(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* $Id$ *) (* Emission of x86-64 (AMD 64) assembly code, MASM syntax *) open Misc open Cmm open Arch open Proc open Reg open Mach open Linearize open Emitaux (* Tradeoff between code size and code speed *) let fastcode_flag = ref true let stack_offset = ref 0 (* Layout of the stack frame *) let frame_required () = !contains_calls || num_stack_slots.(0) > 0 || num_stack_slots.(1) > 0 let frame_size () = (* includes return address *) if frame_required() then begin let sz = (!stack_offset + 8 * (num_stack_slots.(0) + num_stack_slots.(1)) + 8) in Misc.align sz 16 end else !stack_offset + 8 let slot_offset loc cl = match loc with Incoming n -> frame_size() + n | Local n -> if cl = 0 then !stack_offset + n * 8 else !stack_offset + (num_stack_slots.(0) + n) * 8 | Outgoing n -> n (* Symbols *) let emit_symbol s = emit_string "_"; Emitaux.emit_symbol '$' s (* Record symbols used and defined - at the end generate extern for those used but not defined *) let symbols_defined = ref StringSet.empty let symbols_used = ref StringSet.empty let add_def_symbol s = symbols_defined := StringSet.add s !symbols_defined let add_used_symbol s = symbols_used := StringSet.add s !symbols_used (* Output a label *) let emit_label lbl = emit_string "L"; emit_int lbl (* Output a .align directive. *) let emit_align n = ` ALIGN {emit_int n}\n` let emit_Llabel fallthrough lbl = if not fallthrough && !fastcode_flag then emit_align 4; emit_label lbl (* Output a pseudo-register *) let emit_reg = function { loc = Reg r } -> emit_string (register_name r) | { loc = Stack s; typ = Float } as r -> let ofs = slot_offset s (register_class r) in `REAL8 PTR {emit_int ofs}[rsp]` | { loc = Stack s; typ = _ } as r -> let ofs = slot_offset s (register_class r) in `QWORD PTR {emit_int ofs}[rsp]` | { loc = Unknown } -> assert false (* Output a reference to the lower 8, 16 or 32 bits of a register *) let reg_low_8_name = [| "al"; "bl"; "dil"; "sil"; "dl"; "cl"; "r8b"; "r9b"; "r10b"; "r11b"; "bpl"; "r12b"; "r13b" |] let reg_low_16_name = [| "ax"; "bx"; "di"; "si"; "dx"; "cx"; "r8w"; "r9w"; "r10w"; "r11w"; "bp"; "r12w"; "r13w" |] let reg_low_32_name = [| "eax"; "ebx"; "edi"; "esi"; "edx"; "ecx"; "r8d"; "r9d"; "r10d"; "r11d"; "ebp"; "r12d"; "r13d" |] let emit_subreg tbl pref r = match r.loc with Reg r when r < 13 -> emit_string tbl.(r) | Stack s -> let ofs = slot_offset s (register_class r) in `{emit_string pref} PTR {emit_int ofs}[rsp]` | _ -> assert false let emit_reg8 r = emit_subreg reg_low_8_name "BYTE" r let emit_reg16 r = emit_subreg reg_low_16_name "WORD" r let emit_reg32 r = emit_subreg reg_low_32_name "DWORD" r (* Output an addressing mode *) let emit_signed_int d = if d > 0 then emit_char '+'; if d <> 0 then emit_int d let emit_addressing addr r n = match addr with Ibased(s, d) -> add_used_symbol s; `{emit_symbol s}{emit_signed_int d}` | Iindexed d -> `[{emit_reg r.(n)}{emit_signed_int d}]` | Iindexed2 d -> `[{emit_reg r.(n)}+{emit_reg r.(n+1)}{emit_signed_int d}]` | Iscaled(2, d) -> `[{emit_reg r.(n)}+{emit_reg r.(n)}{emit_signed_int d}]` | Iscaled(scale, d) -> `[{emit_reg r.(n)}*{emit_int scale}{emit_signed_int d}]` | Iscaled(2, d) -> `[{emit_reg r.(n)}+{emit_reg r.(n)}*{emit_int scale}{emit_signed_int d}]` (* Record live pointers at call points *) type frame_descr = { fd_lbl: int; (* Return address *) fd_frame_size: int; (* Size of stack frame *) fd_live_offset: int list } (* Offsets/regs of live addresses *) let frame_descriptors = ref([] : frame_descr list) let record_frame_label live = let lbl = new_label() in let live_offset = ref [] in Reg.Set.iter (function {typ = Addr; loc = Reg r} -> live_offset := ((r lsl 1) + 1) :: !live_offset | {typ = Addr; loc = Stack s} as reg -> live_offset := slot_offset s (register_class reg) :: !live_offset | _ -> ()) live; frame_descriptors := { fd_lbl = lbl; fd_frame_size = frame_size(); fd_live_offset = !live_offset } :: !frame_descriptors; lbl let record_frame live = let lbl = record_frame_label live in `{emit_label lbl}:\n` let