(*************************************************************************) (* *) (* Objective Caml LablTk library *) (* *) (* Francois Rouaix, Francois Pessaux and Jun Furuse *) (* projet Cristal, INRIA Rocquencourt *) (* Jacques Garrigue, Kyoto University RIMS *) (* *) (* Copyright 1999 Institut National de Recherche en Informatique et *) (* en Automatique and Kyoto University. All rights reserved. *) (* This file is distributed under the terms of the GNU Library *) (* General Public License. *) (* *) (*************************************************************************) (* $Id$ *) (* Topological Sort.list *) (* d'apres More Programming Pearls *) (* node * pred count * successors *) type 'a entry = {node : 'a; mutable pred_count : int; mutable successors : 'a entry list } type 'a porder = 'a entry list ref exception Cyclic let find_entry order node = let rec search_entry = function [] -> raise Not_found | x::l -> if x.node = node then x else search_entry l in try search_entry !order with Not_found -> let entry = {node = node; pred_count = 0; successors = []} in order := entry::!order; entry let create () = ref [] (* Inverted args because Sort.list builds list in reverse order *) let add_relation order (succ,pred) = let pred_entry = find_entry order pred and succ_entry = find_entry order succ in succ_entry.pred_count <- succ_entry.pred_count + 1; pred_entry.successors <- succ_entry::pred_entry.successors (* Just add it *) let add_element order e = ignore (find_entry order e) let sort order = let q = Queue.create () and result = ref [] in List.iter !order f:(function {pred_count = n} as node -> if n = 0 then Queue.add node q); begin try while true do let t = Queue.take q in result := t.node :: !result; List.iter t.successors f: begin fun s -> let n = s.pred_count - 1 in s.pred_count <- n; if n = 0 then Queue.add s q end done with Queue.Empty -> List.iter !order f:(fun node -> if node.pred_count <> 0 then raise Cyclic) end; !result