(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* $Id$ *) (* Selection of pseudo-instructions, assignment of pseudo-registers, sequentialization. *) open Misc open Cmm open Reg open Mach type environment = (Ident.t, Reg.t array) Tbl.t (* Infer the type of the result of an operation *) let oper_result_type = function Capply(ty, _) -> ty | Cextcall(s, ty, alloc, _) -> ty | Cload c -> begin match c with Word -> typ_addr | Single | Double | Double_u -> typ_float | _ -> typ_int end | Calloc -> typ_addr | Cstore c -> typ_void | Caddi | Csubi | Cmuli | Cdivi | Cmodi | Cand | Cor | Cxor | Clsl | Clsr | Casr | Ccmpi _ | Ccmpa _ | Ccmpf _ -> typ_int | Cadda | Csuba -> typ_addr | Cnegf | Cabsf | Caddf | Csubf | Cmulf | Cdivf -> typ_float | Cfloatofint -> typ_float | Cintoffloat -> typ_int | Craise _ -> typ_void | Ccheckbound _ -> typ_void (* Infer the size in bytes of the result of a simple expression *) let size_expr env exp = let rec size localenv = function Cconst_int _ | Cconst_natint _ -> Arch.size_int | Cconst_symbol _ | Cconst_pointer _ | Cconst_natpointer _ -> Arch.size_addr | Cconst_float _ -> Arch.size_float | Cvar id -> begin try Tbl.find id localenv with Not_found -> try let regs = Tbl.find id env in size_machtype (Array.map (fun r -> r.typ) regs) with Not_found -> fatal_error("Selection.size_expr: unbound var " ^ Ident.unique_name id) end | Ctuple el -> List.fold_right (fun e sz -> size localenv e + sz) el 0 | Cop(op, args) -> size_machtype(oper_result_type op) | Clet(id, arg, body) -> size (Tbl.add id (size localenv arg) localenv) body | Csequence(e1, e2) -> size localenv e2 | _ -> fatal_error "Selection.size_expr" in size Tbl.empty exp (* Swap the two arguments of an integer comparison *) let swap_intcomp = function Isigned cmp -> Isigned(swap_comparison cmp) | Iunsigned cmp -> Iunsigned(swap_comparison cmp) (* Naming of registers *) let all_regs_anonymous rv = try for i = 0 to Array.length rv - 1 do if String.length rv.(i).name > 0 then raise Exit done; true with Exit -> false let name_regs id rv = if Array.length rv = 1 then rv.(0).name <- Ident.name id else for i = 0 to Array.length rv - 1 do rv.(i).name <- Ident.name id ^ "#" ^ string_of_int i done (* "Join" two instruction sequences, making sure they return their results in the same registers. *) let join opt_r1 seq1 opt_r2 seq2 = match (opt_r1, opt_r2) with (None, _) -> opt_r2 | (_, None) -> opt_r1 | (Some r1, Some r2) -> let l1 = Array.length r1 in assert (l1 = Array.length r2); let r = Array.create l1 Reg.dummy in for i = 0 to l1-1 do if String.length r1.(i).name = 0 then begin r.(i) <- r1.(i); seq2#insert_move r2.(i) r1.(i) end else if String.length r2.(i).name = 0 then begin r.(i) <- r2.(i); seq1#insert_move r1.(i) r2.(i) end else begin r.(i) <- Reg.create r1.(i).typ; seq1#insert_move r1.(i) r.(i); seq2#insert_move r2.(i) r.(i) end done; Some r (* Same, for N branches *) let join_array rs = let some_res = ref None in for i = 0 to Array.length rs - 1 do let (r, s) = rs.(i) in if r <> None then some_res := r done; match !some_res with None -> None | Some template -> let size_res = Array.length template in let res = Array.create size_res Reg.dummy in for i = 0 to size_res - 1 do res.(i) <- Reg.create template.(i).typ done; for i = 0 to Array.length rs - 1 do let (r, s) = rs.