(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* Automatique. Distributed only by permission. *) (* *) (***********************************************************************) (* $Id$ *) (* Emission of Alpha assembly code *) module LabelSet = Set.Make(struct type t = Linearize.label let compare = compare end) open Misc open Cmm open Arch open Proc open Reg open Mach open Linearize open Emitaux (* First pass: insert Iloadgp instructions where needed *) let instr_copy i next = { desc = i.desc; next = next; arg = i.arg; res = i.res; live = i.live } let insert_load_gp f = let labels_needing_gp = ref LabelSet.empty in let fixpoint_reached = ref false in let label_needs_gp lbl = LabelSet.mem lbl !labels_needing_gp in let opt_label_needs_gp default = function None -> default | Some lbl -> label_needs_gp lbl in let set_label_needs_gp lbl = if not (label_needs_gp lbl) then begin fixpoint_reached := false; labels_needing_gp := LabelSet.add lbl !labels_needing_gp end in let tailrec_entry_point = new_label() in (* Determine if $gp is needed before an instruction. [next] says whether $gp is needed just after (i.e. by the following instruction). *) let instr_needs_gp next = function Lend -> false | Lop(Iconst_int n) -> (* for large n, turned into ldq ($gp) *) next || Nativeint.cmp n (-0x80000000) < 0 || Nativeint.cmp n 0x7FFFFFFF > 0 | Lop(Iconst_float s) -> true (* turned into ldq ($gp) *) | Lop(Iconst_symbol s) -> true (* turned into ldq ($gp) *) | Lop(Icall_ind) -> false (* does ldgp if needed afterwards *) | Lop(Icall_imm s) -> false (* does ldgp if needed afterwards *) | Lop(Itailcall_ind) -> false | Lop(Itailcall_imm s) -> if s = f.fun_name then label_needs_gp tailrec_entry_point else false | Lop(Iextcall(_, _)) -> true (* loads $27 from ($gp) *) | Lop(Iload(_, Ibased(_, _))) -> true (* loads address from ($gp) *) | Lop(Istore(_, Ibased(_, _))) -> true (* loads address from ($gp) *) | Lop(Iintop(Idiv | Imod)) -> true (* divq and remq can be turned into *) | Lop(Iintop_imm((Idiv | Imod), _)) -> true (* a function call *) | Lop(Iintop_imm(_, n)) -> (* for large n, turned into ldq ($gp) *) next || n < -0x80000000 || n > 0x7FFFFFFF | Lop _ -> next | Lreloadretaddr -> next | Lreturn -> false | Llabel lbl -> if next then set_label_needs_gp lbl; next | Lbranch lbl -> label_needs_gp lbl | Lcondbranch(tst, lbl) -> next || label_needs_gp lbl | Lcondbranch3(lbl1, lbl2, lbl3) -> opt_label_needs_gp next lbl1 || opt_label_needs_gp next lbl2 || opt_label_needs_gp next lbl3 | Lswitch lblv -> let n = ref false in for i = 0 to Array.length lblv - 1 do n := !n || label_needs_gp lblv.