(***********************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* Environment handling *) open Cmi_format open Config open Misc open Asttypes open Longident open Path open Types open Btype let add_delayed_check_forward = ref (fun _ -> assert false) let value_declarations : ((string * Location.t), (unit -> unit)) Hashtbl.t = Hashtbl.create 16 (* This table is used to usage of value declarations. A declaration is identified with its name and location. The callback attached to a declaration is called whenever the value is used explicitly (lookup_value) or implicitly (inclusion test between signatures, cf Includemod.value_descriptions). *) let type_declarations = Hashtbl.create 16 type constructor_usage = Positive | Pattern | Privatize type constructor_usages = { mutable cu_positive: bool; mutable cu_pattern: bool; mutable cu_privatize: bool; } let add_constructor_usage cu = function | Positive -> cu.cu_positive <- true | Pattern -> cu.cu_pattern <- true | Privatize -> cu.cu_privatize <- true let constructor_usages () = {cu_positive = false; cu_pattern = false; cu_privatize = false} let used_constructors : (string * Location.t * string, (constructor_usage -> unit)) Hashtbl.t = Hashtbl.create 16 let prefixed_sg = Hashtbl.create 113 type error = | Illegal_renaming of string * string | Inconsistent_import of string * string * string | Need_recursive_types of string * string exception Error of error module EnvLazy : sig type ('a,'b) t val force : ('a -> 'b) -> ('a,'b) t -> 'b val create : 'a -> ('a,'b) t val is_val : ('a,'b) t -> bool end = struct type ('a,'b) t = ('a,'b) eval ref and ('a,'b) eval = Done of 'b | Raise of exn | Thunk of 'a let force f x = match !x with Done x -> x | Raise e -> raise e | Thunk e -> try let y = f e in x := Done y; y with e -> x := Raise e; raise e let is_val x = match !x with Done _ -> true | _ -> false let create x = let x = ref (Thunk x) in x end type summary = Env_empty | Env_value of summary * Ident.t * value_description | Env_type of summary * Ident.t * type_declaration | Env_exception of summary * Ident.t * exception_declaration | Env_module of summary * Ident.t * module_type | Env_modtype of summary * Ident.t * modtype_declaration | Env_class of summary * Ident.t * class_declaration | Env_cltype of summary * Ident.t * class_type_declaration | Env_open of summary * Path.t module EnvTbl = struct (* A table indexed by identifier, with an extra slot to record usage. *) type 'a t = ('a * bool ref) Ident.tbl let empty = Ident.empty let dummy_slot = ref true let current_slot = ref dummy_slot let add id x tbl = Ident.add id (x, !current_slot) tbl let add_dont_track id x tbl = Ident.add id (x, dummy_slot) tbl let find_same_not_using id tbl = fst (Ident.find_same id tbl) let find_same id tbl = let (x, slot) = Ident.find_same id tbl in slot := true; x let find_name s tbl = let (x, slot) = Ident.find_name s tbl in slot := true; x let find_all s tbl = let xs = Ident.find_all s tbl in List.map (fun (x, slot) -> (x, (fun () -> slot := true))) xs let with_slot slot f x = let old_slot = !current_slot in current_slot := slot; try_finally (fun () -> f x) (fun () -> current_slot := old_slot) let fold_name f = Ident.fold_name (fun k (d,_) -> f k d) let keys tbl = Ident.fold_all (fun k _ accu -> k::accu) tbl [] end type type_descriptions = constructor_description list * label_description list type t = { values: (Path.t * value_description) EnvTbl.t; constrs: constructor_description EnvTbl.t; labels: label_description EnvTbl.t; types: (Path.t * (type_declaration * type_descriptions)) EnvTbl.t; modules: (Path.t * module_type) EnvTbl.t; modtypes: (Path.t * modtype_declaration) EnvTbl.t; components: (Path.t * module_components) EnvTbl.t; classes: (Path.t * class_declaration) EnvTbl.t; cltypes: (Path.t * class_type_declaration) EnvTbl.t; summary: summary; local_constraints: bool; gadt_instances: (int * TypeSet.t ref) list; in_signature: bool; } and module_components = (t * Subst.t * Path.t * Types.module_type, module_components_repr) EnvLazy.t and module_components_repr = Structure_comps of structure_components | Functor_comps of functor_components and structure_components = { mutable comp_values: (string, (value_description * int)) Tbl.t; mutable comp_constrs: (string, (constructor_description * int) list) Tbl.t; mutable comp_labels: (string, (label_description * int) list) Tbl.t; mutable comp_types: (string, ((type_declaration * type_descriptions) * int)) Tbl.t; mutable comp_modules: (string, ((Subst.t * Types.module_type,module_type) EnvLazy.t * int)) Tbl.t; mutable comp_modtypes: (string, (modtype_declaration * int)) Tbl.t; mutable comp_components: (string, (module_components * int)) Tbl.t; mutable comp_classes: (string, (class_declaration * int)) Tbl.t; mutable comp_cltypes: (string, (class_type_declaration * int)) Tbl.t } and functor_components = { fcomp_param: Ident.t; (* Formal parameter *) fcomp_arg: module_type; (* Argument signature *) fcomp_res: module_type; (* Result signature *) fcomp_env: t; (* Environment in which the result signature makes sense *) fcomp_subst: Subst.t; (* Prefixing substitution for the result signature *) fcomp_cache: (Path.t, module_components) Hashtbl.t (* For memoization *) } let subst_modtype_maker (subst, mty) = Subst.modtype subst mty let empty = { values = EnvTbl.empty; constrs = EnvTbl.empty; labels = EnvTbl.empty; types = EnvTbl.empty; modules = EnvTbl.empty; modtypes = EnvTbl.empty; components = EnvTbl.empty; classes = EnvTbl.empty; cltypes = EnvTbl.empty; summary = Env_empty; local_constraints = false; gadt_instances = []; in_signature = false; } let in_signature env = {env with in_signature = true} let diff_keys is_local tbl1 tbl2 = let keys2 = EnvTbl.keys tbl2 in List.filter (fun id -> is_local (EnvTbl.find_same_not_using id tbl2) && try ignore (EnvTbl.find_same_not_using id tbl1); false with Not_found -> true) keys2 let is_ident = function Pident _ -> true | Pdot _ | Papply _ -> false let is_local (p, _) = is_ident p let is_local_exn = function | {cstr_tag = Cstr_exception (p, _)} -> is_ident p | _ -> false let diff env1 env2 = diff_keys is_local env1.values env2.values @ diff_keys is_local_exn env1.constrs env2.constrs @ diff_keys is_local env1.modules env2.modules @ diff_keys is_local env1.classes env2.classes (* Forward declarations *) let components_of_module' = ref ((fun env sub path mty -> assert false) : t -> Subst.t -> Path.t -> module_type -> module_components) let components_of_module_maker' = ref ((fun (env, sub, path, mty) -> assert false) : t * Subst.t * Path.t * module_type -> module_components_repr) let components_of_functor_appl' = ref ((fun f p1 p2 -> assert false) : functor_components -> Path.t -> Path.t -> module_components) let check_modtype_inclusion = (* to be filled with Includemod.check_modtype_inclusion *) ref ((fun env mty1 path1 mty2 -> assert false) : t -> module_type -> Path.t -> module_type -> unit) (* The name of the compilation unit currently compiled. "" if outside a compilation unit. *) let current_unit = ref "" (* Persistent structure descriptions *) type pers_struct = { ps_name: string; ps_sig: signature; ps_comps: module_components; ps_crcs: (string * Digest.t) list; ps_filename: string; ps_flags: pers_flags list } let persistent_structures = (Hashtbl.create 17 : (string, pers_struct option) Hashtbl.t) (* Consistency between persistent structures *) let crc_units = Consistbl.create() let check_consistency filename crcs = try List.iter (fun (name, crc) -> Consistbl.check crc_units name crc filename) crcs with Consistbl.Inconsistency(name, source, auth) -> raise(Error(Inconsistent_import(name, auth, source))) (* Reading persistent structures from .cmi files *) let read_pers_struct modname filename = let cmi = read_cmi filename in let name = cmi.cmi_name in let sign = cmi.cmi_sign in let crcs = cmi.cmi_crcs in let flags = cmi.cmi_flags in let comps = !components_of_module' empty Subst.identity (Pident(Ident.create_persistent name)) (Mty_signature sign) in let ps = { ps_name = name; ps_sig = sign; ps_comps = comps; ps_crcs = crcs; ps_filename = filename; ps_flags = flags } in if ps.ps_name <> modname then raise(Error(Illegal_renaming(ps.ps_name, filename))); check_consistency filename ps.ps_crcs; List.iter (function Rectypes -> if not !Clflags.recursive_types then raise(Error(Need_recursive_types(ps.ps_name, !current_unit)))) ps.ps_flags; Hashtbl.add persistent_structures modname (Some ps); ps let find_pers_struct name = if name = "*predef*" then raise Not_found; let r = try Some (Hashtbl.find persistent_structures name) with Not_found -> None in match r with | Some None -> raise Not_found | Some (Some sg) -> sg | None -> let filename = try find_in_path_uncap !load_path (name ^ ".cmi") with Not_found -> Hashtbl.add persistent_structures name None; raise Not_found in read_pers_struct name filename let reset_cache () = current_unit := ""; Hashtbl.clear persistent_structures; Consistbl.clear crc_units; Hashtbl.clear value_declarations; Hashtbl.clear type_declarations; Hashtbl.clear used_constructors; Hashtbl.clear prefixed_sg let reset_cache_toplevel () = (* Delete 'missing cmi' entries from the cache. *) let l = Hashtbl.fold (fun name r acc -> if r = None then name :: acc else acc) persistent_structures [] in List.iter (Hashtbl.remove persistent_structures) l; Hashtbl.clear value_declarations; Hashtbl.clear type_declarations; Hashtbl.clear used_constructors; Hashtbl.clear prefixed_sg let set_unit_name name = current_unit := name (* Lookup by identifier *) let rec find_module_descr path env = match path with Pident id -> begin try let (p, desc) = EnvTbl.find_same id env.components in desc with Not_found -> if Ident.persistent id then (find_pers_struct (Ident.name id)).ps_comps else raise Not_found end | Pdot(p, s, pos) -> begin match EnvLazy.force !components_of_module_maker' (find_module_descr p env) with Structure_comps c -> let (descr, pos) = Tbl.find s c.comp_components in descr | Functor_comps f -> raise Not_found end | Papply(p1, p2) -> begin match EnvLazy.force !components_of_module_maker' (find_module_descr p1 env) with Functor_comps f -> !components_of_functor_appl' f p1 p2 | Structure_comps c -> raise Not_found end let find proj1 proj2 path env = match path with Pident id -> let (p, data) = EnvTbl.find_same id (proj1 env) in data | Pdot(p, s, pos) -> begin match EnvLazy.force !components_of_module_maker' (find_module_descr p env) with Structure_comps c -> let (data, pos) = Tbl.find s (proj2 c) in data | Functor_comps