(i) in match r with None -> () | Some r -> s#insert_moves r res done; Some res (* Extract debug info contained in a C-- operation *) let debuginfo_op = function | Capply(_, dbg) -> dbg | Cextcall(_, _, _, dbg) -> dbg | Craise dbg -> dbg | Ccheckbound dbg -> dbg | _ -> Debuginfo.none (* Registers for catch constructs *) let catch_regs = ref [] (* Name of function being compiled *) let current_function_name = ref "" (* The default instruction selection class *) class virtual selector_generic = object (self) (* Says if an expression is "simple". A "simple" expression has no side-effects and its execution can be delayed until its value is really needed. In the case of e.g. an [alloc] instruction, the non-simple arguments are computed in right-to-left order first, then the block is allocated, then the simple arguments are evaluated and stored. *) method is_simple_expr = function Cconst_int _ -> true | Cconst_natint _ -> true | Cconst_float _ -> true | Cconst_symbol _ -> true | Cconst_pointer _ -> true | Cconst_natpointer _ -> true | Cvar _ -> true | Ctuple el -> List.for_all self#is_simple_expr el | Clet(id, arg, body) -> self#is_simple_expr arg && self#is_simple_expr body | Csequence(e1, e2) -> self#is_simple_expr e1 && self#is_simple_expr e2 | Cop(op, args) -> begin match op with (* The following may have side effects *) | Capply _ | Cextcall _ | Calloc | Cstore _ | Craise _ -> false (* The remaining operations are simple if their args are *) | _ -> List.for_all self#is_simple_expr args end | _ -> false (* Says whether an integer constant is a suitable immediate argument *) method virtual is_immediate : int -> bool (* Selection of addressing modes *) method virtual select_addressing : Cmm.expression -> Arch.addressing_mode * Cmm.expression (* Default instruction selection for stores (of words) *) method select_store addr arg = (Istore(Word, addr), arg) (* Default instruction selection for operators *) method select_operation op args = match (op, args) with (Capply(ty, dbg), Cconst_symbol s :: rem) -> (Icall_imm s, rem) | (Capply(ty, dbg), _) -> (Icall_ind, args) | (Cextcall(s, ty, alloc, dbg), _) -> (Iextcall(s, alloc), args) | (Cload chunk, [arg]) -> let (addr, eloc) = self#select_addressing arg in (Iload(chunk, addr), [eloc]) | (Cstore chunk, [arg1; arg2]) -> let (addr, eloc) = self#select_addressing arg1 in if chunk = Word then begin let (op, newarg2) = self#select_store addr arg2 in (op, [newarg2; eloc]) end else begin (Istore(chunk, addr), [arg2; eloc]) (* Inversion addr/datum in Istore *) end | (Calloc, _) -> (Ialloc 0, args) | (Caddi, _) -> self#select_arith_comm Iadd args | (Csubi, _) -> self#select_arith Isub args | (Cmuli, [arg1; Cconst_int n]) -> let l = Misc.log2 n in if n = 1 lsl l then (Iintop_imm(Ilsl, l), [arg1]) else self#select_arith_comm Imul args | (Cmuli, [Cconst_int n; arg1]) -> let l = Misc.log2 n in if n = 1 lsl l then (Iintop_imm(Ilsl, l), [arg1]) else self#select_arith_comm Imul args | (Cmuli, _) -> self#select_arith_comm Imul args | (Cdivi, _) -> self#select_arith Idiv args | (Cmodi, _) -> self#select_arith_comm Imod args | (Cand, _) -> self#select_arith_comm Iand args | (Cor, _) -> self#select_arith_comm Ior args | (Cxor, _) -> self#select_arith_comm Ixor args | (Clsl, _) -> self#select_shift Ilsl args | (Clsr, _) -> self#select_shift Ilsr args | (Casr, _) -> self#select_shift Iasr args | (Ccmpi comp, _) -> self#select_arith_comp (Isigned comp) args | (Cadda, _) -> self#select_arith_comm Iadd args | (Csuba, _) -> self#select_arith Isub args | (Ccmpa comp, _) -> self#select_arith_comp (Iunsigned comp) args | (Cnegf, _) -> (Inegf, args) | (Cabsf, _) -> (Iabsf, args) | (Caddf, _) -> (Iaddf, args) | (Csubf, _) -> (Isubf, args) | (Cmulf, _) -> (Imulf, args) | (Cdivf, _) -> (Idivf, args) | (Cfloatofint, _) -> (Ifloatofint, args) | (Cintoffloat, _) -> (Iintoffloat, args) | (Ccheckbound _, _) -> self#select_arith Icheckbound args | _ -> fatal_error "Selection.select_oper" method private select_arith_comm op = function [arg; Cconst_int n] when self#is_immediate n -> (Iintop_imm(op, n), [arg]) | [arg; Cconst_pointer n] when self#is_immediate n -> (Iintop_imm(op, n), [arg]) | [Cconst_int n; arg] when self#is_immediate n -> (Iintop_imm(op, n), [arg]) | [Cconst_pointer n; arg] when self#is_immediate n -> (Iintop_imm(op, n), [arg]) | args -> (Iintop op, args) method private select_arith op = function [arg; Cconst_int n] when self#is_immediate n -> (Iintop_imm(op, n), [arg]) | [arg; Cconst_pointer n] when self#is_immediate n -> (Iintop_imm(op, n), [arg]) | args -> (Iintop op, args) method private select_shift op = function [arg; Cconst_int n] when n >= 0 && n < Arch.size_int * 8 -> (Iintop_imm(op, n), [arg]) | args -> (Iintop op, args) method private select_arith_comp cmp = function [arg; Cconst_int n] when self#is_immediate n -> (Iintop_imm(Icomp cmp, n), [arg]) | [arg; Cconst_pointer n] when self#is_immediate n -> (Iintop_imm(Icomp cmp, n), [arg]) | [Cconst_int n; arg] when self#is_immediate n -> (Iintop_imm(Icomp(swap_intcomp cmp), n), [arg]) | [Cconst_pointer n; arg] when self#is_immediate n -> (Iintop_imm(Icomp(swap_intcomp cmp), n), [arg]) | args -> (Iintop(Icomp cmp), args) (* Instruction selection for conditionals *) method select_condition = function Cop(Ccmpi cmp, [arg1; Cconst_int n]) when self#is_immediate n -> (Iinttest_imm(Isigned cmp, n), arg1) | Cop(Ccmpi cmp, [Cconst_int n; arg2]) when self#is_immediate n -> (Iinttest_imm(Isigned(swap_comparison cmp), n), arg2) | Cop(Ccmpi cmp, [arg1; Cconst_pointer n]) when self#is_immediate n -> (Iinttest_imm(Isigned cmp, n), arg1) | Cop(Ccmpi cmp, [Cconst_pointer n; arg2]) when self#is_immediate n -> (Iinttest_imm(Isigned(swap_comparison cmp), n), arg2) | Cop(Ccmpi cmp, args) -> (Iinttest(Isigned cmp), Ctuple args) | Cop(Ccmpa cmp, [arg1; Cconst_pointer n]) when self#is_immediate n -> (Iinttest_imm(Iunsigned cmp, n), arg1) | Cop(Ccmpa cmp, [arg1; Cconst_int n]) when self#is_immediate n -> (Iinttest_imm(Iunsigned cmp, n), arg1) | Cop(Ccmpa cmp, [Cconst_pointer n; arg2]) when self#is_immediate n -> (Iinttest_imm(Iunsigned(swap_comparison cmp), n), arg2) | Cop(Ccmpa cmp, [Cconst_int n; arg2]) when self#is_immediate n -> (Iinttest_imm(Iunsigned(swap_comparison cmp), n), arg2) | Cop(Ccmpa cmp, args) -> (Iinttest(Iunsigned cmp), Ctuple args) | Cop(Ccmpf cmp, args) -> (Ifloattest(cmp, false), Ctuple args) | Cop(Cand, [arg; Cconst_int 1]) -> (Ioddtest, arg) | arg -> (Itruetest, arg) (* Return an array of fresh registers of the given type. Normally implemented as Reg.createv, but some ports (e.g. Arm) can override this definition to store float values in pairs of integer registers. *) method regs_for tys = Reg.createv tys (* Buffering of instruction sequences *) val mutable instr_seq = dummy_instr