(***********************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, *) (* Luc Maranget, projet Moscova, *) (* INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* $Id$ *) (* Compiling a lexer definition *) open Syntax open Printf exception Memory_overflow (* Deep abstract syntax for regular expressions *) type ident = string * Syntax.location type tag_info = {id : string ; start : bool ; action : int} type regexp = Empty | Chars of int * bool | Action of int | Tag of tag_info | Seq of regexp * regexp | Alt of regexp * regexp | Star of regexp type tag_base = Start | End | Mem of int type tag_addr = Sum of (tag_base * int) type ident_info = | Ident_string of bool * tag_addr * tag_addr | Ident_char of bool * tag_addr type t_env = (ident * ident_info) list type ('args,'action) lexer_entry = { lex_name: string; lex_regexp: regexp; lex_mem_tags: int ; lex_actions: (int * t_env * 'action) list } type automata = Perform of int * tag_action list | Shift of automata_trans * (automata_move * memory_action list) array and automata_trans = No_remember | Remember of int * tag_action list and automata_move = Backtrack | Goto of int and memory_action = | Copy of int * int | Set of int and tag_action = SetTag of int * int | EraseTag of int (* Representation of entry points *) type ('args,'action) automata_entry = { auto_name: string; auto_args: 'args ; auto_mem_size : int ; auto_initial_state: int * memory_action list; auto_actions: (int * t_env * 'action) list } (* A lot of sets and map structures *) module Ints = Set.Make(struct type t = int let compare = compare end) let id_compare (id1,_) (id2,_) = String.compare id1 id2 let tag_compare t1 t2 = Pervasives.compare t1 t2 module Tags = Set.Make(struct type t = tag_info let compare = tag_compare end) module TagMap = Map.Make (struct type t = tag_info let compare = tag_compare end) module IdSet = Set.Make (struct type t = ident let compare = id_compare end) module IdMap = Map.Make (struct type t = ident let compare = id_compare end) (*********************) (* Variable cleaning *) (*********************) (* Silently eliminate nested variables *) let rec do_remove_nested to_remove = function | Bind (e,x) -> if IdSet.mem x to_remove then do_remove_nested to_remove e else Bind (do_remove_nested (IdSet.add x to_remove) e, x) | Epsilon|Eof|Characters _ as e -> e | Sequence (e1, e2) -> Sequence (do_remove_nested to_remove e1, do_remove_nested to_remove e2) | Alternative (e1, e2) -> Alternative (do_remove_nested to_remove e1, do_remove_nested to_remove e2) | Repetition e -> Repetition (do_remove_nested to_remove e) let remove_nested_as e = do_remove_nested IdSet.empty e (*********************) (* Variable analysis *) (*********************) (* Optional variables. A variable is optional when matching of regexp does not implies it binds. The typical case is: ("" | 'a' as x) -> optional ("" as x | 'a' as x) -> non-optional *) let stringset_delta s1 s2 = IdSet.union (IdSet.diff s1 s2) (IdSet.diff s2 s1) let rec find_all_vars = function | Characters _|Epsilon|Eof -> IdSet.empty | Bind (e,x) -> IdSet.add x (find_all_vars e) | Sequence (e1,e2)|Alternative (e1,e2) -> IdSet.union (find_all_vars e1) (find_all_vars e2) | Repetition e -> find_all_vars e let rec do_find_opt = function | Characters _|Epsilon|Eof -> IdSet.empty, IdSet.empty | Bind (e,x) -> let opt,all = do_find_opt e in opt, IdSet.add x all | Sequence (e1,e2) -> let opt1,all1 = do_find_opt e1 and opt2,all2 = do_find_opt e2 in IdSet.union opt1 opt2, IdSet.union all1 all2 | Alternative (e1,e2) -> let opt1,all1 = do_find_opt e1 and opt2,all2 = do_find_opt e2 in IdSet.union (IdSet.union opt1 opt2) (stringset_delta all1 all2), IdSet.union all1 all2 | Repetition e -> let r = find_all_vars e in r,r let find_optional e = let r,_ = do_find_opt e in r (* Double