(i) done; !n | Lsetuptrap lbl -> label_needs_gp lbl | Lpushtrap -> next | Lpoptrap -> next | Lraise -> false in let rec needs_gp i = if i.desc = Lend then false else instr_needs_gp (needs_gp i.next) i.desc in while not !fixpoint_reached do fixpoint_reached := true; if needs_gp f.fun_body then set_label_needs_gp tailrec_entry_point done; (* Insert Ireloadgp instructions after calls where needed *) let rec insert_reload_gp i = if i.desc = Lend then (i, false) else begin let (new_next, needs_next) = insert_reload_gp i.next in let new_instr = match i.desc with (* If the instruction destroys $gp and $gp is needed afterwards, insert a ldgp after the instructions. *) Lop(Icall_ind | Icall_imm _) when needs_next -> instr_copy i (instr_cons (Lop(Ispecific(Ireloadgp true))) [||] [||] new_next) | Lop(Iextcall(_, false)) | Lsetuptrap _ when needs_next -> instr_copy i (instr_cons (Lop(Ispecific(Ireloadgp false))) [||] [||] new_next) | _ -> instr_copy i new_next in (new_instr, instr_needs_gp needs_next i.desc) end in let (new_body, uses_gp) = insert_reload_gp f.fun_body in ({fun_body = new_body; fun_name = f.fun_name; fun_fast = f.fun_fast}, uses_gp) (* Second pass: code generation proper *) (* Tradeoff between code size and code speed *) let fastcode_flag = ref true (* Output a label *) let emit_label lbl = emit_string "$"; emit_int lbl (* Output a symbol *) let emit_symbol s = Emitaux.emit_symbol '$' s (* Output a pseudo-register *) let emit_reg r = match r.loc with Reg r -> emit_string (register_name r) | _ -> fatal_error "Emit_alpha.emit_reg" (* Layout of the stack frame *) let stack_offset = ref 0 let frame_size () = let size = !stack_offset + 8 * (num_stack_slots.(0) + num_stack_slots.(1)) + (if !contains_calls then 8 else 0) in Misc.align size 16 let slot_offset loc cl = match loc with Incoming n -> frame_size() + n | Local n -> if cl = 0 then !stack_offset + n * 8 else !stack_offset + (num_stack_slots.(0) + n) * 8 | Outgoing n -> n (* Output a stack reference *) let emit_stack r = match r.loc with Stack s -> let ofs = slot_offset s (register_class r) in `{emit_int ofs}($sp)` | _ -> fatal_error "Emit_alpha.emit_stack" (* Output an addressing mode *) let emit_addressing addr r n = match addr with Iindexed ofs -> `{emit_int ofs}({emit_reg r.(n)})` | Ibased(s, ofs) -> `{emit_symbol s}`; if ofs > 0 then ` + {emit_int ofs}`; if ofs < 0 then ` - {emit_int(-ofs)}` (* Immediate operands *) let is_immediate n = digital_asm || (n >= 0 && n <= 255) (* Communicate live registers at call points to the assembler *) let int_reg_number = [| 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 16; 17; 18; 19; 20; 21; 22 |] let float_reg_number = [| 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 29; 30 |] let liveregs instr extra_msk = (* $13, $14, $15 always live *) let int_mask = ref(0x00070000 lor extra_msk) and float_mask = ref 0 in let add_register = function {loc = Reg r; typ = (Int | Addr)} -> int_mask := !int_mask lor (1 lsl (31 - int_reg_number.(r))) | {loc = Reg r; typ = Float} -> float_mask := !float_mask lor (1 lsl (31 - float_reg_number.(r - 100))) | _ -> () in Reg.Set.iter add_register instr.live; Array.iter add_register instr.arg; emit_printf " .livereg 0x%08x, 0x%08x\n" !int_mask !float_mask let live_24 = 1 lsl (31 - 24) let live_25 = 1 lsl (31 - 25) let live_26 = 1 lsl (31 - 26) let live_27 = 1 lsl (31 - 27) (* Record live pointers at call points *) type frame_descr = { fd_lbl: int; (* Return address *) fd_frame_size: int; (* Size of stack frame *) fd_live_offset: int list } (* Offsets/regs of live addresses *) let frame_descriptors = ref([] : frame_descr list) let record_frame_label live = let lbl = new_label() in let live_offset = ref [] in Reg.Set.iter (function {typ = Addr; loc = Reg r} -> live_offset := ((int_reg_number.