(***********************************************************************) (* *) (* Caml Special Light *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1995 Institut National de Recherche en Informatique et *) (* Automatique. Distributed only by permission. *) (* *) (***********************************************************************) (* $Id$ *) (* Transformation of Mach code into a list of pseudo-instructions. *) open Reg open Mach type label = int let label_counter = ref 99 let new_label() = incr label_counter; !label_counter type instruction = { desc: instruction_desc; next: instruction; arg: Reg.t array; res: Reg.t array; live: Reg.Set.t } and instruction_desc = Lend | Lop of operation | Lreloadretaddr | Lreturn | Llabel of label | Lbranch of label | Lcondbranch of test * label | Lcondbranch3 of label option * label option * label option | Lswitch of label array | Lsetuptrap of label | Lpushtrap | Lpoptrap | Lraise type fundecl = { fun_name: string; fun_body: instruction; fun_fast: bool } (* Invert a test *) let invert_integer_test = function Isigned cmp -> Isigned(Cmm.negate_comparison cmp) | Iunsigned cmp -> Iunsigned(Cmm.negate_comparison cmp) let invert_test = function Itruetest -> Ifalsetest | Ifalsetest -> Itruetest | Iinttest(cmp) -> Iinttest(invert_integer_test cmp) | Iinttest_imm(cmp, n) -> Iinttest_imm(invert_integer_test cmp, n) | Ifloattest(cmp, neg) -> Ifloattest(cmp, not neg) | Ieventest -> Ioddtest | Ioddtest -> Ieventest (* The "end" instruction *) let rec end_instr = { desc = Lend; next = end_instr; arg = [||]; res = [||]; live = Reg.Set.empty } (* Cons an instruction (live empty) *) let instr_cons d a r n = { desc = d; next = n; arg = a; res = r; live = Reg.Set.empty } (* Cons a simple instruction (arg, res, live empty) *) let cons_instr d n = { desc = d; next = n; arg = [||]; res = [||]; live = Reg.Set.empty } (* Build an instruction with arg, res, live taken from the given Mach.instruction *) let copy_instr d i n = { desc = d; next = n; arg = i.Mach.arg; res = i.Mach.res; live = i.Mach.live } (* Label the beginning of the given instruction sequence. If the sequence starts with a branch, jump over it. *) let get_label n = match n.desc with Lbranch lbl -> (lbl, n) | Llabel lbl -> (lbl, n) | _ -> let lbl = new_label() in (lbl, cons_instr (Llabel lbl) n) (* Discard all instructions up to the next label. This function is to be called before adding a non-terminating instruction. *) let rec discard_dead_code n = match n.desc with Lend -> n | Llabel _ -> n (* Do not discard Lpoptrap or Istackoffset instructions, as this may cause a stack imbalance later during assembler generation. *) | Lpoptrap -> n | Lop(Istackoffset _) -> n | _ -> discard_dead_code n.next (* Add a branch in front of a continuation. Discard dead code in the continuation. Does not insert anything if we're just falling through. *) let add_branch lbl n = let n1 = discard_dead_code n in match n1.desc with Llabel lbl1 when lbl1 = lbl -> n1 | _ -> cons_instr (Lbranch lbl) n1 (* Current label for exit handler *) let exit_label = ref 99 (* Linearize an instruction [i]: add it in front of the continuation [n] *) let rec linear i n = match i.Mach.desc with Iend -> n | Iop(Itailcall_ind | Itailcall_imm _ as op) -> copy_instr (Lop op) i (discard_dead_code n) | Iop(Imove | Ireload | Ispill) when i.Mach.arg.(0).loc = i.Mach.res.(0).loc -> linear i.Mach.next n | Iop op -> copy_instr (Lop op) i (linear i.Mach.next n) | Ireturn -> let n1 = copy_instr Lreturn i (discard_dead_code n) in if !Proc.contains_calls then cons_instr Lreloadretaddr n1 else n1 | Iifthenelse(test, ifso, ifnot) -> let n1 = linear i.Mach.next n in begin match (ifso.Mach.desc, ifnot.Mach.desc) with Iexit, _ -> copy_instr (Lcondbranch(test, !exit_label)) i (linear ifnot n1) | _, Iexit -> copy_instr (Lcondbranch(invert_test test, !exit_label)) i (linear ifso n1) | Iend, _ -> let (lbl_end, n2) = get_label n1 in copy_instr (Lcondbranch(test, lbl_end)) i (linear ifnot n2) | _, Iend -> let (lbl_end, n2) = get_label n1 in copy_instr (Lcondbranch(invert_test test, lbl_end)) i (linear ifso n2) | _, _ -> (* Should attempt branch prediction here *) let (lbl_end, n2) = get_label n1 in let (lbl_else, nelse) = get_label (linear ifnot n2) in copy_instr (Lcondbranch(invert_test test, lbl_else)) i (linear ifso (add_branch lbl_end nelse)) end | Iswitch(index, cases) -> let lbl_cases = Array.new (Array.length cases) 0 in let (lbl_end, n1) = get_label(linear i.Mach.next n) in let n2 = ref (discard_dead_code n1) in for i = Array.length cases - 1 downto 0 do let (lbl_case, ncase) = get_label(linear cases.(i) (add_branch lbl_end !n2)) in lbl_cases.(i) <- lbl_case; n2 := discard_dead_code ncase done; (* Switches with 1 and 2 branches have been eliminated earlier. Here, we do something for switches with 3 branches. *) if Array.length index = 3 then begin let fallthrough_lbl = match !n2.desc with Llabel lbl -> lbl | _ -> -1 in let find_label n = let lbl = lbl_cases.(index.(n)) in if lbl = fallthrough_lbl then None else Some lbl in copy_instr (Lcondbranch3(find_label 0, find_label 1, find_label 2)) i !n2 end else copy_instr (Lswitch(Array.map (fun n -> lbl_cases.(n)) index)) i !n2 | Iloop body -> let lbl_head = new_label() in let n1 = linear i.Mach.next n in let n2 = linear body (cons_instr (Lbranch lbl_head) n1) in cons_instr (Llabel lbl_head) n2 | Icatch(body, handler) -> let (lbl_end, n1) = get_label(linear i.Mach.next n) in let (lbl_handler, n2) = get_label(linear handler n1) in let saved_exit_label = !exit_label in exit_label := lbl_handler; let n3 = linear body (add_branch lbl_end n2) in exit_label := saved_exit_label; n3 | Iexit -> add_branch !exit_label (linear i.Mach.next n) | Itrywith(body, handler) -> let (lbl_join, n1) = get_label (linear i.Mach.next n) in let (lbl_body, n2) = get_label (cons_instr Lpushtrap (linear body (cons_instr Lpoptrap n1))) in cons_instr (Lsetuptrap lbl_body) (linear handler (add_branch lbl_join n2)) | Iraise -> copy_instr Lraise i (discard_dead_code n) let fundecl f = { fun_name = f.Mach.fun_name; fun_body = linear f.Mach.fun_body end_instr; fun_fast = f.Mach.fun_fast }