variables A variable is double when it can be bound more than once in a single matching The typical case is: (e1 as x) (e2 as x) *) let rec do_find_double = function | Characters _|Epsilon|Eof -> IdSet.empty, IdSet.empty | Bind (e,x) -> let dbl,all = do_find_double e in (if IdSet.mem x all then IdSet.add x dbl else dbl), IdSet.add x all | Sequence (e1,e2) -> let dbl1, all1 = do_find_double e1 and dbl2, all2 = do_find_double e2 in IdSet.union (IdSet.inter all1 all2) (IdSet.union dbl1 dbl2), IdSet.union all1 all2 | Alternative (e1,e2) -> let dbl1, all1 = do_find_double e1 and dbl2, all2 = do_find_double e2 in IdSet.union dbl1 dbl2, IdSet.union all1 all2 | Repetition e -> let r = find_all_vars e in r,r let find_double e = do_find_double e (* Type of variables: A variable is bound to a char when all its occurences bind a pattern of length 1. The typical case is: (_ as x) -> char *) let add_some x = function | Some i -> Some (x+i) | None -> None let add_some_some x y = match x,y with | Some i, Some j -> Some (i+j) | _,_ -> None let rec do_find_chars sz = function | Epsilon|Eof -> IdSet.empty, IdSet.empty, sz | Characters _ -> IdSet.empty, IdSet.empty, add_some 1 sz | Bind (e,x) -> let c,s,e_sz = do_find_chars (Some 0) e in begin match e_sz with | Some 1 -> IdSet.add x c,s,add_some 1 sz | _ -> c, IdSet.add x s, add_some_some sz e_sz end | Sequence (e1,e2) -> let c1,s1,sz1 = do_find_chars sz e1 in let c2,s2,sz2 = do_find_chars sz1 e2 in IdSet.union c1 c2, IdSet.union s1 s2, sz2 | Alternative (e1,e2) -> let c1,s1,sz1 = do_find_chars sz e1 and c2,s2,sz2 = do_find_chars sz e2 in IdSet.union c1 c2, IdSet.union s1 s2, (if sz1 = sz2 then sz1 else None) | Repetition e -> do_find_chars None e let find_chars e = let c,s,_ = do_find_chars (Some 0) e in IdSet.diff c s (*******************************) (* From shallow to deep syntax *) (*******************************) let chars = ref ([] : Cset.t list) let chars_count = ref 0 let rec encode_regexp char_vars act = function Epsilon -> Empty | Characters cl -> let n = !chars_count in chars := cl :: !chars; incr chars_count; Chars(n,false) | Eof -> let n = !chars_count in chars := Cset.eof :: !chars; incr chars_count; Chars(n,true) | Sequence(r1,r2) -> let r1 = encode_regexp char_vars act r1 in let r2 = encode_regexp char_vars act r2 in Seq (r1, r2) | Alternative(r1,r2) -> let r1 = encode_regexp char_vars act r1 in let r2 = encode_regexp char_vars act r2 in Alt(r1, r2) | Repetition r -> let r = encode_regexp char_vars act r in Star r | Bind (r,((name,_) as x)) -> let r = encode_regexp char_vars act r in if IdSet.mem x char_vars then Seq (Tag {id=name ; start=true ; action=act},r) else Seq (Tag {id=name ; start=true ; action=act}, Seq (r, Tag {id=name ; start=false ; action=act})) (* Optimisation, Static optimization : Replace tags by offsets relative to the beginning or end of matched string. Dynamic optimization: Replace some non-optional, non-double tags by offsets w.r.t a previous similar tag. *) let incr_pos = function | None -> None | Some i -> Some (i+1) let decr_pos = function | None -> None | Some i -> Some (i-1) let opt = true let mk_seq r1 r2 = match r1,r2 with | Empty,_ -> r2 | _,Empty -> r1 | _,_ -> Seq (r1,r2) let add_pos p i = match p with | Some (Sum (a,n)) -> Some (Sum (a,n+i)) | None -> None let mem_name name id_set = IdSet.exists (fun (id_name,_) -> name = id_name) id_set let opt_regexp all_vars char_vars optional_vars double_vars r = (* From removed tags to their addresses *) let env = Hashtbl.create 17 in (* First static optimizations, from start position *) let rec size_forward pos = function | Empty|Chars (_,true)|Tag _ -> Some pos | Chars (_,false) -> Some (pos+1) | Seq (r1,r2) -> begin match size_forward pos r1 with | None -> None | Some pos -> size_forward pos r2 end | Alt (r1,r2) -> let