(r) lsl 1) + 1) :: !live_offset | {typ = Addr; loc = Stack s} as reg -> live_offset := slot_offset s (register_class reg) :: !live_offset | _ -> ()) live; frame_descriptors := { fd_lbl = lbl; fd_frame_size = frame_size(); fd_live_offset = !live_offset } :: !frame_descriptors; lbl let record_frame live = let lbl = record_frame_label live in `{emit_label lbl}:` let emit_frame fd = ` .quad {emit_label fd.fd_lbl} + 4\n`; ` .word {emit_int fd.fd_frame_size}\n`; ` .word {emit_int (List.length fd.fd_live_offset)}\n`; List.iter (fun n -> ` .word {emit_int n}\n`) fd.fd_live_offset; ` .align 3\n` (* Record calls to the GC -- we've moved them out of the way *) type gc_call = { gc_lbl: label; (* Entry label *) gc_return_lbl: label; (* Where to branch after GC *) gc_frame: label; (* Label of frame descriptor *) gc_instr: instruction } (* Record live registers *) let call_gc_sites = ref ([] : gc_call list) let emit_call_gc gc = `{emit_label gc.gc_lbl}:`; liveregs gc.gc_instr 0; `{emit_label gc.gc_frame}: bsr $26, caml_call_gc\n`; (* caml_call_gc preserves $gp *) ` br {emit_label gc.gc_return_lbl}\n` (* Names of various instructions *) let name_for_int_operation = function Iadd -> "addq" | Isub -> "subq" | Imul -> "mulq" | Idiv -> "divq" | Imod -> "remq" | Iand -> "and" | Ior -> "or" | Ixor -> "xor" | Ilsl -> "sll" | Ilsr -> "srl" | Iasr -> "sra" | _ -> Misc.fatal_error "Emit.name_for_int_operation" let name_for_float_operation = function Inegf -> "fneg" | Iabsf -> "fabs" | Iaddf -> "addt" | Isubf -> "subt" | Imulf -> "mult" | Idivf -> "divt" | _ -> Misc.fatal_error "Emit.name_for_float_operation" let name_for_specific_operation = function Iadd4 -> "s4addq" | Iadd8 -> "s8addq" | Isub4 -> "s4subq" | Isub8 -> "s8subq" | _ -> Misc.fatal_error "Emit.name_for_specific_operation" let name_for_int_comparison = function Isigned Ceq -> "cmpeq", true | Isigned Cne -> "cmpeq", false | Isigned Cle -> "cmple", true | Isigned Cgt -> "cmple", false | Isigned Clt -> "cmplt", true | Isigned Cge -> "cmplt", false | Iunsigned Ceq -> "cmpeq", true | Iunsigned Cne -> "cmpeq", false | Iunsigned Cle -> "cmpule", true | Iunsigned Cgt -> "cmpule", false | Iunsigned Clt -> "cmpult", true | Iunsigned Cge -> "cmpult", false (* Used for comparisons against 0 *) let name_for_int_cond_branch = function Isigned Ceq -> "beq" | Isigned Cne -> "bne" | Isigned Cle -> "ble" | Isigned Cgt -> "bgt" | Isigned Clt -> "blt" | Isigned Cge -> "bge" | Iunsigned Ceq -> "beq" | Iunsigned Cne -> "bne" | Iunsigned Cle -> "beq" | Iunsigned Cgt -> "bne" | Iunsigned Clt -> "#" | Iunsigned Cge -> "br" (* Always false *) (* Always true *) let name_for_float_comparison cmp neg = match cmp with Ceq -> ("cmpteq", false, neg) | Cne -> ("cmpteq", false, not neg) | Cle -> ("cmptle", false, neg) | Cgt -> ("cmptlt", true, neg) | Clt -> ("cmptlt", false, neg) | Cge -> ("cmptle", true, neg) (* Output the assembly code for an instruction *) (* Name of current function *) let function_name = ref "" (* Entry point for tail recursive calls *) let tailrec_entry_point = ref 0 (* Label of trap for out-of-range accesses *) let range_check_trap = ref 0 (* List of floating-point and big integer literals (fon non-Digital assemblers) *) let float_constants = ref ([] : (label * string) list) let bigint_constants = ref ([] : (label * Nativeint.t) list) let emit_instr i = match i.desc with Lend -> () | Lop(Imove | Ispill | Ireload) -> let src = i.arg.(0) and dst = i.res.(0) in if src.loc <> dst.loc then begin match (src.loc, dst.loc) with (Reg rs, Reg rd) -> if src.typ = Float then ` fmov {emit_reg src}, {emit_reg dst}\n` else ` mov {emit_reg src}, {emit_reg dst}\n` | (Reg rs, Stack sd) -> if src.typ = Float then ` stt {emit_reg src}, {emit_stack dst}\n` else ` stq {emit_reg src}, {emit_stack dst}\n` | (Stack ss, Reg rd) -> if src.typ = Float then ` ldt {emit_reg dst}, {emit_stack src}\n` else ` ldq {emit_reg dst}, {emit_stack src}\n` | _ -> fatal_error "Emit_alpha: Imove" end | Lop(Iconst_int n) -> if Nativeint.sign n = 0 then ` clr {emit_reg i.res.(0)}\n` else if digital_asm || (Nativeint.cmp n (-0x80000000) >= 0 && Nativeint.cmp n 0x7FFFFFFF <= 0) then ` ldiq {emit_reg i.res.(0)}, {emit_nativeint n}\n` else begin (* Work around a bug in gas/gld concerning big integer constants *) let lbl = new_label() in bigint_constants := (lbl, n) :: !bigint_constants; ` lda $25, {emit_label lbl}\n`; ` ldq {emit_reg i.res.(0)}, 0($25)\n` end | Lop(Iconst_float s) -> if digital_asm then ` ldit {emit_reg i.res.(0)}, {emit_string s}\n` else if float_of_string s = 0.0 then ` fmov $f31, {emit_reg i.res.(0)}\n` else begin let lbl = new_label() in float_constants := (lbl, s) :: !float_constants; ` lda $25, {emit_label lbl}\n`; ` ldt {emit_reg i.res.(0)}, 0($25)\n` end | Lop(Iconst_symbol s) -> ` lda {emit_reg i.res.(0)}, {emit_symbol s}\n` | Lop(Icall_ind) -> liveregs i 0; `{record_frame i.live} jsr ({emit_reg i.arg.(0)})\n` | Lop(Icall_imm s) -> liveregs i 0; `{record_frame i.live} bsr $26, {emit_symbol s}\n` | Lop(Itailcall_ind) -> let n = frame_size() in if !contains_calls then ` ldq $26, {emit_int(n - 8)}($sp)\n`; if n > 0 then ` lda $sp, {emit_int n}($sp)\n`; liveregs i live_26; ` jmp ({emit_reg i.arg.(0)})\n` | Lop(Itailcall_imm s) -> if s = !function_name then begin ` br {emit_label !tailrec_entry_point}\n` end else begin let n = frame_size() in if !contains_calls then ` ldq $26, {emit_int(n - 8)}($sp)\n`; if n > 0 then ` lda $sp, {emit_int n}($sp)\n`; liveregs i live_26; ` br {emit_symbol s}\n` end | Lop(Iextcall(s, alloc)) -> if alloc then begin ` lda $27, {emit_symbol s}\n`; liveregs i live_27; `{record_frame i.live} bsr $26, caml_c_call\n` end else begin ` jsr {emit_symbol s}\n` end | Lop(Istackoffset n) -> ` lda $sp, {emit_int (-n)}($sp)\n`; stack_offset := !stack_offset + n | Lop(Iload(chunk, addr)) -> let load_instr = match chunk with Word -> if i.res.