(***********************************************************************) (* *) (* Caml Special Light *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1995 Institut National de Recherche en Informatique et *) (* Automatique. Distributed only by permission. *) (* *) (***********************************************************************) (* $Id$ *) (* Description of the Intel 386 processor *) open Misc open Arch open Format open Cmm open Reg open Mach (* Registers available for register allocation *) (* Register map: eax 0 eax - edx: function arguments and results ebx 1 eax: C function results ecx 2 ebx, esi, edi, ebp: preserved by C edx 3 esi 4 edi 5 ebp 6 f0 - f3 100-103 function arguments and results f0: C function results f1-f3: preserved by C *) let int_reg_name = [| "%eax"; "%ebx"; "%ecx"; "%edx"; "%esi"; "%edi"; "%ebp" |] let float_reg_name = [| "%st"; "%st(1)"; "%st(2)"; "%st(3)"; "%st(4)" |] let num_register_classes = 2 let register_class r = match r.typ with Int -> 0 | Addr -> 0 | Float -> 1 let num_available_registers = [| 7; 4 |] let first_available_register = [| 0; 100 |] let register_name r = if r < 100 then int_reg_name.(r) else float_reg_name.(r - 100) (* Representation of hard registers by pseudo-registers *) let hard_int_reg = let v = Array.new 7 Reg.dummy in for i = 0 to 6 do v.(i) <- Reg.at_location Int (Reg i) done; v let hard_float_reg = let v = Array.new 4 Reg.dummy in for i = 0 to 3 do v.(i) <- Reg.at_location Float (Reg(i + 100)) done; v let all_phys_regs = Array.append hard_int_reg hard_float_reg let phys_reg n = if n < 100 then hard_int_reg.(n) else hard_float_reg.(n - 100) let stack_slot slot ty = Reg.at_location ty (Stack slot) (* Exceptions raised to signal cases not handled here *) exception Use_default (* Instruction selection *) (* Auxiliary for recognizing addressing modes *) type addressing_expr = Asymbol of string | Alinear of expression | Aadd of expression * expression | Ascale of expression * int | Ascaledadd of expression * expression * int let rec select_addr exp = match exp with Cconst_symbol s -> (Asymbol s, 0) | Cop((Caddi | Cadda), [arg; Cconst_int m]) -> let (a, n) = select_addr arg in (a, n + m) | Cop((Csubi | Csuba), [arg; Cconst_int m]) -> let (a, n) = select_addr arg in (a, n - m) | Cop((Caddi | Cadda), [Cconst_int m; arg]) -> let (a, n) = select_addr arg in (a, n + m) | Cop(Clsl, [arg; Cconst_int(1|2|3 as shift)]) -> begin match select_addr arg with (Alinear e, n) -> (Ascale(e, 1 lsl shift), n lsl shift) | _ -> (Alinear exp, 0) end | Cop(Cmuli, [arg; Cconst_int(2|4|8 as mult)]) -> begin match select_addr arg with (Alinear e, n) -> (Ascale(e, mult), n * mult) | _ -> (Alinear exp, 0) end | Cop(Cmuli, [Cconst_int(2|4|8 as mult); arg]) -> begin match select_addr arg with (Alinear e, n) -> (Ascale(e, mult), n * mult) | _ -> (Alinear exp, 0) end | Cop((Caddi | Cadda), [arg1; arg2]) -> begin match (select_addr arg1, select_addr arg2) with ((Alinear e1, n1), (Alinear e2, n2)) -> (Aadd(e1, e2), n1 + n2) | ((Alinear e1, n1), (Ascale(e2, scale), n2)) -> (Ascaledadd(e1, e2, scale), n1 + n2) | ((Ascale(e1, scale), n1), (Alinear e2, n2)) -> (Ascaledadd(e2, e1, scale), n1 + n2) | (_, (Ascale(e2, scale), n2)) -> (Ascaledadd(arg1, e2, scale), n2) | ((Ascale(e1, scale), n1), _) -> (Ascaledadd(arg2, e1, scale), n1) | _ -> (Aadd(arg1, arg2), 0) end | arg -> (Alinear arg, 0) let select_addressing exp = match select_addr exp with (Asymbol s, d) -> (Ibased(s, d), Ctuple []) | (Alinear e, d) -> (Iindexed d, e) | (Aadd(e1, e2), d) -> (Iindexed2 d, Ctuple[e1; e2]) | (Ascale(e, scale), d) -> (Iscaled(scale, d), e) | (Ascaledadd(e1, e2, scale), d) -> (Iindexed2scaled(scale, d), Ctuple[e1; e2]) exception Use_default let select_oper op args = match op with (* Recognize the LEA instruction *) Caddi | Cadda | Csubi | Csuba -> begin match select_addressing (Cop(op, args)) with (Iindexed d, _) -> raise Use_default | (Iindexed2 0, _) -> raise Use_default | (addr, arg) -> (Ispecific(Ilea addr), [arg]) end (* Recognize store instructions *) | Cstore -> begin match args with [loc; Cconst_int n] -> let (addr, arg) = select_addressing loc in (Ispecific(Istore_int(n, addr)), [arg]) | [loc; Cconst_pointer n] -> let (addr, arg) = select_addressing loc in (Ispecific(Istore_int(n, addr)), [arg]) | [loc; Cconst_symbol s] -> let (addr, arg) = select_addressing loc in (Ispecific(Istore_symbol(s, addr)), [arg]) | [loc; Cop(Caddi, [Cop(Cload _, [loc']); Cconst_int n])] when loc = loc' -> let (addr, arg) = select_addressing loc in (Ispecific(Ioffset_loc(n, addr)), [arg]) | _ -> raise Use_default end (* Prevent the recognition of (x / cst) and (x % cst), which do not correspond to an addressing mode. *) | Cdivi -> (Iintop Idiv, args) | Cmodi -> (Iintop Imod, args) | _ -> raise Use_default let select_store addr exp = match exp with Cconst_int n -> (Ispecific(Istore_int(n, addr)), Ctuple []) | Cconst_pointer n -> (Ispecific(Istore_int(n, addr)), Ctuple []) | Cconst_symbol s -> (Ispecific(Istore_symbol(s, addr)), Ctuple []) | _ -> raise Use_default let pseudoregs_for_operation op arg res = match op with (* Two-address binary operations *) Iintop(Iadd|Isub|Imul|Iand|Ior|Ixor) -> ([|res.(0); arg.(1)|], res) (* Two-address unary operations *) | Iintop_imm((Iadd|Isub|Imul|Iand|Ior|Ixor|Ilsl|Ilsr|Iasr), _) -> (res, res) (* For shifts with variable shift count, second arg must be in ecx *) | Iintop(Ilsl|Ilsr|Iasr) -> ([|res.(0); phys_reg 2|], res) (* For div and mod, first arg must be in eax, edx is clobbered, and result is in eax or edx respectively. Keep it simple, just force second argument in ecx. *) | Iintop(Idiv) -> ([|phys_reg 0; phys_reg 2|], [|phys_reg 0|]) | Iintop(Imod) -> ([|phys_reg 0; phys_reg 2|], [|phys_reg 3|]) (* For storing a byte, the argument must be in eax...edx. For storing a halfword, any reg is ok. Keep it simple, just force it to be in edx in both cases. *) | Istore(Word, addr) -> raise Use_default | Istore(chunk, addr) -> let newarg = Array.copy arg in newarg.(0) <- phys_reg 3; (newarg, res) (* Other instructions are more or less regular *) | _ -> raise Use_default let is_immediate (n: int) = true let word_addressed = false (* Calling conventions *) let calling_conventions first_int last_int first_float last_float make_stack arg = let loc = Array.new (Array.length arg) Reg.dummy in let int = ref first_int in let float = ref first_float in let ofs = ref 0 in for i = 0 to Array.length arg - 1 do match arg.