_type (proxy sty); let vir_flag = cl.cty_new = None in Osig_class (vir_flag, Ident.name id, tree_of_class_params params, tree_of_class_type true params cl.cty_type) let class_declaration id ppf cl = !Oprint.out_sig_item ppf (tree_of_class_declaration id cl) let tree_of_cltype_declaration id cl = let params = List.map repr cl.clty_params in reset (); List.iter add_alias params; prepare_class_type params cl.clty_type; let sty = self_type cl.clty_type in List.iter mark_loops params; List.iter check_name_of_type (List.map proxy params); if is_aliased sty then check_name_of_type (proxy sty); let sign = Ctype.signature_of_class_type cl.clty_type in let virt = let (fields, _) = Ctype.flatten_fields (Ctype.object_fields sign.cty_self) in List.exists (fun (lab, _, ty) -> not (lab = "*dummy method*" || Concr.mem lab sign.cty_concr)) fields in Osig_class_type (virt, Ident.name id, tree_of_class_params params, tree_of_class_type true params cl.clty_type) let cltype_declaration id ppf cl = !Oprint.out_sig_item ppf (tree_of_cltype_declaration id cl) (* Print a module type *) let rec tree_of_modtype = function | Tmty_ident p -> Omty_ident (tree_of_path p) | Tmty_signature sg -> Omty_signature (tree_of_signature sg) | Tmty_functor(param, ty_arg, ty_res) -> Omty_functor (Ident.name param, tree_of_modtype ty_arg, tree_of_modtype ty_res) and tree_of_signature = function | [] -> [] | item :: rem -> match item with | Tsig_value(id, decl) -> tree_of_value_description id decl :: tree_of_signature rem | Tsig_type(id, decl) -> let (type_decl_list, rem) = let rec more_type_declarations = function | Tsig_type(id, decl) :: rem -> let (type_decl_list, rem) = more_type_declarations rem in (id, decl) :: type_decl_list, rem | rem -> [], rem in more_type_declarations rem in let type_decl_list = List.map (fun (id, decl) -> tree_of_type_decl id decl) ((id, decl) :: type_decl_list) in Osig_type type_decl_list :: tree_of_signature rem | Tsig_exception(id, decl) -> Osig_exception (Ident.name id, tree_of_typlist false decl) :: tree_of_signature rem | Tsig_module(id, mty) -> Osig_module (Ident.name id, tree_of_modtype mty) :: tree_of_signature rem | Tsig_modtype(id, decl) -> tree_of_modtype_declaration id decl :: tree_of_signature rem | Tsig_class(id, decl) -> let rem = match rem with | ctydecl :: tydecl1 :: tydecl2 :: rem -> rem | _ -> [] in tree_of_class_declaration id decl :: tree_of_signature rem | Tsig_cltype(id, decl) -> let rem = match rem with | tydecl1 :: tydecl2 :: rem -> rem | _ -> [] in tree_of_cltype_declaration id decl :: tree_of_signature rem and tree_of_modtype_declaration id decl = let mty = match decl with | Tmodtype_abstract -> Omty_abstract | Tmodtype_manifest mty -> tree_of_modtype mty in Osig_modtype (Ident.name id, mty) let tree_of_module id mty = Osig_module (Ident.name id, tree_of_modtype mty) let modtype ppf mty = !Oprint.out_module_type ppf (tree_of_modtype mty) let modtype_declaration id ppf decl = !Oprint.out_sig_item ppf (tree_of_modtype_declaration id decl) (* Print a signature body (used by -i when compiling a .ml) *) let print_signature ppf tree = fprintf ppf "@[%a@]" !Oprint.out_signature tree let signature ppf sg = fprintf ppf "%a" print_signature (tree_of_signature sg) (* Print an unification error *) let type_expansion t ppf t' = if t == t' then type_expr ppf t else let t' = if proxy t = proxy t' then unalias t' else t' in fprintf ppf "@[<2>%a@ =@ %a@]" type_expr t type_expr t' let rec trace fst txt ppf = function | (t1, t1') :: (t2, t2') :: rem -> if not fst then fprintf ppf "@,"; fprintf ppf "@[Type@;<1 2>%a@ %s@;<1 2>%a@] %a" (type_expansion t1) t1' txt (type_expansion t2) t2' (trace false