(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* $Id$ *) (* Emission of Mips assembly code *) open Location open Misc open Cmm open Arch open Proc open Reg open Mach open Linearize open Emitaux (* Tradeoff between code size and code speed *) let fastcode_flag = ref true (* Output a label *) let emit_label lbl = emit_string "$"; emit_int lbl (* Output a symbol *) let emit_symbol s = Emitaux.emit_symbol '$' s (* Output a pseudo-register *) let emit_reg r = match r.loc with Reg r -> emit_string (register_name r) | _ -> fatal_error "Emit_mips.emit_reg" (* Record if $gp is needed *) let uses_gp = ref false (* Layout of the stack frame *) let stack_offset = ref 0 let frame_size () = let size = !stack_offset + 4 * num_stack_slots.(0) + 8 * num_stack_slots.(1) + (if !contains_calls then if !uses_gp then 8 else 4 else 0) in Misc.align size 16 let slot_offset loc cl = match loc with Incoming n -> frame_size() + n | Local n -> if cl = 0 then !stack_offset + num_stack_slots.(1) * 8 + n * 4 else !stack_offset + n * 8 | Outgoing n -> n (* Output a stack reference *) let emit_stack r = match r.loc with Stack s -> let ofs = slot_offset s (register_class r) in `{emit_int ofs}($sp)` | _ -> fatal_error "Emit_mips.emit_stack" (* Output an addressing mode *) let emit_addressing addr r n = match addr with Iindexed ofs -> `{emit_int ofs}({emit_reg r.(n)})` | Ibased(s, 0) -> `{emit_symbol s}` | Ibased(s, ofs) -> `{emit_symbol s}`; if ofs > 0 then ` + {emit_int ofs}`; if ofs < 0 then ` - {emit_int(-ofs)}` (* Communicate live registers at call points to the assembler *) let int_reg_number = [| 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21 |] let float_reg_number = [| 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30 |] let liveregs instr extra_msk = (* $22, $23, $30 always live *) let int_mask = ref(0x00000302 lor extra_msk) and float_mask = ref 0 in let add_register = function {loc = Reg r; typ = (Int | Addr)} -> int_mask := !int_mask lor (1 lsl (31 - int_reg_number.(r))) | {loc = Reg r; typ = Float} -> float_mask := !float_mask lor (1 lsl (31 - float_reg_number.(r - 100))) | _ -> () in Reg.Set.iter add_register instr.live; Array.iter add_register instr.arg; emit_printf " .livereg 0x%08x, 0x%08x\n" !int_mask !float_mask let live_25 = 1 lsl (31 - 25) let live_24 = 1 lsl (31 - 24) (* Record live pointers at call points *) type frame_descr = { fd_lbl: int; (* Return address *) fd_frame_size: int; (* Size of stack frame *) fd_live_offset: int list } (* Offsets/regs of live addresses *) let frame_descriptors = ref([] : frame_descr list) let record_frame live = let lbl = new_label() in let live_offset = ref [] in Reg.Set.iter (function {typ = Addr; loc = Reg r} -> live_offset := ((int_reg_number.(r) lsl 1) + 1) :: !live_offset | {typ = Addr; loc = Stack s} as reg -> live_offset := slot_offset s (register_class reg) :: !live_offset | _ -> ()) live; frame_descriptors := { fd_lbl = lbl; fd_frame_size = frame_size(); fd_live_offset = !live_offset } :: !frame_descriptors; `{emit_label lbl}:` let emit_frame fd = ` .word {emit_label fd.fd_lbl}\n`; ` .half {emit_int fd.fd_frame_size}\n`; ` .half {emit_int (List.length fd.fd_live_offset)}\n`; List.iter (fun n -> ` .half {emit_int n}\n`) fd.fd_live_offset; ` .align 2\n` (* Determine if $gp is used in the function *) let rec instr_uses_gp i = match i.desc with Lend -> false | Lop(Iconst_symbol s) -> true | Lop(Icall_imm s) -> true | Lop(Itailcall_imm s) -> true | Lop(Iextcall(_, _)) -> true | Lop(Iload(_, Ibased(_, _))) -> true | Lop(Istore(_, Ibased(_, _))) -> true | Lop(Ialloc _) -> true | Lop(Iintop(Icheckbound)) -> true | Lop(Iintop_imm(Icheckbound, _)) -> true | Lswitch jumptbl -> true | _ -> instr_uses_gp i.next (* Names of various instructions *) let name_for_comparison = function Isigned Ceq -> "eq" | Isigned Cne -> "ne" | Isigned Cle -> "le" | Isigned Cge -> "ge" | Isigned Clt -> "lt" | Isigned Cgt -> "gt" | Iunsigned Ceq -> "eq" | Iunsigned Cne -> "ne" | Iunsigned Cle -> "leu" | Iunsigned Cge -> "geu" | Iunsigned Clt -> "ltu" | Iunsigned Cgt -> "gtu" let name_for_float_comparison cmp neg = match cmp with Ceq -> ("eq", neg) | Cne -> ("eq", not neg) | Cle -> ("le", neg) | Cge -> ("ult", not neg) | Clt -> ("lt", neg) | Cgt -> ("ule", not neg) let name_for_int_operation = function Iadd -> "addu" | Isub -> "subu" | Imul -> "mul" | Idiv -> "div" | Imod -> "rem" | Iand -> "and" | Ior -> "or" | Ixor -> "xor" | Ilsl -> "sll" | Ilsr -> "srl" | Iasr -> "sra" | Icomp cmp -> "s" ^ name_for_comparison cmp | _ -> Misc.fatal_error "Emit.name_for_int_operation" let name_for_float_operation = function Inegf -> "neg.d" | Iabsf -> "abs.d" | Iaddf -> "add.d" | Isubf -> "sub.d" | Imulf -> "mul.d" | Idivf -> "div.d" | _ -> Misc.fatal_error "Emit.name_for_float_operation" (* Output the assembly code for an instruction *) (* Name of current function *) let function_name = ref "" (* Entry point for tail recursive calls *) let tailrec_entry_point = ref 0 (* Label of jump to caml_call_gc *) let call_gc_label = ref 0 (* Label of trap for out-of-range accesses *) let range_check_trap = ref 0 let emit_instr i = match i.desc with Lend -> () | Lop(Imove | Ispill | Ireload) -> let src = i.arg.(0) and dst = i.res.(0) in if src.loc <> dst.loc then begin match (src, dst) with {loc = Reg rs; typ = Int|Addr}, {loc = Reg rd; typ = Int|Addr} -> ` move {emit_reg dst}, {emit_reg src}\n` | {loc = Reg rs; typ = Float}, {loc = Reg rd; typ = Float} -> ` mov.d {emit_reg dst}, {emit_reg src}\n` | {loc = Reg rs; typ = Int|Addr}, {loc = Stack sd} -> ` sw {emit_reg src}, {emit_stack dst}\n` | {loc = Reg rs; typ = Float}, {loc = Stack sd} -> ` s.d {emit_reg src}, {emit_stack dst}\n` | {loc = Stack ss; typ = Int|Addr}, {loc = Reg rd} -> ` lw {emit_reg dst}, {emit_stack src}\n` | {loc = Stack ss; typ = Float}, {loc = Reg rd} -> ` l.d {emit_reg dst}, {emit_stack src}\n` | _ -> fatal_error "Emit_mips: Imove" end | Lop(Iconst_int n) -> if n = 0n then ` move {emit_reg i.res.(0)}, $0\n` else ` li {emit_reg i.res.(0)}, {emit_nativeint n}\n` | Lop(Iconst_float s) -> ` li.d {emit_reg i.res.(0)}, {emit_string s}\n` | Lop(Iconst_symbol s) -> ` la {emit_reg i.res.(0)}, {emit_symbol s}\n` | Lop(Icall_ind) -> ` move $25, {emit_reg i.arg.(0)}\n`; liveregs i live_25; ` jal {emit_reg i.arg.(0)}\n`; `{record_frame i.live}\n` | Lop(Icall_imm s) -> liveregs i 0; ` jal {emit_symbol s}\n`; `{record_frame i.live}\n` | Lop(Itailcall_ind) -> let n = frame_size() in if !contains_calls then ` lw $31, {emit_int(n - 4)}($sp)\n`; if !uses_gp then ` lw $gp, {emit_int(n - 8)}($sp)\n`; if n > 0 then ` addu $sp, $sp, {emit_int n}\n`; liveregs i 0; ` move $25, {emit_reg i.arg.