method insert_debug desc dbg arg res = instr_seq <- instr_cons_debug desc arg res dbg instr_seq method insert desc arg res = instr_seq <- instr_cons desc arg res instr_seq method extract = let rec extract res i = if i == dummy_instr then res else extract {i with next = res} i.next in extract (end_instr()) instr_seq (* Insert a sequence of moves from one pseudoreg set to another. *) method insert_move src dst = if src.stamp <> dst.stamp then self#insert (Iop Imove) [|src|] [|dst|] method insert_moves src dst = for i = 0 to Array.length src - 1 do self#insert_move src.(i) dst.(i) done (* Insert moves and stack offsets for function arguments and results *) method insert_move_args arg loc stacksize = if stacksize <> 0 then self#insert (Iop(Istackoffset stacksize)) [||] [||]; self#insert_moves arg loc method insert_move_results loc res stacksize = if stacksize <> 0 then self#insert(Iop(Istackoffset(-stacksize))) [||] [||]; self#insert_moves loc res (* Add an Iop opcode. Can be overriden by processor description to insert moves before and after the operation, i.e. for two-address instructions, or instructions using dedicated registers. *) method insert_op_debug op dbg rs rd = self#insert_debug (Iop op) dbg rs rd; rd method insert_op op rs rd = self#insert (Iop op) rs rd; rd (* Add the instructions for the given expression at the end of the self sequence *) method emit_expr env exp = match exp with Cconst_int n -> let r = self#regs_for typ_int in Some(self#insert_op (Iconst_int(Nativeint.of_int n)) [||] r) | Cconst_natint n -> let r = self#regs_for typ_int in Some(self#insert_op (Iconst_int n) [||] r) | Cconst_float n -> let r = self#regs_for typ_float in Some(self#insert_op (Iconst_float n) [||] r) | Cconst_symbol n -> let r = self#regs_for typ_addr in Some(self#insert_op (Iconst_symbol n) [||] r) | Cconst_pointer n -> let r = self#regs_for typ_addr in Some(self#insert_op (Iconst_int(Nativeint.of_int n)) [||] r) | Cconst_natpointer n -> let r = self#regs_for typ_addr in Some(self#insert_op (Iconst_int n) [||] r) | Cvar v -> begin try Some(Tbl.find v env) with Not_found -> fatal_error("Selection.emit_expr: unbound var " ^ Ident.unique_name v) end | Clet(v, e1, e2) -> begin match self#emit_expr env e1 with None -> None | Some r1 -> self#emit_expr (self#bind_let env v r1) e2 end | Cassign(v, e1) -> let rv = try Tbl.find v env with Not_found -> fatal_error ("Selection.emit_expr: unbound var " ^ Ident.name v) in begin match self#emit_expr env e1 with None -> None | Some r1 -> self#insert_moves r1 rv; Some [||] end | Ctuple [] -> Some [||] | Ctuple exp_list -> begin match self#emit_parts_list env exp_list with None -> None | Some(simple_list, ext_env) -> Some(self#emit_tuple ext_env simple_list) end | Cop(Craise dbg, [arg]) -> begin match self#emit_expr env arg with None -> None | Some r1 -> let rd = [|Proc.loc_exn_bucket|] in self#insert (Iop Imove) r1 rd; self#insert_debug Iraise dbg rd [||]; None end | Cop(Ccmpf comp, args) -> self#emit_expr env (Cifthenelse(exp, Cconst_int 1, Cconst_int 0)) | Cop(op, args) -> begin match self#emit_parts_list env args with None -> None | Some(simple_args, env) -> let ty = oper_result_type op in let (new_op, new_args) = self#select_operation op simple_args in let dbg = debuginfo_op op in match new_op with Icall_ind -> Proc.contains_calls := true; let r1 = self#emit_tuple env new_args in let rarg = Array.sub r1 1 (Array.length r1 - 1) in let rd = self#regs_for ty in let (loc_arg, stack_ofs) = Proc.loc_arguments rarg in let loc_res = Proc.loc_results rd in self#insert_move_args rarg loc_arg stack_ofs; self#insert_debug (Iop Icall_ind) dbg (Array.append [|r1.