(0).typ = Float then "ldt" else "ldq" | Byte_unsigned -> "ldbu" | Byte_signed -> "ldb" | Sixteen_unsigned -> "ldwu" | Sixteen_signed -> "ldw" in ` {emit_string load_instr} {emit_reg i.res.(0)}, {emit_addressing addr i.arg 0}\n` | Lop(Istore(chunk, addr)) -> let store_instr = match chunk with Word -> if i.arg.(0).typ = Float then "stt" else "stq" | Byte_unsigned | Byte_signed -> "stb" | Sixteen_unsigned | Sixteen_signed -> "stw" in ` {emit_string store_instr} {emit_reg i.arg.(0)}, {emit_addressing addr i.arg 1}\n` | Lop(Ialloc n) -> if !fastcode_flag then begin let lbl_redo = new_label() in let lbl_call_gc = new_label() in let lbl_frame = record_frame_label i.live in call_gc_sites := { gc_lbl = lbl_call_gc; gc_return_lbl = lbl_redo; gc_frame = lbl_frame; gc_instr = i } :: !call_gc_sites; `{emit_label lbl_redo}: lda $13, -{emit_int n}($13)\n`; ` cmpult $13, $14, $25\n`; ` bne $25, {emit_label lbl_call_gc}\n`; ` addq $13, 8, {emit_reg i.res.(0)}\n` end else begin begin match n with 16 -> liveregs i 0; `{record_frame i.live} bsr $26, caml_alloc1\n` | 24 -> liveregs i 0; `{record_frame i.live} bsr $26, caml_alloc2\n` | 32 -> liveregs i 0; `{record_frame i.live} bsr $26, caml_alloc3\n` | _ -> ` ldiq $25, {emit_int n}\n`; liveregs i live_25; `{record_frame i.live} bsr $26, caml_alloc\n` end; (* $gp preserved by caml_alloc* *) ` addq $13, 8, {emit_reg i.res.(0)}\n` end | Lop(Iintop(Icomp cmp)) -> let (comp, test) = name_for_int_comparison cmp in ` {emit_string comp} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n`; if not test then ` xor {emit_reg i.res.(0)}, 1, {emit_reg i.res.(0)}\n` | Lop(Iintop(Icheckbound)) -> if !range_check_trap = 0 then range_check_trap := new_label(); ` cmpule {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, $25\n`; ` bne $25, {emit_label !range_check_trap}\n` | Lop(Iintop op) -> let instr = name_for_int_operation op in ` {emit_string instr} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Idiv, n)) when n = 1 lsl (Misc.log2 n) -> let l = Misc.log2 n in if is_immediate n then ` addq {emit_reg i.arg.(0)}, {emit_int(n-1)}, $25\n` else begin ` ldiq $25, {emit_int(n-1)}\n`; ` addq {emit_reg i.arg.(0)}, $25, $25\n` end; ` cmovge {emit_reg i.arg.(0)}, {emit_reg i.arg.(0)}, $25\n`; ` sra $25, {emit_int l}, {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Imod, n)) when n = 1 lsl (Misc.log2 n) -> let l = Misc.log2 n in if is_immediate n then ` and {emit_reg i.arg.(0)}, {emit_int(n-1)}, $25\n` else begin ` ldiq $25, {emit_int (n-1)}\n`; ` and {emit_reg i.arg.(0)}, $25, $25\n` end; ` subq $25, {emit_int n}, $24\n`; ` cmovge {emit_reg i.arg.(0)}, $25, $24\n`; ` cmoveq $25, $25, $24\n`; ` mov $24, {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Ilsl, 1)) -> (* Turn x << 1 into x + x, slightly faster according to the docs *) ` addq {emit_reg i.arg.