(0)}\n`; liveregs i live_25; ` j {emit_reg i.arg.(0)}\n` | Lop(Itailcall_imm s) -> if s = !function_name then begin ` b {emit_label !tailrec_entry_point}\n` end else begin let n = frame_size() in if !contains_calls then ` lw $31, {emit_int(n - 4)}($sp)\n`; if !uses_gp then ` lw $gp, {emit_int(n - 8)}($sp)\n`; if n > 0 then ` addu $sp, $sp, {emit_int n}\n`; ` la $25, {emit_symbol s}\n`; liveregs i live_25; ` j $25\n` end | Lop(Iextcall(s, alloc)) -> if alloc then begin ` la $24, {emit_symbol s}\n`; liveregs i live_24; ` jal caml_c_call\n`; `{record_frame i.live}\n` end else begin ` jal {emit_symbol s}\n` end | Lop(Istackoffset n) -> if n >= 0 then ` subu $sp, $sp, {emit_int n}\n` else ` addu $sp, $sp, {emit_int (-n)}\n`; stack_offset := !stack_offset + n | Lop(Iload(chunk, addr)) -> let dest = i.res.(0) in begin match chunk with Double_u -> (* Destination is not 8-aligned, hence cannot use l.d *) ` ldl $24, {emit_addressing addr i.arg 0}\n`; ` ldr $24, {emit_addressing (offset_addressing addr 7) i.arg 0}\n`; ` dmtc1 $24, {emit_reg dest}\n` | Single -> ` l.s {emit_reg dest}, {emit_addressing addr i.arg 0}\n`; ` cvt.d.s {emit_reg dest}, {emit_reg dest}\n` | _ -> let load_instr = match chunk with Byte_unsigned -> "lbu" | Byte_signed -> "lb" | Sixteen_unsigned -> "lhu" | Sixteen_signed -> "lh" | Double -> "l.d" | _ -> "lw" in ` {emit_string load_instr} {emit_reg dest}, {emit_addressing addr i.arg 0}\n` end | Lop(Istore(chunk, addr)) -> let src = i.arg.(0) in begin match chunk with Double_u -> (* Destination is not 8-aligned, hence cannot use l.d *) ` dmfc1 $24, {emit_reg src}\n`; ` sdl $24, {emit_addressing addr i.arg 1}\n`; ` sdr $24, {emit_addressing (offset_addressing addr 7) i.arg 1}\n` | Single -> ` cvt.s.d $f31, {emit_reg src}\n`; ` s.s $f31, {emit_addressing addr i.arg 1}\n` | _ -> let store_instr = match chunk with Byte_unsigned | Byte_signed -> "sb" | Sixteen_unsigned | Sixteen_signed -> "sh" | Double -> "s.d" | _ -> "sw" in ` {emit_string store_instr} {emit_reg src}, {emit_addressing addr i.arg 1}\n` end | Lop(Ialloc n) -> if !call_gc_label = 0 then call_gc_label := new_label(); ` .set noreorder\n`; ` subu $22, $22, {emit_int n}\n`; ` subu $24, $22, $23\n`; ` bltzal $24, {emit_label !call_gc_label}\n`; ` addu {emit_reg i.res.(0)}, $22, 4\n`; `{record_frame i.live}\n`; ` .set reorder\n` | Lop(Iintop(Icheckbound)) -> if !range_check_trap = 0 then range_check_trap := new_label(); ` bleu {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_label !range_check_trap}\n` | Lop(Iintop op) -> let instr = name_for_int_operation op in ` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n` | Lop(Iintop_imm(Icheckbound, n)) -> if !range_check_trap = 0 then range_check_trap := new_label(); ` bleu {emit_reg i.arg.(0)}, {emit_int n}, {emit_label !range_check_trap}\n` | Lop(Iintop_imm(op, n)) -> let instr = name_for_int_operation op in ` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_int n}\n` | Lop(Inegf | Iabsf as op) -> let instr = name_for_float_operation op in ` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}\n` | Lop(Iaddf | Isubf | Imulf | Idivf as op) -> let instr = name_for_float_operation op in ` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n` | Lop(Ifloatofint) -> ` mtc1 {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n`; ` cvt.d.w {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n` | Lop(Iintoffloat) -> ` trunc.w.d $f31, {emit_reg i.arg.