f -> raise Not_found end | Papply(p1, p2) -> raise Not_found let find_value = find (fun env -> env.values) (fun sc -> sc.comp_values) and find_type_full = find (fun env -> env.types) (fun sc -> sc.comp_types) and find_modtype = find (fun env -> env.modtypes) (fun sc -> sc.comp_modtypes) and find_class = find (fun env -> env.classes) (fun sc -> sc.comp_classes) and find_cltype = find (fun env -> env.cltypes) (fun sc -> sc.comp_cltypes) let find_type p env = fst (find_type_full p env) let find_type_descrs p env = snd (find_type_full p env) (* Find the manifest type associated to a type when appropriate: - the type should be public or should have a private row, - the type should have an associated manifest type. *) let find_type_expansion ?level path env = let decl = find_type path env in match decl.type_manifest with | Some body when decl.type_private = Public || decl.type_kind <> Type_abstract || Btype.has_constr_row body -> (decl.type_params, body, may_map snd decl.type_newtype_level) (* The manifest type of Private abstract data types without private row are still considered unknown to the type system. Hence, this case is caught by the following clause that also handles purely abstract data types without manifest type definition. *) | _ -> raise Not_found (* Find the manifest type information associated to a type, i.e. the necessary information for the compiler's type-based optimisations. In particular, the manifest type associated to a private abstract type is revealed for the sake of compiler's type-based optimisations. *) let find_type_expansion_opt path env = let decl = find_type path env in match decl.type_manifest with (* The manifest type of Private abstract data types can still get an approximation using their manifest type. *) | Some body -> (decl.type_params, body, may_map snd decl.type_newtype_level) | _ -> raise Not_found let find_modtype_expansion path env = match find_modtype path env with Modtype_abstract -> raise Not_found | Modtype_manifest mty -> mty let find_module path env = match path with Pident id -> begin try let (p, data) = EnvTbl.find_same id env.modules in data with Not_found -> if Ident.persistent id then let ps = find_pers_struct (Ident.name id) in Mty_signature(ps.ps_sig) else raise Not_found end | Pdot(p, s, pos) -> begin match EnvLazy.force !components_of_module_maker' (find_module_descr p env) with Structure_comps c -> let (data, pos) = Tbl.find s c.comp_modules in EnvLazy.force subst_modtype_maker data | Functor_comps f -> raise Not_found end | Papply(p1, p2) -> raise Not_found (* not right *) (* Lookup by name *) let rec lookup_module_descr lid env = match lid with Lident s -> begin try EnvTbl.find_name s env.components with Not_found -> if s = !current_unit then raise Not_found; let ps = find_pers_struct s in (Pident(Ident.create_persistent s), ps.ps_comps) end | Ldot(l, s) -> let (p, descr) = lookup_module_descr l env in begin match EnvLazy.force !components_of_module_maker' descr with Structure_comps c -> let (descr, pos) = Tbl.find s c.comp_components in (Pdot(p, s, pos), descr) | Functor_comps f -> raise Not_found end | Lapply(l1, l2) -> let (p1, desc1) = lookup_module_descr l1 env in let (p2, mty2) = lookup_module l2 env in begin match EnvLazy.force !components_of_module_maker' desc1 with Functor_comps f -> !check_modtype_inclusion env mty2 p2 f.fcomp_arg; (Papply(p1, p2), !components_of_functor_appl' f p1 p2) | Structure_comps c -> raise Not_found end and lookup_module lid env = match lid with Lident s -> begin try EnvTbl.find_name s env.modules with Not_found -> if s = !current_unit then raise Not_found; let ps = find_pers_struct s in (Pident(Ident.create_persistent s), Mty_signature ps.ps_sig) end | Ldot(l, s) -> let (p, descr) = lookup_module_descr l env in begin match EnvLazy.force !components_of_module_maker' descr with Structure_comps c -> let (data, pos) = Tbl.find s c.comp_modules in (Pdot(p, s, pos), EnvLazy.force subst_modtype_maker data) | Functor_comps f -> raise Not_found end | Lapply(l1, l2) -> let (p1, desc1) = lookup_module_descr l1 env in let (p2, mty2) = lookup_module l2 env in let p = Papply(p1, p2) in begin match EnvLazy.force !components_of_module_maker' desc1 with Functor_comps f -> !check_modtype_inclusion env mty2 p2 f.fcomp_arg; (p, Subst.modtype (Subst.add_module f.fcomp_param p2 f.fcomp_subst) f.fcomp_res) | Structure_comps c -> raise Not_found end let lookup proj1 proj2 lid env = match lid with Lident s -> EnvTbl.find_name s (proj1 env) | Ldot(l, s) -> let (p, desc) = lookup_module_descr l env in begin match EnvLazy.force !components_of_module_maker' desc with Structure_comps c -> let (data, pos) = Tbl.find s (proj2 c) in (Pdot(p, s, pos), data) | Functor_comps f -> raise Not_found end | Lapply(l1, l2) -> raise Not_found let lookup_simple proj1 proj2 lid env = match lid with Lident s -> EnvTbl.find_name s (proj1 env) | Ldot(l, s) -> let (p, desc) = lookup_module_descr l env in begin match EnvLazy.force !components_of_module_maker' desc with Structure_comps c -> let (data, pos) = Tbl.find s (proj2 c) in data | Functor_comps f -> raise Not_found end | Lapply(l1, l2) -> raise Not_found let lookup_all_simple proj1 proj2 shadow lid env = match lid with Lident s -> let xl = EnvTbl.find_all s (proj1 env) in let rec do_shadow = function | [] -> [] | ((x, f) :: xs) -> (x, f) :: (do_shadow (List.filter (fun (y, g) -> not (shadow x y)) xs)) in do_shadow xl | Ldot(l, s) -> let (p, desc) = lookup_module_descr l env in begin match EnvLazy.force !components_of_module_maker' desc with Structure_comps c -> let comps = try Tbl.find s (proj2 c) with Not_found -> [] in List.map (fun (data, pos) -> (data, (fun () -> ()))) comps | Functor_comps f -> raise Not_found end | Lapply(l1, l2) -> raise Not_found let has_local_constraints env = env.local_constraints let cstr_shadow cstr1 cstr2 = match cstr1.cstr_tag, cstr2.cstr_tag with Cstr_exception _, Cstr_exception _ -> true | _ -> false let lbl_shadow lbl1 lbl2 = false let lookup_value = lookup (fun env -> env.values) (fun sc -> sc.comp_values) and lookup_all_constructors = lookup_all_simple (fun env -> env.constrs) (fun sc -> sc.comp_constrs) cstr_shadow and lookup_all_labels = lookup_all_simple (fun env -> env.labels) (fun sc -> sc.comp_labels) lbl_shadow and lookup_type = lookup (fun env -> env.types) (fun sc -> sc.comp_types) and lookup_modtype = lookup (fun env -> env.modtypes) (fun sc -> sc.comp_modtypes) and lookup_class = lookup (fun env -> env.classes) (fun sc -> sc.comp_classes) and lookup_cltype = lookup (fun env -> env.cltypes) (fun sc -> sc.comp_cltypes) let mark_value_used name vd = try Hashtbl.find value_declarations (name, vd.val_loc) () with Not_found -> () let mark_type_used name vd = try Hashtbl.find type_declarations (name, vd.type_loc) () with Not_found -> () let mark_constructor_used usage name vd constr = try Hashtbl.find used_constructors (name, vd.type_loc, constr) usage with Not_found -> () let mark_exception_used usage ed constr = try Hashtbl.find used_constructors ("exn", ed.exn_loc, constr) usage with Not_found -> () let set_value_used_callback name vd callback = let key = (name, vd.val_loc) in try let old = Hashtbl.find value_declarations key in Hashtbl.replace value_declarations key (fun () -> old (); callback ()) (* this is to support cases like: let x = let x = 1 in x in x where the two declarations have the same location (e.g. resulting from Camlp4 expansion of grammar entries) *) with Not_found -> Hashtbl.add value_declarations key callback let set_type_used_callback name td callback = let loc = td.type_loc in if loc.Location.loc_ghost then () else let key = (name, loc) in let old = try Hashtbl.find type_declarations key with Not_found -> assert false in Hashtbl.replace type_declarations key (fun () -> callback old) let lookup_value lid env = let (_, desc) as r = lookup_value lid env in mark_value_used (Longident.last lid) desc; r let lookup_type lid env = let (path, (decl, _)) = lookup_type lid env in mark_type_used (Longident.last lid) decl; (path, decl) (* [path] must be the path to a type, not to a module ! *) let path_subst_last path id = match path with Pident _ -> Pident id | Pdot (p, name, pos) -> Pdot(p, Ident.name id, pos) | Papply (p1, p2) -> assert false let mark_type_path env path = try let decl = find_type path env in mark_type_used (Path.last path) decl with Not_found -> () let ty_path t = match repr t with | {desc=Tconstr(path, _, _)} -> path | _ -> assert false let lookup_constructor lid env = match lookup_all_constructors lid env with [] -> raise Not_found | (desc, use) :: _ -> mark_type_path env (ty_path desc.cstr_res); use (); desc let is_lident = function Lident _ -> true | _ -> false let lookup_all_constructors lid env = try let cstrs = lookup_all_constructors lid env in let wrap_use desc use () = mark_type_path env (ty_path desc.cstr_res); use () in List.map (fun (cstr, use) -> (cstr, wrap_use cstr use)) cstrs with Not_found when is_lident lid -> [] let mark_constructor usage env name desc = match desc.cstr_tag with | Cstr_exception (_, loc) -> begin try Hashtbl.find used_constructors ("exn", loc, name) usage with Not_found -> () end | _ -> let ty_path = ty_path desc.cstr_res in let ty_decl = try find_type ty_path env with Not_found -> assert false in let ty_name = Path.last ty_path in mark_constructor_used usage ty_name ty_decl name let lookup_label lid env = match lookup_all_labels lid env with [] -> raise Not_found | (desc, use) :: _ -> mark_type_path env (ty_path desc.lbl_res); use (); desc let lookup_all_labels lid env = try let lbls = lookup_all_labels lid env in let wrap_use desc use () = mark_type_path env (ty_path desc.lbl_res); use () in List.map (fun (lbl, use) -> (lbl, wrap_use lbl use)) lbls with Not_found when is_lident lid -> [] let lookup_class lid env = let (_, desc) as r = lookup_class lid env in (* special support for Typeclass.unbound_class *) if Path.name desc.cty_path = "" then ignore (lookup_type lid env) else mark_type_path env desc.cty_path; r let lookup_cltype lid env = let (_, desc) as r = lookup_cltype lid env in if Path.name desc.clty_path = "" then ignore (lookup_type lid env) else mark_type_path env desc.clty_path; mark_type_path env desc.clty_path; r (* Iter on an environment (ignoring the body of functors and not yet evaluated structures) *) let iter_env proj1 proj2 f env = Ident.iter (fun id (x,_) -> f (Pident id) x) (proj1 env); let rec iter_components path path' mcomps = if EnvLazy.is_val mcomps then match EnvLazy.force !components_of_module_maker' mcomps with Structure_comps comps -> Tbl.iter (fun s (d, n) -> f (Pdot (path, s, n)) (Pdot (path', s, n), d)) (proj2 comps); Tbl.iter (fun s (c, n) -> iter_components (Pdot (path, s, n)) (Pdot (path', s, n)) c) comps.comp_components | Functor_comps _ -> () in Hashtbl.iter (fun s pso -> match pso with None -> () | Some ps -> let id = Pident (Ident.create_persistent s) in iter_components id id ps.ps_comps) persistent_structures; Ident.iter (fun id ((path, comps), _) -> iter_components (Pident id) path comps) env.components let iter_types f = iter_env (fun env -> env.types) (fun sc -> sc.comp_types) f (* GADT instance tracking *) let add_gadt_instance_level lv env = {env with gadt_instances = (lv, ref TypeSet.empty) :: env.gadt_instances} let is_Tlink = function {desc = Tlink _} -> true | _ -> false let gadt_instance_level env t = let rec find_instance = function [] -> None | (lv, r) :: rem -> if TypeSet.exists is_Tlink !r then (* Should we use set_typeset ? *) r := TypeSet.fold (fun ty -> TypeSet.add (repr ty)) !r TypeSet.empty; if TypeSet.mem t !r then Some lv else find_instance rem in find_instance env.gadt_instances let add_gadt_instances env lv tl = let r = try List.assoc lv env.gadt_instances with Not_found -> assert false in (* Format.eprintf "Added"; List.iter (fun ty -> Format.eprintf "@ %a" !Btype.print_raw ty) tl; Format.eprintf "@."; *) set_typeset r (List.fold_right TypeSet.add tl !r) (* Only use this after expand_head! *) let add_gadt_instance_chain env lv t = let r = try List.assoc lv env.gadt_instances with Not_found -> assert false in let rec add_instance t = let t = repr t in if not (TypeSet.mem t !r) then begin (* Format.eprintf "@ %a" !Btype.print_raw t; *) set_typeset r (TypeSet.add t !r); match t.desc with Tconstr (p, _, memo) -> may add_instance (find_expans Private p !memo) | _ -> () end in (* Format.eprintf "Added chain"; *) add_instance t (* Format.eprintf "@." *) (* Expand manifest module type names at the top of the given module type *) let rec scrape_modtype mty env = match mty with Mty_ident path -> begin try scrape_modtype (find_modtype_expansion path env) env with Not_found -> mty end | _ -> mty (* Compute constructor descriptions *) let constructors_of_type ty_path decl = let handle_variants cstrs = Datarepr.constructor_descrs (newgenty (Tconstr(ty_path, decl.type_params, ref Mnil))) cstrs decl.type_private in match decl.type_kind with | Type_variant cstrs -> handle_variants cstrs | Type_record _ | Type_abstract -> [] (* Compute label descriptions *) let labels_of_type ty_path decl = match decl.type_kind with Type_record(labels, rep) -> Datarepr.label_descrs (newgenty (Tconstr(ty_path, decl.type_params, ref Mnil))) labels rep decl.type_private | Type_variant _ | Type_abstract -> [] (* Given a signature and a root path, prefix all idents in the signature by the root path and build the corresponding substitution. *) let rec prefix_idents root pos sub = function [] -> ([], sub) | Sig_value(id, decl) :: rem -> let p = Pdot(root, Ident.name id, pos) in let nextpos = match decl.val_kind with Val_prim _ -> pos | _ -> pos+1 in let (pl, final_sub) = prefix_idents root nextpos sub rem in (p::pl, final_sub) | Sig_type(id, decl, _) :: rem -> let p = Pdot(root, Ident.name id, nopos) in let (pl, final_sub) = prefix_idents root pos (Subst.add_type id p sub) rem in (p::pl, final_sub) | Sig_exception(id, decl) :: rem -> let p = Pdot(root, Ident.name id, pos) in let (pl, final_sub) = prefix_idents root (pos+1) sub rem in (p::pl, final_sub) | Sig_module(id, mty, _) :: rem -> let p = Pdot(root, Ident.name id, pos) in let (pl, final_sub) = prefix_idents root (pos+1) (Subst.add_module id p sub) rem in (p::pl, final_sub) | Sig_modtype(id, decl) :: rem -> let p = Pdot(root, Ident.name id, nopos) in let (pl, final_sub) = prefix_idents root pos (Subst.add_modtype id (Mty_ident p) sub) rem in (p::pl, final_sub) | Sig_class(id, decl, _) :: rem -> let p = Pdot(root, Ident.name id, pos) in let (pl, final_sub) = prefix_idents root (pos + 1) sub rem in (p::pl, final_sub) | Sig_class_type(id, decl, _) :: rem -> let p = Pdot(root, Ident.name id, nopos) in let (pl, final_sub) = prefix_idents root pos sub rem in (p::pl, final_sub) let subst_signature sub sg = List.map (fun item -> match item with | Sig_value(id, decl) -> Sig_value (id, Subst.value_description sub decl) | Sig_type(id, decl, x) -> Sig_type(id, Subst.type_declaration sub decl, x) | Sig_exception(id, decl) -> Sig_exception (id, Subst.exception_declaration sub decl) | Sig_module(id, mty, x) -> Sig_module(id, Subst.modtype sub mty,x) | Sig_modtype(id, decl) -> Sig_modtype(id, Subst.modtype_declaration sub decl) | Sig_class(id, decl, x) -> Sig_class(id, Subst.class_declaration sub decl, x) | Sig_class_type(id, decl, x) -> Sig_class_type(id, Subst.cltype_declaration sub decl, x) ) sg let prefix_idents_and_subst root sub sg = let (pl, sub) = prefix_idents root 0 sub sg in pl, sub, lazy (subst_signature sub sg) let prefix_idents_and_subst root sub sg = if sub = Subst.identity then let sgs = try Hashtbl.find prefixed_sg root with Not_found -> let sgs = ref [] in Hashtbl.add prefixed_sg root sgs; sgs in try List.assq sg !sgs with Not_found -> let r = prefix_idents_and_subst root sub sg in