(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* $Id$ *) (* Substitutions *) open Misc open Path open Types open Btype type t = { types: (Ident.t, Path.t) Tbl.t; modules: (Ident.t, Path.t) Tbl.t; modtypes: (Ident.t, module_type) Tbl.t; for_saving: bool } let identity = { types = Tbl.empty; modules = Tbl.empty; modtypes = Tbl.empty; for_saving = false } let add_type id p s = { s with types = Tbl.add id p s.types } let add_module id p s = { s with modules = Tbl.add id p s.modules } let add_modtype id ty s = { s with modtypes = Tbl.add id ty s.modtypes } let for_saving s = { s with for_saving = true } let rec module_path s = function Pident id as p -> begin try Tbl.find id s.modules with Not_found -> p end | Pdot(p, n, pos) -> Pdot(module_path s p, n, pos) | Papply(p1, p2) -> Papply(module_path s p1, module_path s p2) let type_path s = function Pident id as p -> begin try Tbl.find id s.types with Not_found -> p end | Pdot(p, n, pos) -> Pdot(module_path s p, n, pos) | Papply(p1, p2) -> fatal_error "Subst.type_path" (* Special type ids for saved signatures *) let new_id = ref (-1) let reset_for_saving () = new_id := -1 let newpersty desc = decr new_id; { desc = desc; level = generic_level; id = !new_id } (* Similar to [Ctype.nondep_type_rec]. *) let rec typexp s ty = let ty = repr ty in match ty.desc with Tvar | Tunivar -> if s.for_saving || ty.id < 0 then let ty' = if s.for_saving then newpersty ty.desc else newty2 ty.level ty.desc in save_desc ty ty.desc; ty.desc <- Tsubst ty'; ty' else ty | Tsubst ty -> ty (* cannot do it, since it would omit subsitution | Tvariant row when not (static_row row) -> ty *) | _ -> let desc = ty.desc in save_desc ty desc; (* Make a stub *) let ty' = if s.for_saving then newpersty Tvar else newgenvar () in ty.desc <- Tsubst ty'; ty'.desc <- begin match desc with | Tconstr(p, tl, abbrev) -> Tconstr(type_path s p, List.map (typexp s) tl, ref Mnil) | Tobject (t1, name) -> Tobject (typexp s t1, ref (match !name with None -> None | Some (p, tl) -> Some (type_path s p, List.map (typexp s) tl))) | Tvariant row -> let row = row_repr row in let more = repr row.row_more in (* We must substitute in a subtle way *) (* Tsubst takes a tuple containing the row var and the variant *) begin match more.desc with Tsubst {desc = Ttuple [_;ty2]} -> (* This variant type has been already copied *) ty.desc <- Tsubst ty2; (* avoid Tlink in the new type *) Tlink ty2 | _ -> let static = static_row row in (* Various cases for the row variable *) let more' = match more.desc with Tsubst ty -> ty | _ -> save_desc more more.desc; if s.for_saving then newpersty more.desc else if static then newgenvar () else more in (* Register new type first for recursion *) more.desc <- Tsubst(newgenty(Ttuple[more';ty'])); (* Return a new copy *) let row = copy_row (typexp s) true row (not s.for_saving) more' in let row = if s.for_saving then {row with row_bound = []} else row in match row.row_name with Some (p, tl) -> Tvariant {row with row_name = Some (type_path s p, tl)} | None -> Tvariant row end | Tfield(label, kind, t1, t2) -> begin match field_kind_repr kind with Fpresent -> Tfield(label, Fpresent, typexp s t1, typexp s t2) | Fabsent -> Tlink (typexp s t2) | Fvar _ (* {contents = None} *) as k -> let k = if s.for_saving then Fvar(ref None) else k in Tfield(label, k, typexp s t1, typexp s t2) end | _ -> copy_type_desc (typexp s) desc end; ty' (* Always make a copy of the type. If this is not done, type levels might not be correct. *) let type_expr s ty = let ty' = typexp s ty in cleanup_types (); ty' let type_declaration s decl = let decl = { type_params = List.map (typexp s) decl.type_params; type_arity = decl.type_arity; type_kind = begin let rec kind_of_tkind = function | Type_abstract -> Type_abstract | Type_variant cstrs -> Type_variant( List.map (fun (n, args) -> (n, List.map (typexp s) args)) cstrs) | Type_record(lbls, rep) -> Type_record( List.map (fun (n, mut, arg) -> (n, mut, typexp s arg)) lbls, rep) | Type_private tkind -> Type_private (kind_of_tkind tkind) in kind_of_tkind decl.type_kind end; type_manifest = begin match decl.type_manifest with None -> None | Some ty -> Some(typexp s ty) end; type_variance = decl.type_variance; } in cleanup_types (); decl let class_signature s sign = { cty_self = typexp s sign.cty_self; cty_vars = Vars.map (function (m, t) -> (m, typexp s t)) sign.cty_vars; cty_concr = sign.cty_concr } let rec class_type s = function Tcty_constr (p, tyl, cty) -> Tcty_constr (type_path s p, List.map (typexp s) tyl, class_type s cty) | Tcty_signature sign -> Tcty_signature (class_signature s sign) | Tcty_fun (l, ty, cty) -> Tcty_fun (l, typexp s ty, class_type s cty) let class_declaration s decl = let decl = { cty_params = List.map (typexp s) decl.cty_params; cty_type = class_type s decl.cty_type; cty_path = type_path s decl.cty_path; cty_new = begin match decl.cty_new with None -> None | Some ty -> Some (typexp s ty) end } in (* Do not clean up if saving: next is cltype_declaration *) if not s.for_saving then cleanup_types (); decl let cltype_declaration s decl = let decl = { clty_params = List.map (typexp s) decl.clty_params; clty_type = class_type s decl.clty_type; clty_path = type_path s decl.clty_path } in (* Do clean up even if saving: type_declaration may be recursive *) cleanup_types (); decl let class_type s cty = let cty = class_type s cty in cleanup_types (); cty let value_description s descr = { val_type = type_expr s descr.val_type; val_kind = descr.val_kind } let exception_declaration s tyl = List.map (type_expr s) tyl let rec rename_bound_idents s idents = function [] -> (List.rev idents, s) | Tsig_type(id, d) :: sg -> let id' = Ident.rename id in rename_bound_idents (add_type id (Pident id') s) (id' :: idents) sg | Tsig_module(id, mty) :: sg -> let id' = Ident.rename id in rename_bound_idents (add_module id (Pident id') s) (id' :: idents) sg | Tsig_modtype(id, d) :: sg -> let id' = Ident.rename id in rename_bound_idents (add_modtype id (Tmty_ident(Pident id')) s) (id' :: idents) sg | (Tsig_value(id, _) | Tsig_exception(id, _) | Tsig_class(id, _) | Tsig_cltype(id, _)) :: sg -> let id' = Ident.rename id in rename_bound_idents s (id' :: idents) sg let rec modtype s = function Tmty_ident p as mty -> begin match p with Pident id -> begin try Tbl.find id s.modtypes with Not_found -> mty end | Pdot(p, n, pos) -> Tmty_ident(Pdot(module_path s p, n, pos)) | Papply(p1, p2) -> fatal_error "Subst.modtype" end | Tmty_signature sg -> Tmty_signature(signature s sg) | Tmty_functor(id, arg, res) -> let id' = Ident.rename id in Tmty_functor(id', modtype s arg, modtype (add_module id (Pident id') s) res) and signature s sg = (* Components of signature may be mutually recursive (e.g. type declarations or class and type declarations), so first build global renaming substitution... *) let (new_idents, s') = rename_bound_idents s [] sg in (* ... then apply it to each signature component in turn *) List.map2 (signature_component s') sg new_idents and signature_component s comp newid = match comp with Tsig_value(id, d) -> Tsig_value(newid, value_description s d) | Tsig_type(id, d) -> Tsig_type(newid, type_declaration s d) | Tsig_exception(id, d) -> Tsig_exception(newid, exception_declaration s d) | Tsig_module(id, mty) -> Tsig_module(newid, modtype s mty) | Tsig_modtype(id, d) -> Tsig_modtype(newid, modtype_declaration s d) | Tsig_class(id, d) -> Tsig_class(newid, class_declaration s d) | Tsig_cltype(id, d) -> Tsig_cltype(newid, cltype_declaration s d) and modtype_declaration s = function Tmodtype_abstract -> Tmodtype_abstract | Tmodtype_manifest mty -> Tmodtype_manifest(modtype s mty)