(0)|] loc_arg) loc_res; self#insert_move_results loc_res rd stack_ofs; Some rd | Icall_imm lbl -> Proc.contains_calls := true; let r1 = self#emit_tuple env new_args in let rd = self#regs_for ty in let (loc_arg, stack_ofs) = Proc.loc_arguments r1 in let loc_res = Proc.loc_results rd in self#insert_move_args r1 loc_arg stack_ofs; self#insert_debug (Iop(Icall_imm lbl)) dbg loc_arg loc_res; self#insert_move_results loc_res rd stack_ofs; Some rd | Iextcall(lbl, alloc) -> Proc.contains_calls := true; let (loc_arg, stack_ofs) = self#emit_extcall_args env new_args in let rd = self#regs_for ty in let loc_res = Proc.loc_external_results rd in self#insert_debug (Iop(Iextcall(lbl, alloc))) dbg loc_arg loc_res; self#insert_move_results loc_res rd stack_ofs; Some rd | Ialloc _ -> Proc.contains_calls := true; let rd = self#regs_for typ_addr in let size = size_expr env (Ctuple new_args) in self#insert (Iop(Ialloc size)) [||] rd; self#emit_stores env new_args rd; Some rd | op -> let r1 = self#emit_tuple env new_args in let rd = self#regs_for ty in Some (self#insert_op_debug op dbg r1 rd) end | Csequence(e1, e2) -> begin match self#emit_expr env e1 with None -> None | Some r1 -> self#emit_expr env e2 end | Cifthenelse(econd, eif, eelse) -> let (cond, earg) = self#select_condition econd in begin match self#emit_expr env earg with None -> None | Some rarg -> let (rif, sif) = self#emit_sequence env eif in let (relse, selse) = self#emit_sequence env eelse in let r = join rif sif relse selse in self#insert (Iifthenelse(cond, sif#extract, selse#extract)) rarg [||]; r end | Cswitch(esel, index, ecases) -> begin match self#emit_expr env esel with None -> None | Some rsel -> let rscases = Array.map (self#emit_sequence env) ecases in let r = join_array rscases in self#insert (Iswitch(index, Array.map (fun (r, s) -> s#extract) rscases)) rsel [||]; r end | Cloop(ebody) -> let (rarg, sbody) = self#emit_sequence env ebody in self#insert (Iloop(sbody#extract)) [||] [||]; Some [||] | Ccatch(nfail, ids, e1, e2) -> let rs = List.map (fun id -> let r = self#regs_for typ_addr in name_regs id r; r) ids in catch_regs := (nfail, Array.concat rs) :: !catch_regs ; let (r1, s1) = self#emit_sequence env e1 in catch_regs := List.tl !catch_regs ; let new_env = List.fold_left (fun env (id,r) -> Tbl.add id r env) env (List.combine ids rs) in let (r2, s2) = self#emit_sequence new_env e2 in let r = join r1 s1 r2 s2 in self#insert (Icatch(nfail, s1#extract, s2#extract)) [||] [||]; r | Cexit (nfail,args) -> begin match self#emit_parts_list env args with None -> None | Some (simple_list, ext_env) -> let src = self#emit_tuple ext_env simple_list in let dest = try List.assoc nfail !catch_regs with Not_found -> Misc.fatal_error ("Selectgen.emit_expr, on exit("^string_of_int nfail^")") in self#insert_moves src dest ; self#insert (Iexit nfail) [||] [||]; None end | Ctrywith(e1, v, e2) -> Proc.contains_calls := true; let (r1, s1) = self#emit_sequence env e1 in let rv = self#regs_for typ_addr in let (r2, s2) = self#emit_sequence (Tbl.add v rv env) e2 in let r = join r1 s1 r2 s2 