(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU Library General Public License. *) (* *) (***********************************************************************) (* $Id$ *) (* Module [Nativeint]: processor-native integers *) (* This module provides operations on the type [nativeint] of signed 32-bit integers (on 32-bit platforms) or signed 64-bit integers (on 64-bit platforms). This integer type has exactly the same width as that of a [long] integer type in the C compiler. All arithmetic operations over [nativeint] are taken modulo $2^{32}$ or $2^{64}$ depending on the word size of the architecture. *) val zero: nativeint val one: nativeint val minus_one: nativeint (* The native integers 0, 1, -1. *) external neg: nativeint -> nativeint = "%nativeint_neg" (* Unary negation. *) external add: nativeint -> nativeint -> nativeint = "%nativeint_add" (* Addition. *) external sub: nativeint -> nativeint -> nativeint = "%nativeint_sub" (* Subtraction. *) external mul: nativeint -> nativeint -> nativeint = "%nativeint_mul" (* Multiplication. *) external div: nativeint -> nativeint -> nativeint = "%nativeint_div" (* Integer division. Raise [Division_by_zero] if the second argument is zero. *) external rem: nativeint -> nativeint -> nativeint = "%nativeint_mod" (* Integer remainder. If [x >= 0] and [y > 0], the result of [Nativeint.rem x y] satisfies the following properties: [0 <= Nativeint.rem x y < y] and [x = Nativeint.add (Nativeint.mul (Nativeint.div x y) y) (Nativeint.rem x y)]. If [y = 0], [Nativeint.rem x y] raises [Division_by_zero]. If [x < 0] or [y < 0], the result of [Nativeint.rem x y] is not specified and depends on the platform. *) val succ: nativeint -> nativeint (* Successor. [Nativeint.succ x] is [Nativeint.add x 1n]. *) val pred: nativeint -> nativeint (* Predecessor. [Nativeint.pred x] is [Nativeint.sub x 1n]. *) val abs: nativeint -> nativeint (* Return the absolute value of its argument. *) val max_int: nativeint (* The greatest representable native integer, either $2^{31} - 1$ on a 32-bit platform, or $2^{63} - 1$ on a 64-bit platform. *) val min_int: nativeint (* The greatest representable native integer, either $-2^{31}$ on a 32-bit platform, or $-2^{63}$ on a 64-bit platform. *) external logand: nativeint -> nativeint -> nativeint = "%nativeint_and" (* Bitwise logical and. *) external logor: nativeint -> nativeint -> nativeint = "%nativeint_or" (* Bitwise logical or. *) external logxor: nativeint -> nativeint -> nativeint = "%nativeint_xor" (* Bitwise logical exclusive or. *) val lognot: nativeint -> nativeint (* Bitwise logical negation *) external shift_left: nativeint -> int -> nativeint = "%nativeint_lsl" (* [Nativeint.shift_left x y] shifts [x] to the left by [y] bits. *) external shift_right: nativeint -> int -> nativeint = "%nativeint_asr" (* [Nativeint.shift_right x y] shifts [x] to the right by [y] bits. This is an arithmetic shift: the sign bit of [x] is replicated and inserted in the vacated bits. *) external shift_right_logical: nativeint -> int -> nativeint = "%nativeint_lsr" (* [Nativeint.shift_right_logical x y] shifts [x] to the right by [y] bits. This is a logical shift: zeroes are inserted in the vacated bits regardless of the sign of [x]. *) external of_int: int -> nativeint = "%nativeint_of_int" (* Convert the given integer (type [int]) to a native integer (type [nativeint]). *) external to_int: nativeint -> int = "%nativeint_to_int" (* Convert the given native integer (type [nativeint]) to an integer (type [int]). The high-order bit is lost during the conversion. *) external of_float : float -> nativeint = "nativeint_of_float" (* Convert the given floating-point number to a native integer, discarding the fractional part (truncate towards 0). The result of the conversion is undefined if, after truncation, the number is outside the range [Nativeint.min_int, Nativeint.max_int]. *) external to_float : nativeint -> float = "nativeint_to_float" (* Convert the given native integer to a floating-point number. *) external of_int32: int32 -> nativeint = "%nativeint_of_int32" (* Convert the given 32-bit integer (type [int32]) to a native integer. *) external to_int32: nativeint -> int32 = "%nativeint_to_int32" (* Convert the given native integer to a 32-bit integer (type [int32]). On 64-bit platforms, the 64-bit native integer is taken modulo $2^{32}$, i.e. the top 32 bits are lost. On 32-bit platforms, the conversion is exact. *) external of_string: string -> nativeint = "nativeint_of_string" (* Convert the given string to a native integer. The string is read in decimal (by default) or in hexadecimal, octal or binary if the string begins with [0x], [0o] or [0b] respectively. Raise [Failure "int_of_string"] if the given string is not a valid representation of an integer. *) val to_string: nativeint -> string (* Return the string representation of its argument, in decimal. *) external format : string -> nativeint -> string = "nativeint_format" (* [Nativeint.format fmt n] return the string representation of the native integer [n] in the format specified by [fmt]. [fmt] is a [Printf]-style format containing exactly one [%d], [%i], [%u], [%x], [%X] or [%o] conversion specification. See the documentation of the [Printf] module for more information, *)