(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* $Id$ *) (* Emission of x86-64 (AMD 64) assembly code *) open Misc open Cmm open Arch open Proc open Reg open Mach open Linearize open Emitaux (* Tradeoff between code size and code speed *) let fastcode_flag = ref true let stack_offset = ref 0 (* Layout of the stack frame *) let frame_required () = !contains_calls || num_stack_slots.(0) > 0 || num_stack_slots.(1) > 0 let frame_size () = (* includes return address *) if frame_required() then begin let sz = (!stack_offset + 8 * (num_stack_slots.(0) + num_stack_slots.(1)) + 8) in Misc.align sz 16 end else !stack_offset + 8 let slot_offset loc cl = match loc with Incoming n -> frame_size() + n | Local n -> if cl = 0 then !stack_offset + n * 8 else !stack_offset + (num_stack_slots.(0) + n) * 8 | Outgoing n -> n (* Symbols *) let emit_symbol s = Emitaux.emit_symbol '$' s (* Output a label *) let emit_label lbl = emit_string ".L"; emit_int lbl (* Output a .align directive. *) let emit_align n = ` .align {emit_int n}\n` let emit_Llabel fallthrough lbl = if not fallthrough && !fastcode_flag then emit_align 4; emit_label lbl (* Output a pseudo-register *) let emit_reg = function { loc = Reg r } -> emit_string (register_name r) | { loc = Stack s } as r -> let ofs = slot_offset s (register_class r) in `{emit_int ofs}(%rsp)` | { loc = Unknown } -> assert false (* Output a reference to the lower 8, 16 or 32 bits of a register *) let reg_low_8_name = [| "%al"; "%bl"; "%dil"; "%sil"; "%dl"; "%cl"; "%r8b"; "%r9b"; "%r10b"; "%r11b"; "%bpl"; "%r12b"; "%r13b" |] let reg_low_16_name = [| "%ax"; "%bx"; "%di"; "%si"; "%dx"; "%cx"; "%r8w"; "%r9w"; "%r10w"; "%r11w"; "%bp"; "%r12w"; "%r13w" |] let reg_low_32_name = [| "%eax"; "%ebx"; "%edi"; "%esi"; "%edx"; "%ecx"; "%r8d"; "%r9d"; "%r10d"; "%r11d"; "%ebp"; "%r12d"; "%r13d" |] let emit_subreg tbl r = match r.loc with Reg r when r < 13 -> emit_string tbl.(r) | Stack s -> let ofs = slot_offset s (register_class r) in `{emit_int ofs}(%rsp)` | _ -> assert false let emit_reg8 r = emit_subreg reg_low_8_name r let emit_reg16 r = emit_subreg reg_low_16_name r let emit_reg32 r = emit_subreg reg_low_32_name r (* Output an addressing mode *) let emit_addressing addr r n = match addr with Ibased(s, d) -> `{emit_symbol s}`; if d <> 0 then ` + {emit_int d}`; `(%rip)` | Iindexed d -> if d <> 0 then emit_int d; `({emit_reg r.(n)})` | Iindexed2 d -> if d <> 0 then emit_int d; `({emit_reg r.(n)}, {emit_reg r.(n+1)})` | Iscaled(2, d) -> if d <> 0 then emit_int d; `({emit_reg r.(n)}, {emit_reg r.(n)})` | Iscaled(scale, d) -> if d <> 0 then emit_int d; `(, {emit_reg r.(n)}, {emit_int scale})` | Iindexed2scaled(scale, d) -> if d <> 0 then emit_int d; `({emit_reg r.(n)}, {emit_reg r.