(* camlp4r *) (***********************************************************************) (* *) (* Camlp4 *) (* *) (* Daniel de Rauglaudre, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 2001 Institut National de Recherche en Informatique et *) (* Automatique. Distributed only by permission. *) (* *) (***********************************************************************) (* This file has been generated by program: do not edit! *) type grammar = { gtokens : (Token.pattern, int ref) Hashtbl.t; mutable glexer : Token.lexer } ;; type g_entry = { egram : grammar; ename : string; mutable estart : int -> Token.t Stream.t -> Obj.t; mutable econtinue : int -> int -> Obj.t -> Token.t Stream.t -> Obj.t; mutable edesc : g_desc } and g_desc = Dlevels of g_level list | Dparser of (Token.t Stream.t -> Obj.t) and g_level = { assoc : g_assoc; lname : string option; lsuffix : g_tree; lprefix : g_tree } and g_assoc = NonA | RightA | LeftA and g_symbol = Snterm of g_entry | Snterml of g_entry * string | Slist0 of g_symbol | Slist0sep of g_symbol * g_symbol | Slist1 of g_symbol | Slist1sep of g_symbol * g_symbol | Sopt of g_symbol | Sself | Snext | Stoken of Token.pattern | Stree of g_tree and g_action = Obj.t and g_tree = Node of g_node | LocAct of g_action * g_action list | DeadEnd and g_node = { node : g_symbol; son : g_tree; brother : g_tree } ;; type position = First | Last | Before of string | After of string | Level of string ;; let warning_verbose = ref true;; let rec derive_eps = function Slist0 _ -> true | Slist0sep (_, _) -> true | Sopt _ -> true | Stree t -> tree_derive_eps t | _ -> false and tree_derive_eps = function LocAct (_, _) -> true | Node {node = s; brother = bro; son = son} -> derive_eps s && tree_derive_eps son || tree_derive_eps bro | _ -> false ;; let rec eq_symbol s1 s2 = match s1, s2 with Snterm e1, Snterm e2 -> e1 == e2 | Snterml (e1, l1), Snterml (e2, l2) -> e1 == e2 && l1 = l2 | Slist0 s1, Slist0 s2 -> eq_symbol s1 s2 | Slist0sep (s1, sep1), Slist0sep (s2, sep2) -> eq_symbol s1 s2 && eq_symbol sep1 sep2 | Slist1 s1, Slist1 s2 -> eq_symbol s1 s2 | Slist1sep (s1, sep1), Slist1sep (s2, sep2) -> eq_symbol s1 s2 && eq_symbol sep1 sep2 | Sopt s1, Sopt s2 -> eq_symbol s1 s2 | Stree _, Stree _ -> false | _ -> s1 = s2 ;; let is_before s1 s2 = match s1, s2 with Stoken ("ANY", _), _ -> false | _, Stoken ("ANY", _) -> true | Stoken (_, s), Stoken (_, "") when s <> "" -> true | Stoken _, Stoken _ -> false | Stoken _, _ -> true | _ -> false ;; let insert_tree gsymbols action tree = let rec insert symbols tree = match symbols with s :: sl -> insert_in_tree s sl tree | [] -> match tree with Node {node = s; son = son; brother = bro} -> Node {node = s; son = son; brother = insert [] bro} | LocAct (old_action, action_list) -> if !warning_verbose then begin Printf.eprintf " Grammar extension: some rule has been masked\n"; flush stderr end; LocAct (action, (old_action :: action_list)) | DeadEnd -> LocAct (action, []) and insert_in_tree s sl tree = match try_insert s sl tree with Some t -> t | None -> Node {node = s; son = insert sl DeadEnd; brother = tree} and try_insert s sl tree = match tree with Node {node = s1; son = son; brother = bro} -> if eq_symbol s s1 then let t = Node {node = s1; son = insert sl son; brother = bro} in Some t else if is_before s1 s || derive_eps s && not (derive_eps s1) then let bro = match try_insert s sl bro with Some bro -> bro | None -> Node {node = s; son = insert sl DeadEnd; brother = bro} in let t = Node {node = s1; son = son; brother = bro} in Some t else begin match try_insert s sl bro with Some bro -> let t = Node {node = s1; son = son; brother = bro} in Some t | None -> None end | _ -> None and insert_new = function s :: sl -> Node {node = s; son = insert_new sl; brother = DeadEnd} | [] -> LocAct (action, []) in insert gsymbols tree ;; let srules rl = let t = List.fold_left (fun tree (symbols, action) -> insert_tree symbols action tree) DeadEnd rl in Stree t ;; external action : 'a -> g_action = "%identity";; let is_level_labelled n lev = match lev.lname with Some n1 -> n = n1 | None -> false ;; let insert_level e1 symbols action slev = match e1 with true -> {assoc = slev.assoc; lname = slev.lname; lsuffix = insert_tree symbols action slev.lsuffix; lprefix = slev.lprefix} | false -> {assoc = slev.assoc; lname = slev.lname; lsuffix = slev.lsuffix; lprefix = insert_tree symbols action slev.lprefix} ;; let empty_lev lname assoc = let assoc = match assoc with Some a -> a | None -> LeftA in {assoc = assoc; lname = lname; lsuffix = DeadEnd; lprefix = DeadEnd} ;; let change_lev lev n lname assoc = let a = match assoc with None -> lev.assoc | Some a -> if a <> lev.assoc && !warning_verbose then begin Printf.eprintf " Changing associativity of level \"%s\"\n" n; flush stderr end; a in begin match lname with Some n -> if lname <> lev.lname && !warning_verbose then begin Printf.eprintf " Level label \"%s\" ignored\n" n; flush stderr end | _ -> () end; {assoc = a; lname = lev.lname; lsuffix = lev.lsuffix; lprefix = lev.lprefix} ;; let get_level entry position levs = match position with Some First -> [], empty_lev, levs | Some Last -> levs, empty_lev, [] | Some (Level n) -> let rec get = function [] -> Printf.eprintf "No level labelled \"%s\" in entry \"%s\"\n" n entry.ename; flush stderr; failwith "Grammar.extend" | lev :: levs -> if is_level_labelled n lev then [], change_lev lev n, levs else let (levs1, rlev, levs2) = get levs in lev :: levs1, rlev, levs2 in get levs | Some (Before n) -> let rec get = function [] -> Printf.eprintf "No level labelled \"%s\" in entry \"%s\"\n" n entry.ename; flush stderr; failwith "Grammar.extend" | lev :: levs -> if is_level_labelled n lev then [], empty_lev, lev :: levs else let (levs1, rlev, levs2) = get levs in lev :: levs1, rlev, levs2 in get levs | Some (After n) -> let rec get = function [] -> Printf.eprintf "No level labelled \"%s\" in entry \"%s\"\n" n entry.ename; flush stderr; failwith "Grammar.extend" | lev :: levs -> if is_level_labelled n lev then [lev], empty_lev, levs else let (levs1, rlev, levs2) = get levs in lev :: levs1, rlev, levs2 in get levs | None -> match levs with lev :: levs -> [], change_lev lev "", levs | [] -> [], empty_lev, [] ;; let rec check_gram entry = function Snterm e -> if e.egram != entry.egram then begin Printf.eprintf "\ Error: entries \"%s\" and \"%s\" do not belong to the same grammar.\n" entry.ename e.ename; flush stderr; failwith "Grammar.extend error" end | Snterml (e, _) -> if e.egram != entry.egram then begin Printf.eprintf "\ Error: entries \"%s\" and \"%s\" do not belong to the same grammar.\n" entry.ename e.ename; flush stderr; failwith "Grammar.extend error" end | Slist0sep (s, t) -> check_gram entry t; check_gram entry s | Slist1sep (s, t) -> check_gram entry t; check_gram entry s | Slist0 s -> check_gram entry s | Slist1 s -> check_gram entry s | Sopt s -> check_gram entry s | Stree t -> tree_check_gram entry t | _ -> () and tree_check_gram entry = function Node {node = n; brother = bro; son = son} -> check_gram entry n; tree_check_gram entry bro; tree_check_gram entry son | _ -> () ;; let change_to_self entry = function Snterm e when e == entry -> Sself | x -> x ;; let get_initial entry = function Sself :: symbols -> true, symbols | symbols -> false, symbols ;; let insert_tokens gram symbols = let rec insert = function Slist0 s -> insert s | Slist1 s -> insert s | Slist0sep (s, t) -> insert s; insert t | Slist1sep (s, t) -> insert s; insert t | Sopt s -> insert s | Stree t -> tinsert t | Stoken ("ANY", _) -> () | Stoken tok -> gram.glexer.Token.using tok; let r = try Hashtbl.find gram.gtokens tok with Not_found -> let r = ref 0 in Hashtbl.add gram.gtokens tok r; r in incr r | _ -> () and tinsert = function Node {node = s; brother = bro; son = son} -> insert s; tinsert bro; tinsert son | _ -> () in List.iter insert symbols ;; let levels_of_rules entry position rules = let elev = match entry.edesc with Dlevels elev -> elev | Dparser _ -> Printf.eprintf "Error: entry not extensible: \"%s\"\n" entry.ename; flush stderr; failwith "Grammar.extend" in if rules = [] then elev else let (levs1, make_lev, levs2) = get_level entry position elev in let (levs, _) = List.fold_left (fun (levs, make_lev) (lname, assoc, level) -> let lev = make_lev lname assoc in let lev = List.fold_left (fun lev (symbols, action) -> let symbols = List.map (change_to_self entry) symbols in List.iter (check_gram entry) symbols; let (e1, symbols) = get_initial entry symbols in