in self#insert (Itrywith(s1#extract, instr_cons (Iop Imove) [|Proc.loc_exn_bucket|] rv (s2#extract))) [||] [||]; r method private emit_sequence env exp = let s = {< instr_seq = dummy_instr >} in let r = s#emit_expr env exp in (r, s) method private bind_let env v r1 = if all_regs_anonymous r1 then begin name_regs v r1; Tbl.add v r1 env end else begin let rv = Reg.createv_like r1 in name_regs v rv; self#insert_moves r1 rv; Tbl.add v rv env end method private emit_parts env exp = if self#is_simple_expr exp then Some (exp, env) else begin match self#emit_expr env exp with None -> None | Some r -> if Array.length r = 0 then Some (Ctuple [], env) else begin (* The normal case *) let id = Ident.create "bind" in if all_regs_anonymous r then (* r is an anonymous, unshared register; use it directly *) Some (Cvar id, Tbl.add id r env) else begin (* Introduce a fresh temp to hold the result *) let tmp = Reg.createv_like r in self#insert_moves r tmp; Some (Cvar id, Tbl.add id tmp env) end end end method private emit_parts_list env exp_list = match exp_list with [] -> Some ([], env) | exp :: rem -> (* This ensures right-to-left evaluation, consistent with the bytecode compiler *) match self#emit_parts_list env rem with None -> None | Some(new_rem, new_env) -> match self#emit_parts new_env exp with None -> None | Some(new_exp, fin_env) -> Some(new_exp :: new_rem, fin_env) method private emit_tuple env exp_list = let rec emit_list = function [] -> [] | exp :: rem -> (* Again, force right-to-left evaluation *) let loc_rem = emit_list rem in match self#emit_expr env exp with None -> assert false (* should have been caught in emit_parts *) | Some loc_exp -> loc_exp :: loc_rem in Array.concat(emit_list exp_list) method emit_extcall_args env args = let r1 = self#emit_tuple env args in let (loc_arg, stack_ofs as arg_stack) = Proc.loc_external_arguments r1 in self#insert_move_args r1 loc_arg stack_ofs; arg_stack method emit_stores env data regs_addr = let a = ref (Arch.offset_addressing Arch.identity_addressing (-Arch.size_int)) in List.iter (fun e -> let (op, arg) = self#select_store !a e in match self#emit_expr env arg with None -> assert false | Some regs -> match op with Istore(_, _) -> for i = 0 to Array.length regs - 1 do let r = regs.(i) in let kind = if r.typ = Float then Double_u else Word in self#insert (Iop(Istore(kind, !a))) (Array.append [|r|] regs_addr) [||]; a := Arch.offset_addressing !a (size_component r.typ) done | _ -> self#insert (Iop op) (Array.append regs regs_addr) [||]; a := Arch.offset_addressing !a (size_expr env e)) data (* Same, but in tail position *) method private emit_return env exp = match self#emit_expr env exp with None -> () | Some r -> let loc = Proc.loc_results r in self#insert_moves r loc; self#insert Ireturn loc [||] method emit_tail env exp = match exp with Clet(v, e1, e2) -> begin match self#emit_expr env e1 with None -> () | Some r1 -> self#emit_tail (self#bind_let env v r1) e2 end | Cop(Capply(ty, dbg) as op, args) -> begin match self#emit_parts_list env args with None -> () | Some(simple_args, env) -> let (new_op, new_args) = self#select_operation op simple_args in match new_op with Icall_ind -> let r1 = self#emit_tuple env new_args in let rarg = Array.sub r1 1 (Array.length r1 - 1) in let (loc_arg, stack_ofs) = Proc.loc_arguments rarg in if stack_ofs = 0 then begin self#insert_moves rarg loc_arg; self#insert (Iop Itailcall_ind) (Array.append [|r1.