(n+1)}, {emit_int scale})` (* Record live pointers at call points *) type frame_descr = { fd_lbl: int; (* Return address *) fd_frame_size: int; (* Size of stack frame *) fd_live_offset: int list } (* Offsets/regs of live addresses *) let frame_descriptors = ref([] : frame_descr list) let record_frame_label live = let lbl = new_label() in let live_offset = ref [] in Reg.Set.iter (function {typ = Addr; loc = Reg r} -> live_offset := ((r lsl 1) + 1) :: !live_offset | {typ = Addr; loc = Stack s} as reg -> live_offset := slot_offset s (register_class reg) :: !live_offset | _ -> ()) live; frame_descriptors := { fd_lbl = lbl; fd_frame_size = frame_size(); fd_live_offset = !live_offset } :: !frame_descriptors; lbl let record_frame live = let lbl = record_frame_label live in `{emit_label lbl}:\n` let emit_frame fd = ` .quad {emit_label fd.fd_lbl}\n`; ` .word {emit_int fd.fd_frame_size}\n`; ` .word {emit_int (List.length fd.fd_live_offset)}\n`; List.iter (fun n -> ` .word {emit_int n}\n`) fd.fd_live_offset; emit_align 8 (* Record calls to the GC -- we've moved them out of the way *) type gc_call = { gc_lbl: label; (* Entry label *) gc_return_lbl: label; (* Where to branch after GC *) gc_frame: label } (* Label of frame descriptor *) let call_gc_sites = ref ([] : gc_call list) let emit_call_gc gc = `{emit_label gc.gc_lbl}: call {emit_symbol "caml_call_gc"}\n`; `{emit_label gc.gc_frame}: jmp {emit_label gc.gc_return_lbl}\n` (* Names for instructions *) let instr_for_intop = function Iadd -> "addq" | Isub -> "subq" | Imul -> "imulq" | Iand -> "andq" | Ior -> "orq" | Ixor -> "xorq" | Ilsl -> "salq" | Ilsr -> "shrq" | Iasr -> "sarq" | _ -> assert false let instr_for_floatop = function Iaddf -> "addsd" | Isubf -> "subsd" | Imulf -> "mulsd" | Idivf -> "divsd" | _ -> assert false let instr_for_floatarithmem = function Ifloatadd -> "addsd" | Ifloatsub -> "subsd" | Ifloatmul -> "mulsd" | Ifloatdiv -> "divsd" let name_for_cond_branch = function Isigned Ceq -> "e" | Isigned Cne -> "ne" | Isigned Cle -> "le" | Isigned Cgt -> "g" | Isigned Clt -> "l" | Isigned Cge -> "ge" | Iunsigned Ceq -> "e" | Iunsigned Cne -> "ne" | Iunsigned Cle -> "be" | Iunsigned Cgt -> "a" | Iunsigned Clt -> "b" | Iunsigned Cge -> "ae" (* Output an = 0 or <> 0 test. *) let output_test_zero arg = match arg.loc with Reg r -> ` testq {emit_reg arg}, {emit_reg arg}\n` | _ -> ` cmpq $0, {emit_reg arg}\n` (* Output a floating-point compare and branch *) let emit_float_test cmp neg arg lbl = begin match cmp with | Ceq | Cne -> ` ucomisd ` | _ -> ` comisd ` end; `{emit_reg arg.(1)}, {emit_reg arg.(0)}\n`; let (branch_opcode, need_jp) = match (cmp, neg) with (Ceq, false) -> ("je", true) | (Ceq, true) -> ("jne", true) | (Cne, false) -> ("jne", true) | (Cne, true) -> ("je", true) | (Clt, false) -> ("jb", true) | (Clt, true) -> ("jae", true) | (Cle, false) -> ("jbe", true) | (Cle, true) -> ("ja", true) | (Cgt, false) -> ("ja", false) | (Cgt, true) -> ("jbe", false) | (Cge, false) -> ("jae", true) | (Cge, true) -> ("jb", false) in let branch_if_not_comparable = if cmp = Cne then not neg else neg in if need_jp then if branch_if_not_comparable then begin ` jp {emit_label lbl}\n`; ` {emit_string branch_opcode} {emit_label lbl}\n` end else begin let next = new_label() in ` jp {emit_label next}\n`; ` {emit_string branch_opcode} {emit_label lbl}\n`; `{emit_label next}:\n` end else begin ` {emit_string branch_opcode} {emit_label lbl}\n` end (* Deallocate the stack frame before a return or tail call *) let output_epilogue () = if frame_required() then begin let n = frame_size() - 8 in ` addq ${emit_int n}, %rsp\n` end (* Output the assembly code for an instruction *) (* Name of current function *) let function_name = ref "" (* Entry point for tail recursive calls *) let tailrec_entry_point = ref 0 (* Label of trap for out-of-range accesses *) let range_check_trap = ref 0 let float_constants = ref ([] : (int * string) list) let emit_instr fallthrough i = match i.desc with Lend -> () | Lop(Imove | Ispill | Ireload) -> let src = i.arg.