insert_tokens entry.egram symbols; insert_level e1 symbols action lev) lev level in lev :: levs, empty_lev) ([], make_lev) rules in levs1 @ List.rev levs @ levs2 ;; let logically_eq_symbols entry = let rec eq_symbols s1 s2 = match s1, s2 with Snterm e1, Snterm e2 -> e1.ename = e2.ename | Snterm e1, Sself -> e1.ename = entry.ename | Sself, Snterm e2 -> entry.ename = e2.ename | Snterml (e1, l1), Snterml (e2, l2) -> e1.ename = e2.ename && l1 = l2 | Slist0 s1, Slist0 s2 -> eq_symbols s1 s2 | Slist0sep (s1, sep1), Slist0sep (s2, sep2) -> eq_symbols s1 s2 && eq_symbols sep1 sep2 | Slist1 s1, Slist1 s2 -> eq_symbols s1 s2 | Slist1sep (s1, sep1), Slist1sep (s2, sep2) -> eq_symbols s1 s2 && eq_symbols sep1 sep2 | Sopt s1, Sopt s2 -> eq_symbols s1 s2 | Stree t1, Stree t2 -> eq_trees t1 t2 | _ -> s1 = s2 and eq_trees t1 t2 = match t1, t2 with Node n1, Node n2 -> eq_symbols n1.node n2.node && eq_trees n1.son n2.son && eq_trees n1.brother n2.brother | (LocAct (_, _) | DeadEnd), (LocAct (_, _) | DeadEnd) -> true | _ -> false in eq_symbols ;; (* [delete_rule_in_tree] returns [Some (dsl, t)] if success [dsl] = Some (list of deleted nodes) if branch deleted None if action replaced by previous version of action [t] = remaining tree [None] if failure *) let delete_rule_in_tree entry = let rec delete_in_tree symbols tree = match symbols, tree with s :: sl, Node n -> if logically_eq_symbols entry s n.node then delete_son sl n else begin match delete_in_tree symbols n.brother with Some (dsl, t) -> Some (dsl, Node {node = n.node; son = n.son; brother = t}) | None -> None end | s :: sl, _ -> None | [], Node n -> begin match delete_in_tree [] n.brother with Some (dsl, t) -> Some (dsl, Node {node = n.node; son = n.son; brother = t}) | None -> None end | [], DeadEnd -> None | [], LocAct (_, []) -> Some (Some [], DeadEnd) | [], LocAct (_, (action :: list)) -> Some (None, LocAct (action, list)) and delete_son sl n = match delete_in_tree sl n.son with Some (Some dsl, DeadEnd) -> Some (Some (n.node :: dsl), n.brother) | Some (Some dsl, t) -> let t = Node {node = n.node; son = t; brother = n.brother} in Some (Some (n.node :: dsl), t) | Some (None, t) -> let t = Node {node = n.node; son = t; brother = n.brother} in Some (None, t) | None -> None in delete_in_tree ;; let rec decr_keyw_use gram = function Stoken tok -> let r = Hashtbl.find gram.gtokens tok in decr r; if !r == 0 then begin Hashtbl.remove gram.gtokens tok; gram.glexer.Token.removing tok end | Slist0 s -> decr_keyw_use gram s | Slist1 s -> decr_keyw_use gram s | Slist0sep (s1, s2) -> decr_keyw_use gram s1; decr_keyw_use gram s2 | Slist1sep (s1, s2) -> decr_keyw_use gram s1; decr_keyw_use gram s2 | Sopt s -> decr_keyw_use gram s | Stree t -> decr_keyw_use_in_tree gram t | _ -> () and decr_keyw_use_in_tree gram = function DeadEnd | LocAct (_, _) -> () | Node n -> decr_keyw_use gram n.node; decr_keyw_use_in_tree gram n.son; decr_keyw_use_in_tree gram n.brother ;; let rec delete_rule_in_suffix entry symbols = function lev :: levs -> begin match delete_rule_in_tree entry symbols lev.lsuffix with Some (dsl, t) -> begin match dsl with Some dsl -> List.iter (decr_keyw_use entry.egram) dsl | None -> () end; begin match t with DeadEnd when lev.lprefix == DeadEnd -> levs | _ -> let lev = {assoc = lev.assoc; lname = lev.lname; lsuffix = t; lprefix = lev.lprefix} in lev :: levs end | None -> let levs = delete_rule_in_suffix entry symbols levs in lev :: levs end | [] -> raise Not_found ;; let rec delete_rule_in_prefix entry symbols = function lev :: levs -> begin match delete_rule_in_tree entry symbols lev.lprefix with Some (dsl, t) -> begin match dsl with Some dsl -> List.iter (decr_keyw_use entry.egram) dsl | None -> () end; begin match t with DeadEnd when lev.lsuffix == DeadEnd -> levs | _ -> let lev = {assoc = lev.assoc; lname = lev.lname; lsuffix = lev.lsuffix; lprefix = t} in lev :: levs end | None -> let levs = delete_rule_in_prefix entry symbols levs in lev :: levs end | [] -> raise Not_found ;; let rec delete_rule_in_level_list entry symbols levs = match symbols with Sself :: symbols -> delete_rule_in_suffix entry symbols levs | Snterm e :: symbols when e == entry -> delete_rule_in_suffix entry symbols levs | _ -> delete_rule_in_prefix entry symbols levs ;;