(0)|] loc_arg) [||] end else begin Proc.contains_calls := true; let rd = self#regs_for ty in let loc_res = Proc.loc_results rd in self#insert_move_args rarg loc_arg stack_ofs; self#insert_debug (Iop Icall_ind) dbg (Array.append [|r1.(0)|] loc_arg) loc_res; self#insert(Iop(Istackoffset(-stack_ofs))) [||] [||]; self#insert Ireturn loc_res [||] end | Icall_imm lbl -> let r1 = self#emit_tuple env new_args in let (loc_arg, stack_ofs) = Proc.loc_arguments r1 in if stack_ofs = 0 then begin self#insert_moves r1 loc_arg; self#insert (Iop(Itailcall_imm lbl)) loc_arg [||] end else if lbl = !current_function_name then begin let loc_arg' = Proc.loc_parameters r1 in self#insert_moves r1 loc_arg'; self#insert (Iop(Itailcall_imm lbl)) loc_arg' [||] end else begin Proc.contains_calls := true; let rd = self#regs_for ty in let loc_res = Proc.loc_results rd in self#insert_move_args r1 loc_arg stack_ofs; self#insert_debug (Iop(Icall_imm lbl)) dbg loc_arg loc_res; self#insert(Iop(Istackoffset(-stack_ofs))) [||] [||]; self#insert Ireturn loc_res [||] end | _ -> fatal_error "Selection.emit_tail" end | Csequence(e1, e2) -> begin match self#emit_expr env e1 with None -> () | Some r1 -> self#emit_tail env e2 end | Cifthenelse(econd, eif, eelse) -> let (cond, earg) = self#select_condition econd in begin match self#emit_expr env earg with None -> () | Some rarg -> self#insert (Iifthenelse(cond, self#emit_tail_sequence env eif, self#emit_tail_sequence env eelse)) rarg [||] end | Cswitch(esel, index, ecases) -> begin match self#emit_expr env esel with None -> () | Some rsel -> self#insert (Iswitch(index, Array.map (self#emit_tail_sequence env) ecases)) rsel [||] end | Ccatch(nfail, ids, e1, e2) -> let rs = List.map (fun id -> let r = self#regs_for typ_addr in name_regs id r ; r) ids in catch_regs := (nfail, Array.concat rs) :: !catch_regs ; let s1 = self#emit_tail_sequence env e1 in catch_regs := List.tl !catch_regs ; let new_env = List.fold_left (fun env (id,r) -> Tbl.add id r env) env (List.combine ids rs) in let s2 = self#emit_tail_sequence new_env e2 in self#insert (Icatch(nfail, s1, s2)) [||] [||] | Ctrywith(e1, v, e2) -> Proc.contains_calls := true; let (opt_r1, s1) = self#emit_sequence env e1 in let rv = self#regs_for typ_addr in let s2 = self#emit_tail_sequence (Tbl.add v rv env) e2 in self#insert (Itrywith(s1#extract, instr_cons (Iop Imove) [|Proc.loc_exn_bucket|] rv s2)) [||] [||]; begin match opt_r1 with None -> () | Some r1 -> let loc = Proc.loc_results r1 in self#insert_moves r1 loc; self#insert Ireturn loc [||] end | _ -> self#emit_return env exp method private emit_tail_sequence env exp = let s = {< instr_seq = dummy_instr >} in s#emit_tail env exp; s#extract (* Sequentialization of a function definition *) method emit_fundecl f = Proc.contains_calls := false; current_function_name := f.Cmm.fun_name; let rargs = List.map (fun (id, ty) -> let r = self#regs_for ty in name_regs id r; r) f.Cmm.fun_args in let rarg = Array.concat rargs in let loc_arg = Proc.loc_parameters rarg in let env = List.fold_right2 (fun (id, ty) r env -> Tbl.add id r env) f.Cmm.fun_args rargs Tbl.empty in self#insert_moves loc_arg rarg; self#emit_tail env f.Cmm.fun_body; { fun_name = f.Cmm.fun_name; fun_args = loc_arg; fun_body = self#extract; fun_fast = f.Cmm.fun_fast } end