(0) and dst = i.res.(0) in if src.loc <> dst.loc then begin if src.typ = Float then ` movsd {emit_reg src}, {emit_reg dst}\n` else ` movq {emit_reg src}, {emit_reg dst}\n` end | Lop(Iconst_int n) -> if n = 0n then begin match i.res.(0).loc with Reg n -> ` xorq {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n` | _ -> ` movq $0, {emit_reg i.res.(0)}\n` end else if n <= 0x7FFFFFFFn && n >= -0x80000000n then ` movq ${emit_nativeint n}, {emit_reg i.res.(0)}\n` else ` movabsq ${emit_nativeint n}, {emit_reg i.res.(0)}\n` | Lop(Iconst_float s) -> begin match Int64.bits_of_float (float_of_string s) with | 0x0000_0000_0000_0000L -> (* +0.0 *) ` xorpd {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n` | _ -> let lbl = new_label() in float_constants := (lbl, s) :: !float_constants; ` movlpd {emit_label lbl}(%rip), {emit_reg i.res.(0)}\n` end | Lop(Iconst_symbol s) -> if !pic_code then ` leaq {emit_symbol s}(%rip), {emit_reg i.res.(0)}\n` else ` movq ${emit_symbol s}, {emit_reg i.res.(0)}\n` | Lop(Icall_ind) -> ` call *{emit_reg i.arg.(0)}\n`; record_frame i.live | Lop(Icall_imm s) -> ` call {emit_symbol s}\n`; record_frame i.live | Lop(Itailcall_ind) -> output_epilogue(); ` jmp *{emit_reg i.arg.(0)}\n` | Lop(Itailcall_imm s) -> if s = !function_name then ` jmp {emit_label !tailrec_entry_point}\n` else begin output_epilogue(); ` jmp {emit_symbol s}\n` end | Lop(Iextcall(s, alloc)) -> if alloc then begin ` leaq {emit_symbol s}(%rip), %rax\n`; ` call {emit_symbol "caml_c_call"}\n`; record_frame i.live end else begin ` call {emit_symbol s}\n` end | Lop(Istackoffset n) -> if n < 0 then ` addq ${emit_int(-n)}, %rsp\n` else ` subq ${emit_int(n)}, %rsp\n`; stack_offset := !stack_offset + n | Lop(Iload(chunk, addr)) -> let dest = i.res.(0) in begin match chunk with | Word -> ` movq {emit_addressing addr i.arg 0}, {emit_reg dest}\n` | Byte_unsigned -> ` movzbq {emit_addressing addr i.arg 0}, {emit_reg dest}\n` | Byte_signed -> ` movsbq {emit_addressing addr i.arg 0}, {emit_reg dest}\n` | Sixteen_unsigned -> ` movzwq {emit_addressing addr i.arg 0}, {emit_reg dest}\n` | Sixteen_signed -> ` movswq {emit_addressing addr i.arg 0}, {emit_reg dest}\n` | Thirtytwo_unsigned -> ` movl {emit_addressing addr i.arg 0}, {emit_reg32 dest}\n` | Thirtytwo_signed -> ` movslq {emit_addressing addr i.arg 0}, {emit_reg dest}\n` | Single -> ` cvtss2sd {emit_addressing addr i.arg 0}, {emit_reg dest}\n` | Double | Double_u -> ` movlpd {emit_addressing addr i.arg 0}, {emit_reg dest}\n` end | Lop(Istore(chunk, addr)) -> begin match chunk with | Word -> ` movq {emit_reg i.arg.(0)}, {emit_addressing addr i.arg 1}\n` | Byte_unsigned | Byte_signed -> ` movb {emit_reg8 i.arg.(0)}, {emit_addressing addr i.arg 1}\n` | Sixteen_unsigned | Sixteen_signed -> ` movw {emit_reg16 i.arg.(0)}, {emit_addressing addr i.arg 1}\n` | Thirtytwo_signed | Thirtytwo_unsigned -> ` movl {emit_reg32 i.arg.