(***********************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU Library General Public License, with *) (* the special exception on linking described in file ../LICENSE. *) (* *) (***********************************************************************) (* $Id$ *) module type OrderedType = sig type t val compare: t -> t -> int end module type S = sig type key type +'a t val empty: 'a t val is_empty: 'a t -> bool val mem: key -> 'a t -> bool val add: key -> 'a -> 'a t -> 'a t val singleton: key -> 'a -> 'a t val remove: key -> 'a t -> 'a t val merge: (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool val iter: (key -> 'a -> unit) -> 'a t -> unit val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b val for_all: (key -> 'a -> bool) -> 'a t -> bool val exists: (key -> 'a -> bool) -> 'a t -> bool val filter: (key -> 'a -> bool) -> 'a t -> 'a t val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t val cardinal: 'a t -> int val bindings: 'a t -> (key * 'a) list val min_binding: 'a t -> (key * 'a) val max_binding: 'a t -> (key * 'a) val choose: 'a t -> (key * 'a) val split: key -> 'a t -> 'a t * 'a option * 'a t val find: key -> 'a t -> 'a val map: ('a -> 'b) -> 'a t -> 'b t val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t end module Make(Ord: OrderedType) = struct type key = Ord.t type 'a t = Empty | Node of 'a t * key * 'a * 'a t * int let height = function Empty -> 0 | Node(_,_,_,_,h) -> h let create l x d r = let hl = height l and hr = height r in Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1)) let singleton x d = Node(Empty, x, d, Empty, 1) let bal l x d r = let hl = match l with Empty -> 0 | Node(_,_,_,_,h) -> h in let hr = match r with Empty -> 0 | Node(_,_,_,_,h) -> h in if hl > hr + 2 then begin match l with Empty -> invalid_arg "Map.bal" | Node(ll, lv, ld, lr, _) -> if height ll >= height lr then create ll lv ld (create lr x d r) else begin match lr with Empty -> invalid_arg "Map.bal" | Node(lrl, lrv, lrd, lrr, _)-> create (create ll lv ld lrl) lrv lrd (create lrr x d r) end end else if hr > hl + 2 then begin match r with Empty -> invalid_arg "Map.bal" | Node(rl, rv, rd, rr, _) -> if height rr >= height rl then create (create l x d rl) rv rd rr else begin match rl with Empty -> invalid_arg "Map.bal" | Node(rll, rlv, rld, rlr, _) -> create (create l x d rll) rlv rld (create rlr rv rd rr) end end else Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1)) let empty = Empty let is_empty = function Empty -> true | _ -> false let rec add x data = function Empty -> Node(Empty, x, data, Empty, 1) | Node(l, v, d, r, h) -> let c = Ord.compare x v in if c = 0 then Node(l, x, data, r, h) else if c < 0 then bal (add x data l) v d r else bal l v d (add x data r) let rec find x = function Empty -> raise Not_found | Node(l, v, d, r, _) -> let c = Ord.compare x v in if c = 0 then d else find x (if c < 0 then l else r) let rec mem x = function Empty -> false | Node(l, v, d, r, _) -> let c = Ord.compare x v in c = 0 || mem x (if c < 0 then l else r) let rec min_binding = function Empty -> raise Not_found | Node(Empty, x, d, r, _) -> (x, d) | Node(l, x, d, r, _) -> min_binding l let rec max_binding = function Empty -> raise Not_found | Node(l, x, d, Empty, _) -> (x, d) | Node(l, x, d, r, _) -> max_binding r let rec remove_min_binding = function Empty -> invalid_arg "Map.remove_min_elt" | Node(Empty, x, d, r, _) -> r | Node(l, x, d, r, _) -> bal (remove_min_binding l) x d r let merge t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (_, _) -> let (x, d) = min_binding t2 in bal t1 x d (remove_min_binding t2) let rec remove x = function Empty -> Empty | Node(l, v, d, r, h) -> let c = Ord.compare x v in if c = 0 then merge l r else if c < 0 then bal (remove x l) v d r else bal l v d (remove x r) let rec iter f = function Empty -> () | Node(l, v, d, r, _) -> iter f l; f v d; iter f r let rec map f = function Empty -> Empty | Node(l, v, d, r, h) -> let l' = map f l in let d' = f d in let r' = map f r in Node(l', v, d', r', h) let rec mapi f = function Empty -> Empty | Node(l, v, d, r, h) -> let l' = mapi f l in let d' = f v d in let r' = mapi f r in Node(l', v, d', r', h) let rec fold f m accu = match m with Empty -> accu | Node(l, v, d, r, _) -> fold f r (f v d (fold f l accu)) let rec for_all p = function Empty -> true | Node(l, v, d, r, _) -> p v d && for_all p l && for_all p r let rec exists p = function Empty -> false | Node(l, v, d, r, _) -> p v d || exists p l || exists p r (* Beware: those two functions assume that the added k is *strictly* smaller (or bigger) than all the present keys in the tree; it does not test for equality with the current min (or max) key. Indeed, they are only used during the "join" operation which respects this precondition. *) let rec add_min_binding k v = function | Empty -> singleton k v | Node (l, x, d, r, h) -> bal (add_min_binding k v l) x d r let rec add_max_binding k v = function | Empty -> singleton k v | Node (l, x, d, r, h) -> bal l x d (add_max_binding k v r) (* Same as create and bal, but no assumptions are made on the relative heights of l and r. *) let rec join l v d r = match (l, r) with (Empty, _) -> add_min_binding v d r | (_, Empty) -> add_max_binding v d l | (Node(ll, lv, ld, lr, lh), Node(rl, rv, rd, rr, rh)) -> if lh > rh + 2 then bal ll lv ld (join lr v d r) else if rh > lh + 2 then bal (join l v d rl) rv rd rr else create l v d r (* Merge two trees l and r into one. All elements of l must precede the elements of r. No assumption on the heights of l and r. *) let concat t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (_, _) -> let (x, d) = min_binding t2 in join t1 x d (remove_min_binding t2) let concat_or_join t1 v d t2 = match d with | Some d -> join t1 v d t2 | None -> concat t1 t2 let rec split x = function Empty -> (Empty, None, Empty) | Node(l, v, d, r, _) -> let c = Ord.compare x v in if c = 0 then (l, Some d, r) else if c < 0 then let (ll, pres, rl) = split x l in (ll, pres, join rl v d r) else let (lr, pres, rr) = split x r in (join l v d lr, pres, rr) let rec merge f s1 s2 = match (s1, s2) with (Empty, Empty) -> Empty | (Node (l1, v1, d1, r1, h1), _) when h1 >= height s2 -> let (l2, d2, r2) = split v1 s2 in concat_or_join (merge f l1 l2) v1 (f v1 (Some d1) d2) (merge f r1 r2) | (_, Node (l2, v2, d2, r2, h2)) -> let (l1, d1, r1) = split v2 s1 in concat_or_join (merge f l1 l2) v2 (f v2 d1 (Some d2)) (merge f r1 r2) | _ -> assert false let rec filter p = function Empty -> Empty | Node(l, v, d, r, _) -> (* call [p] in the expected left-to-right order *) let l' = filter p l in let pvd = p v d in let r' = filter p r in if pvd then join l' v d r' else concat l' r' let rec partition p = function Empty -> (Empty, Empty) | Node(l, v, d, r, _) -> (* call [p] in the expected left-to-right order *) let (lt, lf) = partition p l in let pvd = p v d in let (rt, rf) = partition p r in if pvd then (join lt v d rt, concat lf rf) else (concat lt rt, join lf v d rf) type 'a enumeration = End | More of key * 'a * 'a t * 'a enumeration let rec cons_enum m e = match m with Empty -> e | Node(l, v, d, r, _) -> cons_enum l (More(v, d, r, e)) let compare cmp m1 m2 = let rec compare_aux e1 e2 = match (e1, e2) with (End, End) -> 0 | (End, _) -> -1 | (_, End) -> 1 | (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) -> let c = Ord.compare v1 v2 in if c <> 0 then c else let c = cmp d1 d2 in if c <> 0 then c else compare_aux (cons_enum r1 e1) (cons_enum r2 e2) in compare_aux (cons_enum m1 End) (cons_enum m2 End) let equal cmp m1 m2 = let rec equal_aux e1 e2 = match (e1, e2) with (End, End) -> true | (End, _) -> false | (_, End) -> false | (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) -> Ord.compare v1 v2 = 0 && cmp d1 d2 && equal_aux (cons_enum r1 e1) (cons_enum r2 e2) in equal_aux (cons_enum m1 End) (cons_enum m2 End) let rec cardinal = function Empty -> 0 | Node(l, _, _, r, _) -> cardinal l + 1 + cardinal r let rec bindings_aux accu = function Empty -> accu | Node(l, v, d, r, _) -> bindings_aux ((v, d) :: bindings_aux accu r) l let bindings s = bindings_aux [] s let choose = min_binding end