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Icomp cmp, n)) -> let (comp, test) = name_for_int_comparison cmp in ` {emit_string comp} {emit_reg i.arg.(0)}, {emit_int n}, {emit_reg i.res.(0)}\n`; if not test then ` xor {emit_reg i.res.(0)}, 1, {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Icheckbound, n)) -> if !range_check_trap = 0 then range_check_trap := new_label(); ` cmpule {emit_reg i.arg.(0)}, {emit_int n}, $25\n`; ` bne $25, {emit_label !range_check_trap}\n` | Lop(Iintop_imm(op, n)) -> let instr = name_for_int_operation op in ` {emit_string instr} {emit_reg i.arg.(0)}, {emit_int n}, {emit_reg i.res.(0)}\n` | Lop(Inegf | Iabsf as op) -> let instr = name_for_float_operation op in ` {emit_string instr} {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n` | Lop(Iaddf | Isubf | Imulf | Idivf as op) -> let instr = name_for_float_operation op in ` {emit_string instr} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n` | Lop(Ifloatofint) -> ` .set noat\n`; ` lda $sp, -8($sp)\n`; ` stq {emit_reg i.arg.(0)}, 0($sp)\n`; ` ldt $f28, 0($sp)\n`; ` cvtqt $f28, {emit_reg i.res.(0)}\n`; ` lda $sp, 8($sp)\n`; ` .set at\n` | Lop(Iintoffloat) -> ` .set noat\n`; ` lda $sp, -8($sp)\n`; ` cvttqc {emit_reg i.arg.(0)}, $f28\n`; ` stt $f28, 0($sp)\n`; ` ldq {emit_reg i.res.(0)}, 0($sp)\n`; ` lda $sp, 8($sp)\n`; ` .set at\n` | Lop(Ispecific(Ireloadgp marked_r26)) -> if marked_r26 then begin ` bic $26, 1, $26\n`; ` ldgp $gp, 4($26)\n` end else begin ` ldgp $gp, 0($26)\n` end | Lop(Ispecific sop) -> let instr = name_for_specific_operation sop in ` {emit_string instr} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n` | Lreloadretaddr -> let n = frame_size() in ` ldq $26, {emit_int(n - 8)}($sp)\n` | Lreturn -> let n = frame_size() in if n > 0 then ` lda $sp, {emit_int n}($sp)\n`; liveregs i live_26; ` ret ($26)\n` | Llabel lbl -> `{emit_label lbl}:\n` | Lbranch lbl -> ` br {emit_label lbl}\n` | Lcondbranch(tst, lbl) -> begin match tst with Itruetest -> ` bne {emit_reg i.arg.(0)}, {emit_label lbl}\n` | Ifalsetest -> ` beq {emit_reg i.arg.(0)}, {emit_label lbl}\n` | Iinttest cmp -> let (comp, test) = name_for_int_comparison cmp in ` {emit_string comp} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, $25\n`; if test then ` bne $25, {emit_label lbl}\n` else ` beq $25, {emit_label lbl}\n` | Iinttest_imm(cmp, 0) -> let branch = name_for_int_cond_branch cmp in ` {emit_string branch} {emit_reg i.arg.(0)}, {emit_label lbl}\n` | Iinttest_imm(cmp, n) -> let (comp, test) = name_for_int_comparison cmp in ` {emit_string comp} {emit_reg i.arg.(0)}, {emit_int n}, $25\n`; if test then ` bne $25, {emit_label lbl}\n` else ` beq $25, {emit_label lbl}\n` | Ifloattest(cmp, neg) -> ` .set noat\n`; let (comp, swap, test) = name_for_float_comparison cmp neg in ` {emit_string comp} `; if swap then `{emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}, $f28\n` else `{emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, $f28\n`; if test then ` fbeq $f28, {emit_label lbl}\n` else ` fbne $f28, {emit_label lbl}\n`; ` .set at\n` | Ioddtest -> ` blbs {emit_reg i.arg.