pos1 = size_forward pos r1 and pos2 = size_forward pos r2 in if pos1=pos2 then pos1 else None | Star _ -> None | Action _ -> assert false in let rec simple_forward pos r = match r with | Tag n -> if mem_name n.id double_vars then r,Some pos else begin Hashtbl.add env (n.id,n.start) (Sum (Start, pos)) ; Empty,Some pos end | Empty -> r, Some pos | Chars (_,is_eof) -> r,Some (if is_eof then pos else pos+1) | Seq (r1,r2) -> let r1,pos = simple_forward pos r1 in begin match pos with | None -> mk_seq r1 r2,None | Some pos -> let r2,pos = simple_forward pos r2 in mk_seq r1 r2,pos end | Alt (r1,r2) -> let pos1 = size_forward pos r1 and pos2 = size_forward pos r2 in r,(if pos1=pos2 then pos1 else None) | Star _ -> r,None | Action _ -> assert false in (* Then static optimizations, from end position *) let rec size_backward pos = function | Empty|Chars (_,true)|Tag _ -> Some pos | Chars (_,false) -> Some (pos-1) | Seq (r1,r2) -> begin match size_backward pos r2 with | None -> None | Some pos -> size_backward pos r1 end | Alt (r1,r2) -> let pos1 = size_backward pos r1 and pos2 = size_backward pos r2 in if pos1=pos2 then pos1 else None | Star _ -> None | Action _ -> assert false in let rec simple_backward pos r = match r with | Tag n -> if mem_name n.id double_vars then r,Some pos else begin Hashtbl.add env (n.id,n.start) (Sum (End, pos)) ; Empty,Some pos end | Empty -> r,Some pos | Chars (_,is_eof) -> r,Some (if is_eof then pos else pos-1) | Seq (r1,r2) -> let r2,pos = simple_backward pos r2 in begin match pos with | None -> mk_seq r1 r2,None | Some pos -> let r1,pos = simple_backward pos r1 in mk_seq r1 r2,pos end | Alt (r1,r2) -> let pos1 = size_backward pos r1 and pos2 = size_backward pos r2 in r,(if pos1=pos2 then pos1 else None) | Star _ -> r,None | Action _ -> assert false in let r = if opt then let r,_ = simple_forward 0 r in let r,_ = simple_backward 0 r in r else r in let loc_count = ref 0 in let get_tag_addr t = try Hashtbl.find env t with | Not_found -> let n = !loc_count in incr loc_count ; Hashtbl.add env t (Sum (Mem n,0)) ; Sum (Mem n,0) in let rec alloc_exp pos r = match r with | Tag n -> if mem_name n.id double_vars then r,pos else begin match pos with | Some a -> Hashtbl.add env (n.id,n.start) a ; Empty,pos | None -> let a = get_tag_addr (n.id,n.start) in r,Some a end | Empty -> r,pos | Chars (_,is_eof) -> r,(if is_eof then pos else add_pos pos 1) | Seq (r1,r2) -> let r1,pos = alloc_exp pos r1 in let r2,pos = alloc_exp pos r2 in mk_seq r1 r2,pos | Alt (_,_) -> let off = size_forward 0 r in begin match off with | Some i -> r,add_pos pos i | None -> r,None end | Star _ -> r,None | Action _ -> assert false in let r,_ = alloc_exp None r in let m = IdSet.fold (fun ((name,_) as x) r -> let v = if IdSet.mem x char_vars then Ident_char (IdSet.mem x optional_vars, get_tag_addr (name,true)) else Ident_string (IdSet.mem x optional_vars, get_tag_addr (name,true), get_tag_addr (name,false)) in (x,v)::r) all_vars [] in m,r, !loc_count let encode_casedef casedef = let r = List.fold_left (fun (reg,actions,count,ntags) (expr, act) -> let expr = remove_nested_as expr in let char_vars = find_chars expr in let r = encode_regexp char_vars count expr and opt_vars = find_optional expr and double_vars,all_vars = find_double expr in let m,r,loc_ntags = opt_regexp all_vars char_vars opt_vars double_vars r in Alt(reg, Seq(r, Action count)), (count, m ,act) :: actions, (succ count), max loc_ntags ntags) (Empty, [], 0, 0) casedef in r let encode_lexdef def = chars := []; chars_count := 0; let entry_list = List.map (fun {name=entry_name ; args=args ; shortest=shortest ; clauses= casedef} -> let (re,actions,_,ntags) = encode_casedef casedef in { lex_name = entry_name; lex_regexp = re; lex_mem_tags = ntags ; lex_actions = List.rev actions },args,shortest) def in let