sgs := (sg, r) :: !sgs; r else prefix_idents_and_subst root sub sg (* Compute structure descriptions *) let add_to_tbl id decl tbl = let decls = try Tbl.find id tbl with Not_found -> [] in Tbl.add id (decl :: decls) tbl let rec components_of_module env sub path mty = EnvLazy.create (env, sub, path, mty) and components_of_module_maker (env, sub, path, mty) = (match scrape_modtype mty env with Mty_signature sg -> let c = { comp_values = Tbl.empty; comp_constrs = Tbl.empty; comp_labels = Tbl.empty; comp_types = Tbl.empty; comp_modules = Tbl.empty; comp_modtypes = Tbl.empty; comp_components = Tbl.empty; comp_classes = Tbl.empty; comp_cltypes = Tbl.empty } in let pl, sub, _ = prefix_idents_and_subst path sub sg in let env = ref env in let pos = ref 0 in List.iter2 (fun item path -> match item with Sig_value(id, decl) -> let decl' = Subst.value_description sub decl in c.comp_values <- Tbl.add (Ident.name id) (decl', !pos) c.comp_values; begin match decl.val_kind with Val_prim _ -> () | _ -> incr pos end | Sig_type(id, decl, _) -> let decl' = Subst.type_declaration sub decl in let constructors = List.map snd (constructors_of_type path decl') in let labels = List.map snd (labels_of_type path decl') in c.comp_types <- Tbl.add (Ident.name id) ((decl', (constructors, labels)), nopos) c.comp_types; List.iter (fun descr -> c.comp_constrs <- add_to_tbl descr.cstr_name (descr, nopos) c.comp_constrs) constructors; List.iter (fun descr -> c.comp_labels <- add_to_tbl descr.lbl_name (descr, nopos) c.comp_labels) labels; env := store_type_infos id path decl !env | Sig_exception(id, decl) -> let decl' = Subst.exception_declaration sub decl in let cstr = Datarepr.exception_descr path decl' in let s = Ident.name id in c.comp_constrs <- add_to_tbl s (cstr, !pos) c.comp_constrs; incr pos | Sig_module(id, mty, _) -> let mty' = EnvLazy.create (sub, mty) in c.comp_modules <- Tbl.add (Ident.name id) (mty', !pos) c.comp_modules; let comps = components_of_module !env sub path mty in c.comp_components <- Tbl.add (Ident.name id) (comps, !pos) c.comp_components; env := store_module id path mty !env; incr pos | Sig_modtype(id, decl) -> let decl' = Subst.modtype_declaration sub decl in c.comp_modtypes <- Tbl.add (Ident.name id) (decl', nopos) c.comp_modtypes; env := store_modtype id path decl !env | Sig_class(id, decl, _) -> let decl' = Subst.class_declaration sub decl in c.comp_classes <- Tbl.add (Ident.name id) (decl', !pos) c.comp_classes; incr pos | Sig_class_type(id, decl, _) -> let decl' = Subst.cltype_declaration sub decl in c.comp_cltypes <- Tbl.add (Ident.name id) (decl', !pos) c.comp_cltypes) sg pl; Structure_comps c | Mty_functor(param, ty_arg, ty_res) -> Functor_comps { fcomp_param = param; (* fcomp_arg must be prefixed eagerly, because it is interpreted in the outer environment, not in env *) fcomp_arg = Subst.modtype sub ty_arg; (* fcomp_res is prefixed lazily, because it is interpreted in env *) fcomp_res = ty_res; fcomp_env = env; fcomp_subst = sub; fcomp_cache = Hashtbl.create 17 } | Mty_ident p -> Structure_comps { comp_values = Tbl.empty; comp_constrs = Tbl.empty; comp_labels = Tbl.empty; comp_types = Tbl.empty; comp_modules = Tbl.empty; comp_modtypes = Tbl.empty; comp_components = Tbl.empty; comp_classes = Tbl.empty; comp_cltypes = Tbl.empty }) (* Insertion of bindings by identifier + path *) and check_usage loc id warn tbl = if not loc.Location.loc_ghost && Warnings.is_active (warn "") then begin let name = Ident.name id in let key = (name, loc) in if Hashtbl.mem tbl key then () else let used = ref false in Hashtbl.add tbl key (fun () -> used := true); if not (name = "" || name.[0] = '_' || name.[0] = '#') then !add_delayed_check_forward (fun () -> if not !used then Location.prerr_warning loc (warn name)) end; and store_value ?check id path decl env = may (fun f -> check_usage decl.val_loc id f value_declarations) check; { env with values = EnvTbl.add id (path, decl) env.values; summary = Env_value(env.summary, id, decl) } and store_type id path info env = let loc = info.type_loc in check_usage loc id (fun s -> Warnings.Unused_type_declaration s) type_declarations; let constructors = constructors_of_type path info in let labels = labels_of_type path info in let descrs = (List.map snd constructors, List.map snd labels) in if not loc.Location.loc_ghost && Warnings.is_active (Warnings.Unused_constructor ("", false, false)) then begin let ty = Ident.name id in List.iter begin fun (_, {cstr_name = c; _}) -> let k = (ty, loc, c) in if not (Hashtbl.mem used_constructors k) then let used = constructor_usages () in Hashtbl.add used_constructors k (add_constructor_usage used); if not (ty = "" || ty.