txt) rem | _ -> () let rec mismatch = function | [(_, t); (_, t')] -> (t, t') | _ :: _ :: rem -> mismatch rem | _ -> assert false let rec filter_trace = function | (t1, t1') :: (t2, t2') :: rem -> let rem' = filter_trace rem in if t1 == t1' && t2 == t2' then rem' else (t1, t1') :: (t2, t2') :: rem' | _ -> [] (* Hide variant name and var, to force printing the expanded type *) let hide_variant_name t = match repr t with | {desc = Tvariant row} as t when (row_repr row).row_name <> None -> newty2 t.level (Tvariant {(row_repr row) with row_name = None; row_more = newty2 (row_more row).level Tvar}) | _ -> t let prepare_expansion (t, t') = let t' = hide_variant_name t' in mark_loops t; if t != t' then mark_loops t'; (t, t') let print_tags ppf fields = match fields with [] -> () | (t, _) :: fields -> fprintf ppf "`%s" t; List.iter (fun (t, _) -> fprintf ppf ",@ `%s" t) fields let explanation unif t3 t4 ppf = match t3.desc, t4.desc with | Tfield _, Tvar | Tvar, Tfield _ -> fprintf ppf "@,Self type cannot escape its class" | Tconstr (p, _, _), Tvar when unif && t4.level < Path.binding_time p -> fprintf ppf "@,@[The type constructor@;<1 2>%a@ would escape its scope@]" path p | Tvar, Tconstr (p, _, _) when unif && t3.level < Path.binding_time p -> fprintf ppf "@,@[The type constructor@;<1 2>%a@ would escape its scope@]" path p | Tvar, Tunivar | Tunivar, Tvar -> fprintf ppf "@,The universal variable %a would escape its scope" type_expr (if t3.desc = Tunivar then t3 else t4) | Tfield ("*dummy method*", _, _, _), _ | _, Tfield ("*dummy method*", _, _, _) -> fprintf ppf "@,Self type cannot be unified with a closed object type" | Tfield (l, _, _, _), _ -> fprintf ppf "@,@[Only the first object type has a method %s@]" l | _, Tfield (l, _, _, _) -> fprintf ppf "@,@[Only the second object type has a method %s@]" l | Tvariant row1, Tvariant row2 -> let row1 = row_repr row1 and row2 = row_repr row2 in begin match row1.row_fields, row1.row_closed, row2.row_fields, row1.row_closed with | [], true, [], true -> fprintf ppf "@,These two variant types have no intersection" | [], true, fields, _ -> fprintf ppf "@,@[The first variant type does not allow tag(s)@ @[%a@]@]" print_tags fields | fields, _, [], true -> fprintf ppf "@,@[The second variant type does not allow tag(s)@ @[%a@]@]" print_tags fields | _ -> () end | _ -> () let unification_error unif tr txt1 ppf txt2 = reset (); let tr = List.map (fun (t, t') -> (t, hide_variant_name t')) tr in let (t3, t4) = mismatch tr in match tr with | [] | _ :: [] -> assert false | t1 :: t2 :: tr -> try let t1, t1' = prepare_expansion t1 and t2, t2' = prepare_expansion t2 in print_labels := not !Clflags.classic; let tr = filter_trace tr in let tr = List.map prepare_expansion tr in fprintf ppf "@[\ @[%t@;<1 2>%a@ \ %t@;<1 2>%a\ @]%a%t\ @]" txt1 (type_expansion t1) t1' txt2 (type_expansion t2) t2' (trace false "is not compatible with type") tr (explanation unif t3 t4); print_labels := true with exn -> print_labels := true; raise exn let report_unification_error ppf tr txt1 txt2 = unification_error true tr txt1 ppf txt2;; let trace fst txt ppf tr = print_labels := not !Clflags.classic; try match tr with t1 :: t2 :: tr' -> if fst then trace fst txt ppf (t1 :: t2 :: filter_trace tr') else trace fst txt ppf (filter_trace tr); print_labels := true | _ -> () with exn -> print_labels := true; raise exn let report_subtyping_error ppf tr1 txt1 tr2 = reset (); let tr1 = List.map prepare_expansion tr1 and tr2 = List.map prepare_expansion tr2 in trace true txt1 ppf tr1; if tr2 = [] then () else let t3, t4 = mismatch tr2 in trace false "is not compatible with type" ppf tr2; explanation true t3 t4 ppf