(0)}, $24\n`; ` mfc1 {emit_reg i.res.(0)}, $f31\n` | Lop(Ispecific sop) -> fatal_error "Emit_mips: Ispecific" | Lreloadretaddr -> let n = frame_size() in ` lw $31, {emit_int(n - 4)}($sp)\n`; | Lreturn -> let n = frame_size() in if !uses_gp then ` lw $gp, {emit_int(n - 8)}($sp)\n`; if n > 0 then ` addu $sp, $sp, {emit_int n}\n`; liveregs i 0; ` j $31\n` | Llabel lbl -> `{emit_label lbl}:\n` | Lbranch lbl -> ` b {emit_label lbl}\n` | Lcondbranch(tst, lbl) -> begin match tst with Itruetest -> ` bne {emit_reg i.arg.(0)}, $0, {emit_label lbl}\n` | Ifalsetest -> ` beq {emit_reg i.arg.(0)}, $0, {emit_label lbl}\n` | Iinttest cmp -> let comp = name_for_comparison cmp in ` b{emit_string comp} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_label lbl}\n` | Iinttest_imm(cmp, n) -> let comp = name_for_comparison cmp in ` b{emit_string comp} {emit_reg i.arg.(0)}, {emit_int n}, {emit_label lbl}\n` | Ifloattest(cmp, neg) -> let (comp, branch) = name_for_float_comparison cmp neg in ` c.{emit_string comp}.d {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`; if branch then ` bc1f {emit_label lbl}\n` else ` bc1t {emit_label lbl}\n` | Ioddtest -> ` and $24, {emit_reg i.arg.(0)}, 1\n`; ` bne $24, $0, {emit_label lbl}\n` | Ieventest -> ` and $24, {emit_reg i.arg.(0)}, 1\n`; ` beq $24, $0, {emit_label lbl}\n` end | Lcondbranch3(lbl0, lbl1, lbl2) -> ` subu $24, {emit_reg i.arg.(0)}, 1\n`; begin match lbl0 with None -> () | Some lbl -> ` beq {emit_reg i.arg.(0)}, $0, {emit_label lbl}\n` end; begin match lbl1 with None -> () | Some lbl -> ` beq $24, $0, {emit_label lbl}\n` end; begin match lbl2 with None -> () | Some lbl -> ` bgtz $24, {emit_label lbl}\n` end | Lswitch jumptbl -> let lbl_jumptbl = new_label() in ` sll $24, {emit_reg i.arg.(0)}, 2\n`; ` lw $24, {emit_label lbl_jumptbl}($24)\n`; liveregs i live_24; ` j $24\n`; ` .rdata\n`; `{emit_label lbl_jumptbl}:\n`; for i = 0 to Array.length jumptbl - 1 do ` .word {emit_label jumptbl.(i)}\n` done; ` .text\n` | Lsetuptrap lbl -> ` subu $sp, $sp, 16\n`; ` bal {emit_label lbl}\n` | Lpushtrap -> stack_offset := !stack_offset + 16; ` sw $30, 0($sp)\n`; ` sw $31, 4($sp)\n`; ` sw $gp, 8($sp)\n`; ` move $30, $sp\n` | Lpoptrap -> ` lw $30, 0($sp)\n`; ` addu $sp, $sp, 16\n`; stack_offset := !stack_offset - 16 | Lraise -> ` lw $25, 4($30)\n`; ` move $sp, $30\n`; ` lw $30, 0($sp)\n`; ` lw $gp, 8($sp)\n`; ` addu $sp, $sp, 16\n`; liveregs i live_25; ` jal $25\n` (* Keep retaddr in $31 for debugging *) let rec emit_all i = match i.desc with Lend -> () | _ -> emit_instr i; emit_all i.next (* Emission of a function declaration *) let fundecl fundecl = function_name := fundecl.fun_name; fastcode_flag := fundecl.fun_fast; uses_gp := instr_uses_gp fundecl.fun_body; if !uses_gp then contains_calls := true; tailrec_entry_point := new_label(); stack_offset := 0; call_gc_label := 0; range_check_trap := 0; ` .text\n`; ` .align 2\n`; ` .globl {emit_symbol fundecl.fun_name}\n`; ` .ent {emit_symbol fundecl.fun_name}\n`; `{emit_symbol fundecl.fun_name}:\n`; let n = frame_size() in if n > 0 then ` subu $sp, $sp, {emit_int n}\n`; if !contains_calls then ` sw $31, {emit_int(n - 