(0)}, {emit_label lbl}\n` | Ieventest -> ` blbc {emit_reg i.arg.(0)}, {emit_label lbl}\n` end | Lcondbranch3(lbl0, lbl1, lbl2) -> begin match lbl0 with None -> () | Some lbl -> ` beq {emit_reg i.arg.(0)}, {emit_label lbl}\n` end; begin match lbl1 with None -> () | Some lbl -> ` blbs {emit_reg i.arg.(0)}, {emit_label lbl}\n` end; begin match lbl2 with None -> () | Some lbl -> if lbl0 <> None then ` blbc {emit_reg i.arg.(0)}, {emit_label lbl}\n` else if lbl1 <> None then ` bne {emit_reg i.arg.(0)}, {emit_label lbl}\n` else begin ` subq {emit_reg i.arg.(0)}, 2, $25\n`; ` beq $25, {emit_label lbl}\n` end end | Lswitch jumptbl -> let lbl_jump = new_label() in ` br $25, {emit_label lbl_jump}\n`; for i = 0 to Array.length jumptbl - 1 do ` br {emit_label jumptbl.(i)}\n` done; `{emit_label lbl_jump}: s4addq {emit_reg i.arg.(0)}, $25, $25\n`; ` jmp ($25), {emit_label jumptbl.(0)}\n` | Lsetuptrap lbl -> ` br $25, {emit_label lbl}\n` | Lpushtrap -> stack_offset := !stack_offset + 16; ` lda $sp, -16($sp)\n`; ` stq $15, 0($sp)\n`; ` stq $25, 8($sp)\n`; ` mov $sp, $15\n` | Lpoptrap -> ` ldq $15, 0($sp)\n`; ` lda $sp, 16($sp)\n`; stack_offset := !stack_offset - 16 | Lraise -> ` ldq $26, 8($15)\n`; ` mov $15, $sp\n`; ` ldq $15, 0($sp)\n`; ` lda $sp, 16($sp)\n`; liveregs i live_26; ` jmp $25, ($26)\n` (* Keep retaddr in $25 for debugging *) let rec emit_all i = match i.desc with Lend -> () | _ -> emit_instr i; emit_all i.next (* Emission of a function declaration *) let emit_fundecl (fundecl, needs_gp) = function_name := fundecl.fun_name; fastcode_flag := fundecl.fun_fast; stack_offset := 0; call_gc_sites := []; range_check_trap := 0; float_constants := []; bigint_constants := []; ` .text\n`; ` .align 4\n`; ` .globl {emit_symbol fundecl.fun_name}\n`; ` .ent {emit_symbol fundecl.fun_name}\n`; `{emit_symbol fundecl.fun_name}:\n`; let n = frame_size() in if n > 0 then ` lda $sp, -{emit_int n}($sp)\n`; if needs_gp then begin let lbl = new_label() in ` br $27, {emit_label lbl}\n`; `{emit_label lbl}: ldgp $gp, 0($27)\n` end; if !contains_calls then begin ` stq $26, {emit_int(n - 8)}($sp)\n`; ` .mask 0x04000000, -8\n`; ` .fmask 0x0, 0\n` end; ` .frame $sp, {emit_int n}, $26\n`; ` .prologue 0\n`; tailrec_entry_point := new_label(); `{emit_label !tailrec_entry_point}:\n`; emit_all fundecl.fun_body; List.iter emit_call_gc !call_gc_sites; if !range_check_trap > 0 then begin `{emit_label !range_check_trap}:\n`; ` br $25, call_array_bound_error\n` (* Keep retaddr in $25 for debugging *) end; ` .end {emit_symbol fundecl.fun_name}\n`; if !bigint_constants <> [] then begin ` .section .rodata\n`; ` .align 3\n`; List.iter (fun (lbl, n) -> `{emit_label lbl}: .quad {emit_string(Nativeint.to_hexa_string n)}\n`) !bigint_constants end; if !float_constants <> [] then begin ` .section .rodata\n`; ` .align 3\n`; List.iter (fun (lbl, s) -> `{emit_label lbl}: .t_floating {emit_string s}\n`) !float_constants end let fundecl f = emit_fundecl (insert_load_gp f) (* Emission of data *) let