chr = Array.of_list (List.rev !chars) in chars := []; (chr, entry_list) (* To generate directly a NFA from a regular expression. Confer Aho-Sethi-Ullman, dragon book, chap. 3 Extension to tagged automata. Confer Ville Larikari ``NFAs with Tagged Transitions, their Conversion to Deterministic Automata and Application to Regular Expressions''. Symposium on String Processing and Information Retrieval (SPIRE 2000), http://kouli.iki.fi/~vlaurika/spire2000-tnfa.ps (See also) http://kouli.iki.fi/~vlaurika/regex-submatch.ps.gz *) type t_transition = OnChars of int | ToAction of int type transition = t_transition * Tags.t let trans_compare (t1,tags1) (t2,tags2) = match Pervasives.compare t1 t2 with | 0 -> Tags.compare tags1 tags2 | r -> r module TransSet = Set.Make(struct type t = transition let compare = trans_compare end) let rec nullable = function | Empty|Tag _ -> true | Chars (_,_)|Action _ -> false | Seq(r1,r2) -> nullable r1 && nullable r2 | Alt(r1,r2) -> nullable r1 || nullable r2 | Star r -> true let rec emptymatch = function | Empty | Chars (_,_) | Action _ -> Tags.empty | Tag t -> Tags.add t Tags.empty | Seq (r1,r2) -> Tags.union (emptymatch r1) (emptymatch r2) | Alt(r1,r2) -> if nullable r1 then emptymatch r1 else emptymatch r2 | Star r -> if nullable r then emptymatch r else Tags.empty let addtags transs tags = TransSet.fold (fun (t,tags_t) r -> TransSet.add (t, Tags.union tags tags_t) r) transs TransSet.empty let rec firstpos = function Empty|Tag _ -> TransSet.empty | Chars (pos,_) -> TransSet.add (OnChars pos,Tags.empty) TransSet.empty | Action act -> TransSet.add (ToAction act,Tags.empty) TransSet.empty | Seq(r1,r2) -> if nullable r1 then TransSet.union (firstpos r1) (addtags (firstpos r2) (emptymatch r1)) else firstpos r1 | Alt(r1,r2) -> TransSet.union (firstpos r1) (firstpos r2) | Star r -> firstpos r (* Berry-sethi followpos *) let followpos size entry_list = let v = Array.create size TransSet.empty in let rec fill s = function | Empty|Action _|Tag _ -> () | Chars (n,_) -> v.(n) <- s | Alt (r1,r2) -> fill s r1 ; fill s r2 | Seq (r1,r2) -> fill (if nullable r2 then TransSet.union (firstpos r2) (addtags s (emptymatch r2)) else (firstpos r2)) r1 ; fill s r2 | Star r -> fill (TransSet.union (firstpos r) s) r in List.iter (fun (entry,_,_) -> fill TransSet.empty entry.lex_regexp) entry_list ; v (************************) (* The algorithm itself *) (************************) let no_action = max_int module StateSet = Set.Make (struct type t = t_transition let compare = Pervasives.compare end) module MemMap = Map.Make (struct type t = int let compare = Pervasives.compare end) type 'a dfa_state = {final : int * ('a * int TagMap.t) ; others : ('a * int TagMap.t) MemMap.t} let dtag oc t = fprintf oc "%s<%s>" t.id (if t.start then "s" else "e") let dmem_map dp ds m = MemMap.iter (fun k x -> eprintf "%d -> " k ; dp x ; ds ()) m and dtag_map dp ds m = TagMap.iter (fun t x -> dtag stderr t ; eprintf " -> " ; dp x ; ds ()) m let dstate {final=(act,(_,m)) ; others=o} = if act <> no_action then begin eprintf "final=%d " act ; dtag_map (fun x -> eprintf "%d" x) (fun () -> prerr_string " ,") m ; prerr_endline "" end ; dmem_map (fun (_,m) -> dtag_map (fun x -> eprintf "%d" x) (fun () -> prerr_string " ,") m) (fun () -> prerr_endline "") o let dfa_state_empty = {final=(no_action, (max_int,TagMap.empty)) ; others=MemMap.empty} and dfa_state_is_empty {final=(act,_) ; others=o} = act = no_action && o = MemMap.empty (* A key is an abstraction on a dfa state, two states with the same key can be made the same by copying some memory cells into others *) module StateSetSet = Set.Make (struct type t = StateSet.t let compare = StateSet.compare end) type t_equiv = {tag:tag_info ; equiv:StateSetSet.t} module MemKey = Set.Make (struct type t = t_equiv let compare e1 e2 = match Pervasives.compare e1.tag e2.tag with | 0 -> StateSetSet.compare e1.equiv e2.equiv | r -> r end) type dfa_key = {kstate : StateSet.t ; kmem : MemKey.t} (* Map a state to its key *) let env_to_class m = let env1 = MemMap.fold (fun _ (tag,s) r -> try let ss = TagMap.find tag r in let r = TagMap.remove tag r in TagMap.add tag (StateSetSet.add s ss) r with | Not_found -> TagMap.add tag (StateSetSet.add s StateSetSet.empty) r) m TagMap.empty in TagMap.fold (fun tag ss r -> MemKey.add {tag=tag ; equiv=ss} r) env1 MemKey.empty (* trans is nfa_state, m is associated memory map *) let inverse_mem_map trans m r = TagMap.fold (fun tag addr r -> try let otag,s = MemMap.find addr r in assert (tag = otag) ; let r = MemMap.remove addr r in MemMap.add addr (tag,StateSet.add trans s) r with | Not_found -> MemMap.add addr (tag,StateSet.add trans StateSet.empty) r) m r let inverse_mem_map_other n (_,m) r = inverse_mem_map (OnChars n) m r let get_key {final=(act,(_,m_act)) ; others=o} = let env = MemMap.fold inverse_mem_map_other o (if act = no_action then MemMap.empty else inverse_mem_map (ToAction act) m_act MemMap.empty) in let state_key = MemMap.fold (fun n _ r -> StateSet.add (OnChars n) r) o (if act=no_action then StateSet.empty else StateSet.add (ToAction act) StateSet.empty) in let mem_key = env_to_class env in {kstate = state_key ; kmem = mem_key} let key_compare k1 k2 = match StateSet.compare k1.kstate k2.kstate with | 0 -> MemKey.compare k1.kmem k2.kmem | r -> r (* Association dfa_state -> state_num *) module StateMap = Map.Make(struct type t = dfa_key let compare = key_compare end) let state_map = ref (StateMap.empty : int StateMap.t) let todo = Stack.create() let next_state_num = ref 0 let next_mem_cell = ref 0 let temp_pending = ref false let tag_cells = Hashtbl.create 17 let state_table = Table.create dfa_state_empty (* Initial reset of state *) let reset_state () = Stack.clear todo; next_state_num := 0 ; let _ = Table.trim state_table in () (* Reset state before processing a given automata. We clear both the memory mapping and the state mapping, as state sharing beetween different automata may lead to incorret estimation of the cell memory size BUG ID 0004517 *) let reset_state_partial ntags = next_mem_cell := ntags ; Hashtbl.clear tag_cells ; temp_pending := false ; state_map := StateMap.empty let do_alloc_temp () = temp_pending := true ; let n = !next_mem_cell in n let do_alloc_cell used t = let available = try Hashtbl.find tag_cells t with Not_found -> Ints.empty in try Ints.choose (Ints.diff available used) with | Not_found -> temp_pending := false ; let n = !next_mem_cell in if n >= 255 then raise Memory_overflow ; Hashtbl.replace tag_cells t (Ints.add n available) ; incr next_mem_cell ; n let is_old_addr a = a >= 0 and is_new_addr a = a < 0 let old_in_map m r = TagMap.fold (fun _ addr r -> if is_old_addr addr then Ints.add addr r else r) m r let alloc_map used m mvs = TagMap.fold (fun tag a (r,mvs) -> let a,mvs = if is_new_addr a then let a = do_alloc_cell used tag in a,Ints.add a mvs else a,mvs in TagMap.add tag a r,mvs) m (TagMap.empty,mvs) let create_new_state {final=(act,(_,m_act)) ; others=o} = let used = MemMap.fold (fun _ (_,m) r -> old_in_map m r) o (old_in_map m_act Ints.empty) in let new_m_act,mvs = alloc_map used m_act Ints.empty in let new_o,mvs = MemMap.fold (fun k (x,m) (r,mvs) -> let m,mvs = alloc_map used m mvs in MemMap.add k (x,m) r,mvs) o (MemMap.empty,mvs) in {final=(act,(0,new_m_act)) ; others=new_o}, Ints.fold (fun x r -> Set x::r) mvs [] type new_addr_gen = {mutable count : int ; mutable env : int TagMap.t} let create_new_addr_gen () = {count = -1 ; env = TagMap.empty} let alloc_new_addr tag r = try TagMap.find tag r.env with | Not_found -> let a = r.count in r.count <- a-1 ; r.env <- TagMap.add tag a r.env ; a let create_mem_map tags gen = Tags.fold (fun tag r -> TagMap.add tag (alloc_new_addr tag gen) r) tags TagMap.empty let create_init_state pos = let gen = create_new_addr_gen () in let st = TransSet.fold (fun (t,tags) st -> match t with | ToAction n -> let on,otags = st.final in if n < on then {st with final = (n, (0,create_mem_map tags gen))} else st | OnChars n -> try let _ = MemMap.find n st.others in assert false with | Not_found -> {st with others = MemMap.add n (0,create_mem_map tags gen) st.others}) pos dfa_state_empty in st let get_map t st = match t with | ToAction _ -> let _,(_,m) = st.final in m | OnChars n -> let (_,m) = MemMap.find n st.others in m let dest = function | Copy (d,_) | Set d -> d and orig = function | Copy (_,o) -> o | Set _ -> -1 let pmv oc mv = fprintf oc "%d <- %d" (dest mv) (orig mv) let pmvs oc mvs = List.iter (fun mv -> fprintf oc "%a " pmv mv) mvs ; output_char oc '\n' ; flush oc (* Topological sort << a la louche >> *) let sort_mvs mvs = let rec do_rec r mvs = match mvs with | [] -> r | _ -> let dests = List.fold_left (fun r mv -> Ints.add (dest mv) r) Ints.empty mvs in let rem,here = List.partition (fun mv -> Ints.mem (orig mv) dests) mvs in match here with | [] -> begin match rem with | Copy (d,_)::_ -> let d' = do_alloc_temp () in Copy (d',d):: do_rec r (List.map (fun mv -> if orig mv = d then Copy (dest mv,d') else mv) rem) | _ -> assert false end | _ -> do_rec (here@r) rem in do_rec [] mvs let move_to mem_key src tgt = let mvs = MemKey.fold (fun {tag=tag ; equiv=m} r -> StateSetSet.fold (fun s r -> try let t = StateSet.choose s in let src = TagMap.find tag (get_map t src) and tgt = TagMap.find tag (get_map t tgt) in if src <> tgt then begin if is_new_addr src then Set tgt::r else Copy (tgt, src)::r end else r with | Not_found -> assert false) m r) mem_key [] in (* Moves are topologically sorted *) sort_mvs mvs let get_state st = let key = get_key st in try let num = StateMap.find key !state_map in num,move_to key.kmem st (Table.get state_table num) with Not_found -> let num = !next_state_num in incr next_state_num; let st,mvs = create_new_state st in Table.emit state_table st ; state_map := StateMap.add key num !state_map; Stack.push (st, num) todo; num,mvs let map_on_all_states f old_res = let res = ref old_res in begin try while true do let (st, i) = Stack.pop todo in let r = f st in res := (r, i) :: !res done with Stack.Empty -> () end; !res let goto_state st = if dfa_state_is_empty st then Backtrack,[] else let n,moves = get_state st in Goto n,moves (****************************) (* compute reachable states *) (****************************) let add_tags_to_map gen tags m = Tags.fold (fun tag m -> let m = TagMap.remove tag m in TagMap.add tag (alloc_new_addr tag gen) m) tags m let apply_transition gen r pri m = function | ToAction n,tags -> let on,(opri,_) = r.final in if n < on || (on=n && pri < opri) then let m = add_tags_to_map gen tags m in {r with final=n,(pri,m)} else r | OnChars n,tags -> try let (opri,_) = MemMap.find n r.others in if pri < opri then let m = add_tags_to_map gen tags m in {r with others=MemMap.add n (pri,m) (MemMap.remove n r.others)} else r with | Not_found -> let m = add_tags_to_map gen tags m in {r with others=MemMap.add n (pri,m) r.others} (* add transitions ts to new state r transitions in ts start from state pri and memory map m *) let apply_transitions gen r pri m ts = TransSet.fold (fun t r -> apply_transition gen r pri m t) ts r (* For a given nfa_state pos, refine char partition *) let rec split_env gen follow pos m s = function | [] -> (* Can occur ! because of non-matching regexp ([^'\000'-'\255']) *) [] | (s1,st1) as p::rem -> let here = Cset.inter s s1 in if Cset.is_empty here then p::split_env gen follow pos m s rem else let rest = Cset.diff s here in let rem = if Cset.is_empty rest then rem else split_env gen follow pos m rest rem and new_st = apply_transitions gen st1 pos m follow in let stay = Cset.diff s1 here in if Cset.is_empty stay then (here, new_st)::rem else (stay, st1)::(here, new_st)::rem (* For all nfa_state pos in a dfa state st *) let comp_shift gen chars follow st = MemMap.fold (fun pos (_,m) env -> split_env gen follow.