(0)}, {emit_addressing addr i.arg 1}\n` | Single -> ` cvtsd2ss {emit_reg i.arg.(0)}, %xmm15\n`; ` movss %xmm15, {emit_addressing addr i.arg 1}\n` | Double | Double_u -> ` movlpd {emit_reg i.arg.(0)}, {emit_addressing addr i.arg 1}\n` end | Lop(Ialloc n) -> if !fastcode_flag then begin let lbl_redo = new_label() in `{emit_label lbl_redo}: subq ${emit_int n}, %r15\n`; ` cmpq {emit_symbol "caml_young_limit"}(%rip), %r15\n`; let lbl_call_gc = new_label() in let lbl_frame = record_frame_label i.live in ` jb {emit_label lbl_call_gc}\n`; ` leaq 8(%r15), {emit_reg i.res.(0)}\n`; call_gc_sites := { gc_lbl = lbl_call_gc; gc_return_lbl = lbl_redo; gc_frame = lbl_frame } :: !call_gc_sites end else begin begin match n with 16 -> ` call {emit_symbol "caml_alloc1"}\n` | 24 -> ` call {emit_symbol "caml_alloc2"}\n` | 32 -> ` call {emit_symbol "caml_alloc3"}\n` | _ -> ` movq ${emit_int n}, %rax\n`; ` call {emit_symbol "caml_allocN"}\n` end; `{record_frame i.live} leaq 8(%r15), {emit_reg i.res.(0)}\n` end | Lop(Iintop(Icomp cmp)) -> ` cmpq {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`; let b = name_for_cond_branch cmp in ` set{emit_string b} %al\n`; ` movzbq %al, {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Icomp cmp, n)) -> ` cmpq ${emit_int n}, {emit_reg i.arg.(0)}\n`; let b = name_for_cond_branch cmp in ` set{emit_string b} %al\n`; ` movzbq %al, {emit_reg i.res.(0)}\n` | Lop(Iintop Icheckbound) -> if !range_check_trap = 0 then range_check_trap := new_label(); ` cmpq {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`; ` jbe {emit_label !range_check_trap}\n` | Lop(Iintop_imm(Icheckbound, n)) -> if !range_check_trap = 0 then range_check_trap := new_label(); ` cmpq ${emit_int n}, {emit_reg i.arg.(0)}\n`; ` jbe {emit_label !range_check_trap}\n` | Lop(Iintop(Idiv | Imod)) -> ` cqto\n`; ` idivq {emit_reg i.arg.(1)}\n` | Lop(Iintop(Ilsl | Ilsr | Iasr as op)) -> (* We have i.arg.(0) = i.res.(0) and i.arg.(1) = %rcx *) ` {emit_string(instr_for_intop op)} %cl, {emit_reg i.res.(0)}\n` | Lop(Iintop op) -> (* We have i.arg.(0) = i.res.(0) *) ` {emit_string(instr_for_intop op)} {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Iadd, n)) when i.arg.(0).loc <> i.res.(0).loc -> ` leaq {emit_int n}({emit_reg i.arg.(0)}), {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Iadd, 1) | Iintop_imm(Isub, -1)) -> ` incq {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Iadd, -1) | Iintop_imm(Isub, 1)) -> ` decq {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Idiv, n)) -> (* Note: i.arg.(0) = i.res.(0) = rdx (cf. selection.ml) *) let l = Misc.log2 n in ` movq {emit_reg i.arg.(0)}, %rax\n`; ` addq ${emit_int(n-1)}, {emit_reg i.arg.(0)}\n`; ` testq %rax, %rax\n`; ` cmovns %rax, {emit_reg i.arg.(0)}\n`; ` sarq ${emit_int l}, {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Imod, n)) -> (* Note: i.arg.(0) = i.res.(0) = rdx (cf. selection.ml) *) ` movq {emit_reg i.arg.(0)}, %rax\n`; ` testq %rax, %rax\n`; ` leaq {emit_int(n-1)}(%rax), %rax\n`; ` cmovns {emit_reg i.arg.(0)}, %rax\n`; ` andq ${emit_int (-n)}, %rax\n`; ` subq %rax, {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(op, n)) -> (* We have i.arg.(0) = i.res.