4)}($sp)\n`; if !uses_gp then begin ` sw $gp, {emit_int(n - 8)}($sp)\n`; ` lui $24, %hi(%neg(%gp_rel({emit_symbol fundecl.fun_name})))\n`; ` addiu $24, $24, %lo(%neg(%gp_rel({emit_symbol fundecl.fun_name})))\n`; ` daddu $gp, $25, $24\n` end; `{emit_label !tailrec_entry_point}:\n`; emit_all fundecl.fun_body; if !call_gc_label > 0 then begin `{emit_label !call_gc_label}:\n`; ` la $25, caml_call_gc\n`; ` j $25\n` end; if !range_check_trap > 0 then begin `{emit_label !range_check_trap}:\n`; ` la $25, caml_ml_array_bound_error\n`; ` j $25\n` end; ` .end {emit_symbol fundecl.fun_name}\n` (* Emission of data *) let emit_item = function Cglobal_symbol s -> ` .globl {emit_symbol s}\n`; | Cdefine_symbol s -> `{emit_symbol s}:\n` | Cdefine_label lbl -> `{emit_label (100000 + lbl)}:\n` | Cint8 n -> ` .byte {emit_int n}\n` | Cint16 n -> ` .half {emit_int n}\n` | Cint32 n -> ` .word {emit_nativeint n}\n` | Cint n -> ` .word {emit_nativeint n}\n` | Csingle f -> ` .float {emit_string f}\n` | Cdouble f -> ` .align 0\n`; (* Prevent alignment on 8-byte boundary *) ` .double {emit_string f}\n` | Csymbol_address s -> ` .word {emit_symbol s}\n` | Clabel_address lbl -> ` .word {emit_label (100000 + lbl)}\n` | Cstring s -> emit_string_directive " .ascii " s | Cskip n -> if n > 0 then ` .space {emit_int n}\n` | Calign n -> ` .align {emit_int(Misc.log2 n)}\n` let data l = ` .data\n`; List.iter emit_item l (* Beginning / end of an assembly file *) let begin_assembly() = (* There are really two groups of registers: $sp and $30 always point to stack locations $2 - $21 never point to stack locations. *) ` .noalias $2,$sp; .noalias $2,$30; .noalias $3,$sp; .noalias $3,$30\n`; ` .noalias $4,$sp; .noalias $4,$30; .noalias $5,$sp; .noalias $5,$30\n`; ` .noalias $6,$sp; .noalias $6,$30; .noalias $7,$sp; .noalias $7,$30\n`; ` .noalias $8,$sp; .noalias $8,$30; .noalias $9,$sp; .noalias $9,$30\n`; ` .noalias $10,$sp; .noalias $10,$30; .noalias $11,$sp; .noalias $11,$30\n`; ` .noalias $12,$sp; .noalias $12,$30; .noalias $13,$sp; .noalias $13,$30\n`; ` .noalias $14,$sp; .noalias $14,$30; .noalias $15,$sp; .noalias $15,$30\n`; ` .noalias $16,$sp; .noalias $16,$30; .noalias $17,$sp; .noalias $17,$30\n`; ` .noalias $18,$sp; .noalias $18,$30; .noalias $19,$sp; .noalias $19,$30\n`; ` .noalias $20,$sp; .noalias $20,$30; .noalias $21,$sp; .noalias $21,$30\n\n`; let lbl_begin = Compilenv.make_symbol (Some "data_begin") in ` .data\n`; ` .globl {emit_symbol lbl_begin}\n`; `{emit_symbol lbl_begin}:\n`; let lbl_begin = Compilenv.make_symbol (Some "code_begin") in ` .text\n`; ` .globl {emit_symbol lbl_begin}\n`; ` .ent {emit_symbol lbl_begin}\n`; `{emit_symbol lbl_begin}:\n`; ` .end {emit_symbol lbl_begin}\n` let end_assembly () = let lbl_end = Compilenv.make_symbol (Some "code_end") in ` .text\n`; ` .globl {emit_symbol lbl_end}\n`; ` .ent {emit_symbol lbl_end}\n`; `{emit_symbol lbl_end}:\n`; ` .end {emit_symbol lbl_end}\n`; let lbl_end = Compilenv.make_symbol (Some "data_end") in ` .data\n`; ` .globl {emit_symbol lbl_end}\n`; `{emit_symbol lbl_end}:\n`; ` .word 0\n`; let lbl = Compilenv.make_symbol (Some "frametable") in ` .rdata\n`; ` .globl {emit_symbol lbl}\n`; `{emit_symbol lbl}:\n`; ` .word {emit_int (List.length !frame_descriptors)}\n`; List.iter emit_frame !frame_descriptors; frame_descriptors := []