(pos) pos m chars.(pos) env) st [Cset.all_chars_eof,dfa_state_empty] let reachs chars follow st = let gen = create_new_addr_gen () in (* build a association list (char set -> new state) *) let env = comp_shift gen chars follow st in (* change it into (char set -> new state_num) *) let env = List.map (fun (s,dfa_state) -> s,goto_state dfa_state) env in (* finally build the char indexed array -> new state num *) let shift = Cset.env_to_array env in shift let get_tag_mem n env t = try TagMap.find t env.(n) with | Not_found -> assert false let do_tag_actions n env m = let used,r = TagMap.fold (fun t m (used,r) -> let a = get_tag_mem n env t in Ints.add a used,SetTag (a,m)::r) m (Ints.empty,[]) in let _,r = TagMap.fold (fun tag m (used,r) -> if not (Ints.mem m used) && tag.start then Ints.add m used, EraseTag m::r else used,r) env.(n) (used,r) in r let translate_state shortest_match tags chars follow st = let (n,(_,m)) = st.final in if MemMap.empty = st.others then Perform (n,do_tag_actions n tags m) else if shortest_match then begin if n=no_action then Shift (No_remember,reachs chars follow st.others) else Perform(n, do_tag_actions n tags m) end else begin Shift ( (if n = no_action then No_remember else Remember (n,do_tag_actions n tags m)), reachs chars follow st.others) end let dtags chan tags = Tags.iter (fun t -> fprintf chan " %a" dtag t) tags let dtransset s = TransSet.iter (fun trans -> match trans with | OnChars i,tags -> eprintf " (-> %d,%a)" i dtags tags | ToAction i,tags -> eprintf " ([%d],%a)" i dtags tags) s let dfollow t = eprintf "follow=[" ; for i = 0 to Array.length t-1 do eprintf "%d:" i ; dtransset t.(i) done ; prerr_endline "]" let make_tag_entry id start act a r = match a with | Sum (Mem m,0) -> TagMap.add {id=id ; start=start ; action=act} m r | _ -> r let extract_tags l = let envs = Array.create (List.length l) TagMap.empty in List.iter (fun (act,m,_) -> envs.(act) <- List.fold_right (fun ((name,_),v) r -> match v with | Ident_char (_,t) -> make_tag_entry name true act t r | Ident_string (_,t1,t2) -> make_tag_entry name true act t1 (make_tag_entry name false act t2 r)) m TagMap.empty) l ; envs let make_dfa lexdef = let (chars, entry_list) = encode_lexdef lexdef in let follow = followpos (Array.length chars) entry_list in (* dfollow follow ; *) reset_state () ; let r_states = ref [] in let initial_states = List.map (fun (le,args,shortest) -> let tags = extract_tags le.lex_actions in reset_state_partial le.lex_mem_tags ; let pos_set = firstpos le.lex_regexp in (* prerr_string "trans={" ; dtransset pos_set ; prerr_endline "}" ; *) let init_state = create_init_state pos_set in let init_num = get_state init_state in r_states := map_on_all_states (translate_state shortest tags chars follow) !r_states ; { auto_name = le.lex_name; auto_args = args ; auto_mem_size = (if !temp_pending then !next_mem_cell+1 else !next_mem_cell) ; auto_initial_state = init_num ; auto_actions = le.lex_actions }) entry_list in let states = !r_states in (* prerr_endline "** states **" ; for i = 0 to !next_state_num-1 do eprintf "+++ %d +++\n" i ; dstate (Table.get state_table i) ; prerr_endline "" done ; eprintf "%d states\n" !next_state_num ; *) let actions = Array.create !next_state_num (Perform (0,[])) in List.iter (fun (act, i) -> actions.(i) <- act) states; (* Useless state reset, so as to restrict GC roots *) reset_state () ; reset_state_partial 0 ; (initial_states, actions)