(0) *) ` {emit_string(instr_for_intop op)} ${emit_int n}, {emit_reg i.res.(0)}\n` | Lop(Inegf) -> ` xorpd {emit_symbol "caml_negf_mask"}(%rip), {emit_reg i.res.(0)}\n` | Lop(Iabsf) -> ` andpd {emit_symbol "caml_absf_mask"}(%rip), {emit_reg i.res.(0)}\n` | Lop(Iaddf | Isubf | Imulf | Idivf as floatop) -> ` {emit_string(instr_for_floatop floatop)} {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n` | Lop(Ifloatofint) -> ` cvtsi2sdq {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n` | Lop(Iintoffloat) -> ` cvttsd2siq {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n` | Lop(Ispecific(Ilea addr)) -> ` leaq {emit_addressing addr i.arg 0}, {emit_reg i.res.(0)}\n` | Lop(Ispecific(Istore_int(n, addr))) -> ` movq ${emit_nativeint n}, {emit_addressing addr i.arg 0}\n` | Lop(Ispecific(Istore_symbol(s, addr))) -> assert (not !pic_code); ` movq ${emit_symbol s}, {emit_addressing addr i.arg 0}\n` | Lop(Ispecific(Ioffset_loc(n, addr))) -> ` addq ${emit_int n}, {emit_addressing addr i.arg 0}\n` | Lop(Ispecific(Ifloatarithmem(op, addr))) -> ` {emit_string(instr_for_floatarithmem op)} {emit_addressing addr i.arg 1}, {emit_reg i.res.(0)}\n` | Lreloadretaddr -> () | Lreturn -> output_epilogue(); ` ret\n` | Llabel lbl -> `{emit_Llabel fallthrough lbl}:\n` | Lbranch lbl -> ` jmp {emit_label lbl}\n` | Lcondbranch(tst, lbl) -> begin match tst with Itruetest -> output_test_zero i.arg.(0); ` jne {emit_label lbl}\n` | Ifalsetest -> output_test_zero i.arg.(0); ` je {emit_label lbl}\n` | Iinttest cmp -> ` cmpq {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`; let b = name_for_cond_branch cmp in ` j{emit_string b} {emit_label lbl}\n` | Iinttest_imm((Isigned Ceq | Isigned Cne | Iunsigned Ceq | Iunsigned Cne) as cmp, 0) -> output_test_zero i.arg.(0); let b = name_for_cond_branch cmp in ` j{emit_string b} {emit_label lbl}\n` | Iinttest_imm(cmp, n) -> ` cmpq ${emit_int n}, {emit_reg i.arg.(0)}\n`; let b = name_for_cond_branch cmp in ` j{emit_string b} {emit_label lbl}\n` | Ifloattest(cmp, neg) -> emit_float_test cmp neg i.arg lbl | Ioddtest -> ` testb $1, {emit_reg8 i.arg.(0)}\n`; ` jne {emit_label lbl}\n` | Ieventest -> ` testb $1, {emit_reg8 i.arg.(0)}\n`; ` je {emit_label lbl}\n` end | Lcondbranch3(lbl0, lbl1, lbl2) -> ` cmpq $1, {emit_reg i.arg.(0)}\n`; begin match lbl0 with None -> () | Some lbl -> ` jb {emit_label lbl}\n` end; begin match lbl1 with None -> () | Some lbl -> ` je {emit_label lbl}\n` end; begin match lbl2 with None -> () | Some lbl -> ` jg {emit_label lbl}\n` end | Lswitch jumptbl -> let lbl = new_label() in if !pic_code then begin ` leaq {emit_label lbl}(%rip), %r11\n`; ` jmp *(%r11, {emit_reg i.arg.(0)}, 8)\n` end else begin ` jmp *{emit_label lbl}(, {emit_reg i.arg.(0)}, 8)\n` end; ` .section .rodata\n`; emit_align 8; `{emit_label lbl}:`; for i = 0 to Array.length jumptbl - 1 do ` .quad {emit_label jumptbl.