/* Copyright Digital Equipment Corporation & INRIA 1988, 1989 */ /* Last modified_on Tue Feb 25 1:27:57 GMT+1:00 1992 by shand */ /* modified_on Mon Apr 15 18:44:14 GMT+2:00 1991 by herve */ #include #include "BigZ.h" #ifndef MSDOS #define S(A,B) strcmp(A,B) #define P(A) fprintf(stderr,"%d...",A) #define E(A,B,C) fprintf(stderr,"\nError in test #%d:\nComputed: %s\nCorrect: %s\n",A,C,B) #define T(A,B,C) S(B,C)?E(A,B,C):P(A) #else void T(A,B,C) int A; char *B, *C; { if (strcmp (B, C)) fprintf (stderr, "\nError in test #%d:\nComputed: %s\nCorrect: %s\n",A,C,B); else fprintf (stderr,"%2d...",A); } #endif #define NEWLINE fprintf(stderr,"\n") #define To(A) BzToString(A,10) #define From(A) BzFromString(A,10) #define Abs(A) BzAbs(A) #define Neg(A) BzNegate(A) #define Add(A,B) BzAdd(A,B) #define Sub(A,B) BzSubtract(A,B) #define Mul(A,B) BzMultiply(A,B) #define Div(A,B) BzDiv(A,B) #define Mod(A,B) BzMod(A,B) #define Fac(A) BzFactorial(A) #define FromI(I) BzFromInteger(I) #define Cmp(A,B) BzCompare(A,B) #define Sqa(A) Mul(A,A) #define zero FromI(0) #define one FromI(1) #define two FromI(2) #define minusone FromI(-1) #ifdef DIGITonUSHORT #define two31m1 Sub(Mul(From("65536"),From("32768")),one) #else #define two31m1 FromI(0x7FFFFFFF) #endif main() { BigZ a,b; T(1,"12", To(From("12"))) ; T(2,"12345678910", To(From("12345678910"))) ; T(3,"123", To(From("00000123"))) ; T(4,"-123", To(From("-123"))) ; T(5,"-32768", To(From("-32768"))) ; T(6,"-32768", To(Neg(From("32768")))) ; T(7,"-32768", To(Add(From("-16384"),From("-16384")))) ; T(8,"-32768", To(Add(From("-16383"),From("-16385")))) ; T(9,"-32768", To(Mul(From("2"),From("-16384")))) ; T(10,"-16384", To(Div(From("-32768"),From("2")))) ; NEWLINE; T(11,"100000", To(Add(From("1"),From("99999")))) ; T(12,"12343994",To(Add(From("-1684"),From("12345678")))); T(13,"-12329294",To(Sub(From("16384"),From("12345678")))); T(14,"135801",To(Add(From("12345"),From("123456")))); T(15,"123456135801",To(Add(From("12345"),From("123456123456")))); T(16,"135801",To(Add(From("123456"),From("12345")))); T(17,"123456135801",To(Add(From("123456123456"),From("12345")))); T(18,"135801",To(Sub(From("12345"),From("-123456")))); T(19,"123456135801",To(Sub(From("12345"),From("-123456123456")))); T(20,"135801",To(Sub(From("123456"),From("-12345")))); NEWLINE; T(21,"123456135801",To(Sub(From("123456123456"),From("-12345")))); T(22,"-111111",To(Sub(From("12345"),From("123456")))); T(23,"111111",To(Sub(From("123456"),From("12345")))); T(24,"-123456111111",To(Sub(From("12345"),From("123456123456")))); T(25,"123456111111",To(Sub(From("123456123456"),From("12345")))); T(26,"-111111",To(Add(From("12345"),From("-123456")))); T(27,"111111",To(Add(From("123456"),From("-12345")))); T(28,"-123456111111",To(Add(From("12345"),From("-123456123456")))); T(29,"123456111111",To(Add(From("123456123456"),From("-12345")))); T(30,"2", To(Div(From("264195"),From("97200")))) ; NEWLINE; T(31,"27405", To(Mod(From("97200"),From("69795")))) ; T(32,"4294967295", To(Div(From("22685491128062564230891640495451214097"),From("5281877500950955845296219748")))) ; T(33,"99997",To(Add(From("-3"),From("100000")))); T(34,"-100003",To(Add(From("-3"),From("-100000")))); T(35,"999999",To(Sub(From("1000000"),From("1")))); T(36,"999999999",To(Mul(From("12345679"),From("81")))); a = From("1234567"); b = From("123456"); T(37,"1234567",To(Add(Mul(Div(a,b),b),Mod(a,b)))); T(38,"-1234567",To(Add(Mul(Div(Neg(a),Neg(b)),Neg(b)),Mod(Neg(a),Neg(b))))); T(39,"1234567",To(Add(Mul(Div(a,Neg(b)),Neg(b)),Mod(a,Neg(b))))); T(40,"10000000000000000000000",To(Mul(From("-100000000000"),From("-100000000000")))); NEWLINE; T(41,"-10000000000000000000000",To(Mul(From("-100000000000"),From("100000000000")))); T(42,"-10000000000000000000000",To(Mul(From("100000000000"),From("-100000000000")))); T(43,"10000000000000000000000",To(Mul(From("100000000000"),From("100000000000")))); a = Sub(From("10000000000000"),From("10000000000000")); T(44,"0",To(Mod(a,From("1000000000000")))); T(45,"0",To(Div(a,From("1000000000000")))); T(46,"0",To(Mod(Neg(a),From("10000000000000")))); T(47,"0",To(Div(Neg(a),From("10000000000000")))); T(48,"2",To(Div(From("3000"),Sub(From("1234567891234"),From("1234567890000"))))); T(49,"532",To(Mod(From("3000"),Sub(From("1234567891234"),From("1234567890000"))))); T(50,"9",To(Mod(From("-1234567890"),From("1234567899")))); NEWLINE; T(51,"2",To(Mod(Sub(From("12345678900000"),From("12345678926887")),From("3")))); T(52,"40830949904677684825316369628906250000000000000",To(Mul(From("48270948888581289062500000000"),From("845870049062500000")))); T(53,"22666179639240748063923391983020279316955515",To(Mul(From("6956883693"),From("3258093801689886619170103176686855")))); T(54,"1405006117752879898543142606244511569936384000000000",To(Fac(From("42")))); T(55,"0",To(Mod(Fac(From("13")),Fac(From("9"))))); T(56,"0",To(Mod(Fac(From("34")),Fac(From("13"))))); T(57,"0",To(Mod(Fac(From("57")),Fac(From("21"))))); T(58,"0",To(Mod(Fac(From("40")),Fac(From("39"))))); T(59,"59",To(Div(Fac(From("59")),Fac(From("58"))))); T(60,"2",To(Div(From("5"),From("2")))); NEWLINE; T(61,"1",To(Mod(From("5"),From("2")))); T(62,"-3",To(Div(From("-5"),From("2")))); T(63,"1",To(Mod(From("-5"),From("2")))); T(64,"3",To(Div(From("-5"),From("-2")))); T(65,"1",To(Mod(From("-5"),From("-2")))); T(66,"-2",To(Div(From("5"),From("-2")))); T(67,"1",To(Mod(From("5"),From("-2")))); T(68,"3",To(Div(From("6"),From("2")))); T(69,"0",To(Mod(From("6"),From("2")))); T(70,"-3",To(Div(From("-6"),From("2")))); NEWLINE; T(71,"0",To(Mod(From("-6"),From("2")))); T(72,"3",To(Div(From("-6"),From("-2")))); T(73,"0",To(Mod(From("-6"),From("-2")))); T(74,"-3",To(Div(From("6"),From("-2")))); T(75,"0",To(Mod(From("6"),From("-2")))); T(76,"0",To(Abs(From("0")))); T(77,"1234567890",To(Abs(From("1234567890")))); T(78,"1234567890",To(Abs(From("-1234567890")))); T(79,"1",BzCompare(From("-1234567890"),From("12345"))<0?"1":"0"); T(80,"1",BzGetSign(From("-1234567890"))<0?"1":"0"); NEWLINE; T(81,"0", To(Add(From("-1"),Mul(From("-1"),From("-1"))))); T(82,"-1",To(Add(From("-1"),Mul(From("0"), From("-1"))))); T(83,"-3",To(Add(From("-1"),Mul(From("-2"),From("1" ))))); T(84,"1", To(Add(From("-1"),Mul(From("-2"),From("-1"))))); T(85,"-1",To(Add(From("1"), Mul(From("-2"),From("1" ))))); T(86,"18446744065119617025",To(Mul(From("4294967295"),From("4294967295")))); /* (-2^64 + 2^32 - 1) / 2^32 */ T(87,"-4294967296",To(Div( Sub(Mul(Mul(Add(Mul(two31m1,two),one),Mul(Add(two31m1,one), two)),minusone),one), Mul(Add (two31m1,one),two)))); T(88,"Equal",(Cmp(Mod(FromI(10),FromI(5)),zero) == BZ_EQ)?"Equal":"Not equal"); T(89,"Equal",(Cmp(Div(FromI(4),FromI(5)),zero) == BZ_EQ)?"Equal":"Not equal"); a = From ("100000000000000000000000000000000000000"); T(90,To (a),To(Div (Sqa (a),a))); /* 90: tests the MIPS & turbo C optimizer bugs. If the special */ /* purpose squaring code is enabled and the optimizer */ /* messes up, this test will fail */ NEWLINE; b = Sqa (a); T(91,To (b),To(Div (Sqa (b),b))); T(92,"-1",To(Div(From("13"),From("-13")))); NEWLINE; }