emit_item = function Cdefine_symbol s -> ` .globl {emit_symbol s}\n`; `{emit_symbol s}:\n` | Cdefine_label lbl -> `{emit_label (100000 + lbl)}:\n` | Cint8 n -> ` .byte {emit_int n}\n` | Cint16 n -> ` .word {emit_int n}\n` | Cint n -> if digital_asm then ` .quad {emit_nativeint n}\n` else (* Work around a bug in gas regarding the parsing of long decimal constants *) ` .quad {emit_string(Nativeint.to_hexa_string n)}\n` | Cfloat f -> ` .double {emit_string f}\n` | Csymbol_address s -> ` .quad {emit_symbol s}\n` | Clabel_address lbl -> ` .quad {emit_label (100000 + lbl)}\n` | Cstring s -> emit_string_directive " .ascii " s | Cskip n -> if n > 0 then ` .space {emit_int n}\n` | Calign n -> ` .align {emit_int(Misc.log2 n)}\n` let data l = ` .data\n`; List.iter emit_item l (* Beginning / end of an assembly file *) let begin_assembly() = (* There are really two groups of registers: $sp and $15 always point to stack locations $0 - $14, $16-$23 never point to stack locations. *) ` .noalias $0,$sp; .noalias $0,$15; .noalias $1,$sp; .noalias $1,$15\n`; ` .noalias $2,$sp; .noalias $2,$15; .noalias $3,$sp; .noalias $3,$15\n`; ` .noalias $4,$sp; .noalias $4,$15; .noalias $5,$sp; .noalias $5,$15\n`; ` .noalias $6,$sp; .noalias $6,$15; .noalias $7,$sp; .noalias $7,$15\n`; ` .noalias $8,$sp; .noalias $8,$15; .noalias $9,$sp; .noalias $9,$15\n`; ` .noalias $10,$sp; .noalias $10,$15; .noalias $11,$sp; .noalias $11,$15\n`; ` .noalias $12,$sp; .noalias $12,$15; .noalias $13,$sp; .noalias $13,$15\n`; ` .noalias $14,$sp; .noalias $14,$15; .noalias $16,$sp; .noalias $16,$15\n`; ` .noalias $17,$sp; .noalias $17,$15; .noalias $18,$sp; .noalias $18,$15\n`; ` .noalias $19,$sp; .noalias $19,$15; .noalias $20,$sp; .noalias $20,$15\n`; ` .noalias $21,$sp; .noalias $21,$15; .noalias $22,$sp; .noalias $22,$15\n`; ` .noalias $23,$sp; .noalias $23,$15\n\n`; (* The following .file directive is intended to prevent the generation of line numbers for the debugger, 'cos they make .o files larger and slow down linking. *) ` .file 1 \"{emit_string !Location.input_name}\"\n\n`; let lbl_begin = Compilenv.current_unit_name() ^ "_data_begin" in ` .data\n`; ` .globl {emit_symbol lbl_begin}\n`; `{emit_symbol lbl_begin}:\n`; let lbl_begin = Compilenv.current_unit_name() ^ "_code_begin" in ` .text\n`; ` .globl {emit_symbol lbl_begin}\n`; `{emit_symbol lbl_begin}:\n` let end_assembly () = let lbl_end = Compilenv.current_unit_name() ^ "_code_end" in ` .text\n`; ` .globl {emit_symbol lbl_end}\n`; `{emit_symbol lbl_end}:\n`; let lbl_end = Compilenv.current_unit_name() ^ "_data_end" in ` .data\n`; ` .globl {emit_symbol lbl_end}\n`; `{emit_symbol lbl_end}:\n`; ` .quad 0\n`; let lbl_frame = Compilenv.current_unit_name() ^ "_frametable" in begin match Config.system with "digital" -> ` .rdata\n` | "linux" -> ` .section .rodata\n` | _ -> assert false end; ` .globl {emit_symbol lbl_frame}\n`; `{emit_symbol lbl_frame}:\n`; ` .quad {emit_int (List.length !frame_descriptors)}\n`; List.iter emit_frame !frame_descriptors; frame_descriptors := []