(i)}\n` done; ` .text\n` | Lsetuptrap lbl -> ` call {emit_label lbl}\n` | Lpushtrap -> ` pushq %r14\n`; ` movq %rsp, %r14\n`; stack_offset := !stack_offset + 16 | Lpoptrap -> ` popq %r14\n`; ` addq $8, %rsp\n`; stack_offset := !stack_offset - 16 | Lraise -> ` movq %r14, %rsp\n`; ` popq %r14\n`; ` ret\n` let rec emit_all fallthrough i = match i.desc with | Lend -> () | _ -> emit_instr fallthrough i; emit_all (Linearize.has_fallthrough i.desc) i.next (* Emission of the floating-point constants *) let emit_float_constant (lbl, cst) = `{emit_label lbl}: .double {emit_string cst}\n` (* Emission of the profiling prelude *) let emit_profile () = match Config.system with | "linux" -> (* mcount preserves rax, rcx, rdx, rsi, rdi, r8, r9 explicitly and rbx, rbp, r12-r15 like all C functions. We need to preserve r10 and r11 ourselves, since Caml can use them for argument passing. *) ` pushq %r10\n`; ` movq %rsp, %rbp\n`; ` pushq %r11\n`; ` call {emit_symbol "mcount"}\n`; ` popq %r11\n`; ` popq %r10\n` | _ -> () (*unsupported yet*) (* Emission of a function declaration *) let fundecl fundecl = function_name := fundecl.fun_name; fastcode_flag := fundecl.fun_fast; tailrec_entry_point := new_label(); stack_offset := 0; float_constants := []; call_gc_sites := []; range_check_trap := 0; ` .text\n`; emit_align 16; ` .globl {emit_symbol fundecl.fun_name}\n`; `{emit_symbol fundecl.fun_name}:\n`; if !Clflags.gprofile then emit_profile(); if frame_required() then begin let n = frame_size() - 8 in ` subq ${emit_int n}, %rsp\n` end; `{emit_label !tailrec_entry_point}:\n`; emit_all true fundecl.fun_body; List.iter emit_call_gc !call_gc_sites; if !range_check_trap > 0 then `{emit_label !range_check_trap}: call {emit_symbol "caml_ml_array_bound_error"}\n`; (* Never returns, but useful to have retaddr on stack for debugging *) if !float_constants <> [] then begin ` .section .rodata.cst8,\"a\",@progbits\n`; List.iter emit_float_constant !float_constants end (* Emission of data *) let emit_item = function Cglobal_symbol s -> ` .globl {emit_symbol s}\n`; | Cdefine_symbol s -> `{emit_symbol s}:\n` | Cdefine_label lbl -> `{emit_label (100000 + lbl)}:\n` | Cint8 n -> ` .byte {emit_int n}\n` | Cint16 n -> ` .word {emit_int n}\n` | Cint32 n -> ` .long {emit_nativeint n}\n` | Cint n -> ` .quad {emit_nativeint n}\n` | Csingle f -> ` .float {emit_string f}\n` | Cdouble f -> ` .double {emit_string f}\n` | Csymbol_address s -> ` .quad {emit_symbol s}\n` | Clabel_address lbl -> ` .quad {emit_label (100000 + lbl)}\n` | Cstring s -> emit_string_directive " .ascii " s | Cskip n -> if n > 0 then ` .space {emit_int n}\n` | Calign n -> emit_align n let data l = ` .data\n`; List.iter emit_item l (* Beginning / end of an assembly file *) let begin_assembly() = let lbl_begin = Compilenv.make_symbol (Some "data_begin") in ` .data\n`; ` .globl {emit_symbol lbl_begin}\n`; `{emit_symbol lbl_begin}:\n`; let lbl_begin = Compilenv.make_symbol (Some "code_begin") in ` .text\n`; ` .globl {emit_symbol lbl_begin}\n`; `{emit_symbol lbl_begin}:\n` let end_assembly() = let lbl_end = Compilenv.make_symbol (Some "code_end") in ` .text\n`; ` .globl {emit_symbol lbl_end}\n`; `{emit_symbol lbl_end}:\n`; ` .data\n`; let lbl_end = Compilenv.make_symbol (Some "data_end") in ` .globl {emit_symbol lbl_end}\n`; `{emit_symbol lbl_end}:\n`; ` .long 0\n`; let lbl = Compilenv.make_symbol (Some "frametable") in ` .globl {emit_symbol lbl}\n`; `{emit_symbol lbl}:\n`; ` .quad {emit_int (List.length !frame_descriptors)}\n`; List.iter emit_frame !frame_descriptors; frame_descriptors := []