(i).typ with Int | Addr as ty -> if !int <= last_int then begin loc.(i) <- phys_reg !int; incr int end else begin loc.(i) <- stack_slot (make_stack !ofs) ty; ofs := !ofs + size_int end | Float -> if !float <= last_float then begin loc.(i) <- phys_reg !float; incr float end else begin loc.(i) <- stack_slot (make_stack !ofs) Float; ofs := !ofs + size_float end done; (loc, !ofs) let incoming ofs = Incoming ofs let outgoing ofs = Outgoing ofs let not_supported ofs = fatal_error "Proc.loc_results: cannot call" let loc_arguments arg = calling_conventions 0 3 100 103 outgoing arg let loc_parameters arg = let (loc, ofs) = calling_conventions 0 3 100 103 incoming arg in loc let loc_results res = let (loc, ofs) = calling_conventions 0 3 100 103 not_supported res in loc let loc_external_arguments arg = calling_conventions 0 (-1) 100 99 outgoing arg let loc_external_results res = let (loc, ofs) = calling_conventions 0 0 100 100 not_supported res in loc let loc_exn_bucket = phys_reg 0 (* eax *) (* Registers destroyed by operations *) let destroyed_at_c_call = (* ebx, esi, edi, ebp preserved *) Array.of_list(List.map phys_reg [0;2;3;100;101;102;103]) let destroyed_at_oper = function Iop(Icall_ind | Icall_imm _ | Iextcall(_, true)) -> all_phys_regs | Iop(Iextcall(_, false)) -> destroyed_at_c_call | Iop(Iintop(Idiv | Imod)) -> [| phys_reg 0; phys_reg 3 |] (* eax, edx *) | Iop(Ialloc _) -> [| phys_reg 0|] (* eax *) | Iop(Iintop(Icomp _) | Iintop_imm(Icomp _, _)) -> [| phys_reg 0 |] (* eax *) | Iop(Iintoffloat) -> [| phys_reg 0 |] (* eax *) | Iifthenelse(Ifloattest _, _, _) -> [| phys_reg 0 |] (* eax *) | _ -> [||] let destroyed_at_raise = all_phys_regs (* Maximal register pressure *) let safe_register_pressure op = 4 let max_register_pressure = function Iextcall(_, _) -> [| 4; 4 |] | Iintop(Idiv | Imod) -> [| 5; 4 |] | Ialloc _ | Iintop(Icomp _) | Iintop_imm(Icomp _, _) | Iintoffloat -> [| 6; 4 |] | _ -> [|7; 4|] (* Reloading of instruction arguments, storing of instruction results *) let stackp r = match r.loc with Stack _ -> true | _ -> false let reload_test makereg tst arg = match tst with Iinttest cmp -> if stackp arg.(0) & stackp arg.(1) then [| makereg arg.(0); arg.(1) |] else arg | _ -> arg let reload_operation makereg op arg res = match op with Iintop(Iadd|Isub|Imul|Iand|Ior|Ixor|Icomp _|Icheckbound) -> (* One of the two arguments can reside in the stack *) if stackp arg.(0) & stackp arg.(1) then ([|arg.(0); makereg arg.(1)|], res) else (arg, res) | Iintop(Ilsl|Ilsr|Iasr) | Iintop_imm(_, _) | Iaddf | Isubf | Imulf | Idivf | Ifloatofint | Iintoffloat -> (* The argument(s) can be either in register or on stack *) (arg, res) | _ -> (* Other operations: all args and results in registers *) raise Use_default (* Layout of the stack frame *) let num_stack_slots = [| 0; 0 |] let contains_calls = ref false (* Calling the assembler *) let assemble_file infile outfile = Sys.command ("as -o " ^ outfile ^ " " ^ infile) (* Calling the archiver *) let create_archive archive file_list = Misc.remove_file archive; Sys.command ("ar rc " ^ archive ^ " " ^ String.concat " " file_list ^ " && ranlib " ^ archive)