[0] = '_') then !add_delayed_check_forward (fun () -> if not env.in_signature && not used.cu_positive then Location.prerr_warning loc (Warnings.Unused_constructor (c, used.cu_pattern, used.cu_privatize))) end constructors end; { env with constrs = List.fold_right (fun (id, descr) constrs -> EnvTbl.add id descr constrs) constructors env.constrs; labels = List.fold_right (fun (id, descr) labels -> EnvTbl.add id descr labels) labels env.labels; types = EnvTbl.add id (path, (info, descrs)) env.types; summary = Env_type(env.summary, id, info) } and store_type_infos id path info env = (* Simplified version of store_type that doesn't compute and store constructor and label infos, but simply record the arity and manifest-ness of the type. Used in components_of_module to keep track of type abbreviations (e.g. type t = float) in the computation of label representations. *) { env with types = EnvTbl.add id (path, (info,([],[]))) env.types; summary = Env_type(env.summary, id, info) } and store_exception id path decl env = let loc = decl.exn_loc in if not loc.Location.loc_ghost && Warnings.is_active (Warnings.Unused_exception ("", false)) then begin let ty = "exn" in let c = Ident.name id in let k = (ty, loc, c) in if not (Hashtbl.mem used_constructors k) then begin let used = constructor_usages () in Hashtbl.add used_constructors k (add_constructor_usage used); !add_delayed_check_forward (fun () -> if not env.in_signature && not used.cu_positive then Location.prerr_warning loc (Warnings.Unused_exception (c, used.cu_pattern) ) ) end; end; { env with constrs = EnvTbl.add id (Datarepr.exception_descr path decl) env.constrs; summary = Env_exception(env.summary, id, decl) } and store_module id path mty env = { env with modules = EnvTbl.add id (path, mty) env.modules; components = EnvTbl.add id (path, components_of_module env Subst.identity path mty) env.components; summary = Env_module(env.summary, id, mty) } and store_modtype id path info env = { env with modtypes = EnvTbl.add id (path, info) env.modtypes; summary = Env_modtype(env.summary, id, info) } and store_class id path desc env = { env with classes = EnvTbl.add id (path, desc) env.classes; summary = Env_class(env.summary, id, desc) } and store_cltype id path desc env = { env with cltypes = EnvTbl.add id (path, desc) env.cltypes; summary = Env_cltype(env.summary, id, desc) } (* Compute the components of a functor application in a path. *) let components_of_functor_appl f p1 p2 = try Hashtbl.find f.fcomp_cache p2 with Not_found -> let p = Papply(p1, p2) in let mty = Subst.modtype (Subst.add_module f.fcomp_param p2 Subst.identity) f.fcomp_res in let comps = components_of_module f.fcomp_env f.fcomp_subst p mty in Hashtbl.add f.fcomp_cache p2 comps; comps (* Define forward functions *) let _ = components_of_module' := components_of_module; components_of_functor_appl' := components_of_functor_appl; components_of_module_maker' := components_of_module_maker (* Insertion of bindings by identifier *) let add_value ?check id desc env = store_value ?check id (Pident id) desc env let add_type id info env = store_type id (Pident id) info env and add_exception id decl env = store_exception id (Pident id) decl env and add_module id mty env = store_module id (Pident id) mty env and add_modtype id info env = store_modtype id (Pident id) info env and add_class id ty env = store_class id (Pident id) ty env and add_cltype id ty env = store_cltype id (Pident id) ty env let add_local_constraint id info elv env = match info with {type_manifest = Some ty; type_newtype_level = Some (lv, _)} -> (* elv is the expansion level, lv is the definition level *) let env = add_type id {info with type_newtype_level = Some (lv, elv)} env in { env with local_constraints = true } | _ -> assert false (* Insertion of bindings by name *) let enter store_fun name data env = let id = Ident.create name in (id, store_fun id (Pident id) data env) let enter_value ?check = enter (store_value ?check) and enter_type = enter store_type and enter_exception = enter store_exception and enter_module = enter store_module and enter_modtype = enter store_modtype and enter_class = enter store_class and enter_cltype = enter store_cltype (* Insertion of all components of a signature *) let add_item comp env = match comp with Sig_value(id, decl) -> add_value id decl env | Sig_type(id, decl, _) -> add_type id decl env | Sig_exception(id, decl) -> add_exception id decl env | Sig_module(id, mty, _) -> add_module id mty env | Sig_modtype(id, decl) -> add_modtype id decl env | Sig_class(id, decl, _) -> add_class id decl env | Sig_class_type(id, decl, _) -> add_cltype id decl env let rec add_signature sg env = match sg with [] -> env | comp :: rem -> add_signature rem (add_item comp env) (* Open a signature path *) let open_signature root sg env = (* First build the paths and substitution *) let (pl, sub, sg) = prefix_idents_and_subst root Subst.identity sg in let sg = Lazy.force sg in (* Then enter the components in the environment after substitution *) let newenv = List.fold_left2 (fun env item p -> match item with Sig_value(id, decl) -> store_value (Ident.hide id) p decl env | Sig_type(id, decl, _) -> store_type (Ident.hide id) p decl env | Sig_exception(id, decl) -> store_exception (Ident.hide id) p decl env | Sig_module(id, mty, _) -> store_module (Ident.hide id) p mty env | Sig_modtype(id, decl) -> store_modtype (Ident.hide id) p decl env | Sig_class(id, decl, _) -> store_class (Ident.hide id) p decl env | Sig_class_type(id, decl, _) -> store_cltype (Ident.hide id) p decl env ) env sg pl in { newenv with summary = Env_open(env.summary, root) } (* Open a signature from a file *) let open_pers_signature name env = let ps = find_pers_struct name in open_signature (Pident(Ident.create_persistent name)) ps.ps_sig env let open_signature ?(loc = Location.none) ?(toplevel = false) root sg env = if not toplevel && not loc.Location.loc_ghost && Warnings.is_active (Warnings.Unused_open "") then begin let used = ref false in !add_delayed_check_forward (fun () -> if not !used then Location.prerr_warning loc (Warnings.Unused_open (Path.name root)) ); EnvTbl.with_slot used (open_signature root sg) env end else open_signature root sg env (* Read a signature from a file *) let read_signature modname filename = let ps = read_pers_struct modname filename in ps.ps_sig (* Return the CRC of the interface of the given compilation unit *) let crc_of_unit name = let ps = find_pers_struct name in try List.assoc name ps.ps_crcs with Not_found -> assert false (* Return the list of imported interfaces with their CRCs *) let imported_units() = Consistbl.extract crc_units (* Save a signature to a file *) let save_signature_with_imports sg modname filename imports = Btype.cleanup_abbrev (); Subst.reset_for_saving (); let sg = Subst.signature (Subst.for_saving Subst.identity) sg in let oc = open_out_bin filename in try let cmi = { cmi_name = modname; cmi_sign = sg; cmi_crcs = imports; cmi_flags = if !Clflags.recursive_types then [Rectypes] else []; } in let crc = output_cmi filename oc cmi in close_out oc; (* Enter signature in persistent table so that imported_unit() will also return its crc *) let comps = components_of_module empty Subst.identity (Pident(Ident.create_persistent modname)) (Mty_signature sg) in let ps = { ps_name = modname; ps_sig = sg; ps_comps = comps; ps_crcs = (cmi.cmi_name, crc) :: imports; ps_filename = filename; ps_flags = cmi.cmi_flags } in Hashtbl.add persistent_structures modname (Some ps); Consistbl.set crc_units modname crc filename; sg with exn -> close_out oc; remove_file filename; raise exn let save_signature sg modname filename = save_signature_with_imports sg modname filename (imported_units()) (* Folding on environments *) let find_all proj1 proj2 f lid env acc = match lid with | None -> EnvTbl.fold_name (fun id (p, data) acc -> f (Ident.name id) p data acc) (proj1 env) acc | Some l -> let p, desc = lookup_module_descr l env in begin match EnvLazy.force components_of_module_maker desc with Structure_comps c -> Tbl.fold (fun s (data, pos) acc -> f s (Pdot (p, s, pos)) data acc) (proj2 c) acc | Functor_comps _ -> acc end let find_all_simple_list proj1 proj2 f lid env acc = match lid with | None -> EnvTbl.fold_name (fun id data acc -> f data acc) (proj1 env) acc | Some l -> let p, desc = lookup_module_descr l env in begin match EnvLazy.force components_of_module_maker desc with Structure_comps c -> Tbl.fold (fun s comps acc -> match comps with [] -> acc | (data, pos) :: _ -> f data acc) (proj2 c) acc | Functor_comps _ -> acc end let fold_modules f lid env acc = match lid with | None -> let acc = EnvTbl.fold_name (fun id (p, data) acc -> f (Ident.name id) p data acc) env.modules acc in Hashtbl.fold (fun name ps acc -> match ps with None -> acc | Some ps -> f name (Pident(Ident.create_persistent name)) (Mty_signature ps.ps_sig) acc) persistent_structures acc | Some l -> let p, desc = lookup_module_descr l env in begin match EnvLazy.force components_of_module_maker desc with Structure_comps c -> Tbl.fold (fun s (data, pos) acc -> f s (Pdot (p, s, pos)) (EnvLazy.force subst_modtype_maker data) acc) c.comp_modules acc | Functor_comps _ -> acc end let fold_values f = find_all (fun env -> env.values) (fun sc -> sc.comp_values) f and fold_constructors f = find_all_simple_list (fun env -> env.constrs) (fun sc -> sc.comp_constrs) f and fold_labels f = find_all_simple_list (fun env -> env.labels) (fun sc -> sc.comp_labels) f and fold_types f = find_all (fun env -> env.types) (fun sc -> sc.comp_types) f and fold_modtypes f = find_all (fun env -> env.modtypes) (fun sc -> sc.comp_modtypes) f and fold_classs f = find_all (fun env -> env.classes) (fun sc -> sc.comp_classes) f and fold_cltypes f = find_all (fun env -> env.cltypes) (fun sc -> sc.comp_cltypes) f (* Make the initial environment *) let initial = Predef.build_initial_env add_type add_exception empty (* Return the environment summary *) let summary env = env.summary let last_env = ref empty let last_reduced_env = ref empty let keep_only_summary env = if !last_env == env then !last_reduced_env else begin let new_env = { empty with summary = env.summary; local_constraints = env.local_constraints; in_signature = env.in_signature; } in last_env := env; last_reduced_env := new_env; new_env end let env_of_only_summary env_from_summary env = let new_env = env_from_summary env.summary Subst.identity in { new_env with local_constraints = env.local_constraints; in_signature = env.in_signature; } (* Error report *) open Format let report_error ppf = function | Illegal_renaming(modname, filename) -> fprintf ppf "Wrong file naming: %a@ contains the compiled interface for@ %s" Location.print_filename filename modname | Inconsistent_import(name, source1, source2) -> fprintf ppf "@[The files %a@ and %a@ \ make inconsistent assumptions@ over interface %s@]" Location.print_filename source1 Location.print_filename source2 name | Need_recursive_types(import, export) -> fprintf ppf "@[Unit %s imports from %s, which uses recursive types.@ %s@]" export import "The compilation flag -rectypes is required"