emit_frame fd = ` QWORD {emit_label fd.fd_lbl}\n`; ` WORD {emit_int fd.fd_frame_size}\n`; ` WORD {emit_int (List.length fd.fd_live_offset)}\n`; List.iter (fun n -> ` WORD {emit_int n}\n`) fd.fd_live_offset; emit_align 8 (* Record calls to the GC -- we've moved them out of the way *) type gc_call = { gc_lbl: label; (* Entry label *) gc_return_lbl: label; (* Where to branch after GC *) gc_frame: label } (* Label of frame descriptor *) let call_gc_sites = ref ([] : gc_call list) let emit_call_gc gc = `{emit_label gc.gc_lbl}: call {emit_symbol "caml_call_gc"}\n`; `{emit_label gc.gc_frame}: jmp {emit_label gc.gc_return_lbl}\n` (* Names for instructions *) let instr_for_intop = function Iadd -> "add" | Isub -> "sub" | Imul -> "imul" | Iand -> "and" | Ior -> "or" | Ixor -> "xor" | Ilsl -> "sal" | Ilsr -> "shr" | Iasr -> "sar" | _ -> assert false let instr_for_floatop = function Iaddf -> "addsd" | Isubf -> "subsd" | Imulf -> "mulsd" | Idivf -> "divsd" | _ -> assert false let instr_for_floatarithmem = function Ifloatadd -> "addsd" | Ifloatsub -> "subsd" | Ifloatmul -> "mulsd" | Ifloatdiv -> "divsd" let name_for_cond_branch = function Isigned Ceq -> "e" | Isigned Cne -> "ne" | Isigned Cle -> "le" | Isigned Cgt -> "g" | Isigned Clt -> "l" | Isigned Cge -> "ge" | Iunsigned Ceq -> "e" | Iunsigned Cne -> "ne" | Iunsigned Cle -> "be" | Iunsigned Cgt -> "a" | Iunsigned Clt -> "b" | Iunsigned Cge -> "ae" (* Output an = 0 or <> 0 test. *) let output_test_zero arg = match arg.loc with Reg r -> ` test {emit_reg arg}, {emit_reg arg}\n` | _ -> ` cmp {emit_reg arg}, 0\n` (* Output a floating-point compare and branch *) let emit_float_test cmp neg arg lbl = begin match cmp with | Ceq | Cne -> ` ucomisd ` | _ -> ` comisd ` end; `{emit_reg arg.(0)}, {emit_reg arg.(1)}\n`; let (branch_opcode, need_jp) = match (cmp, neg) with (Ceq, false) -> ("je", true) | (Ceq, true) -> ("jne", true) | (Cne, false) -> ("jne", true) | (Cne, true) -> ("je", true) | (Clt, false) -> ("jb", true) | (Clt, true) -> ("jae", true) | (Cle, false) -> ("jbe", true) | (Cle, true) -> ("ja", true) | (Cgt, false) -> ("ja", false) | (Cgt, true) -> ("jbe", false) | (Cge, false) -> ("jae", true) | (Cge, true) -> ("jb", false) in let branch_if_not_comparable = if cmp = Cne then not neg else neg in if need_jp then if branch_if_not_comparable then begin ` jp {emit_label lbl}\n`; ` {emit_string branch_opcode} {emit_label lbl}\n` end else begin let next = new_label() in ` jp {emit_label next}\n`; ` {emit_string branch_opcode} {emit_label lbl}\n`; `{emit_label next}:\n` end else begin ` {emit_string branch_opcode} {emit_label lbl}\n` end (* Deallocate the stack frame before a return or tail call *) let output_epilogue () = if frame_required() then begin let n = frame_size() - 8 in ` add rsp, {emit_int n}\n` end (* Output the assembly code for an instruction *) (* Name of current function *) let function_name = ref "" (* Entry point for tail recursive calls *) let tailrec_entry_point = ref 0 (* Label of trap for out-of-range accesses *) let range_check_trap = ref 0 let float_constants = ref ([] : (int * string) list) let emit_instr fallthrough i = match i.desc with Lend -> () | Lop(Imove | Ispill | Ireload) -> let src = i.arg.(0) and dst = i.res.(0) in if src.loc <> dst.loc then begin if src.typ = Float then ` movsd {emit_reg dst}, {emit_reg src}\n` else ` movq {emit_reg dst}, {emit_reg src}\n` end | Lop(Iconst_int n) -> if n = 0n then begin match i.res.(0).loc with Reg n -> ` xor {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n` | _ -> ` mov {emit_reg i.res.(0)}, 0\n` end else if n <= 0x7FFFFFFFn && n >= -0x80000000n then ` mov {emit_reg i.res.(0)}, {emit_nativeint n}\n` else ` movabsq {emit_reg i.res.(0)}, {emit_nativeint n}\n` | Lop(Iconst_float s) -> begin match Int64.bits_of_float (float_of_string s) with | 0x0000_0000_0000_0000L -> (* +0.0 *) ` xorpd {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n` | _ -> let lbl = new_label() in float_constants := (lbl, s) :: !float_constants; ` movlpd {emit_reg i.res.(0)}, {emit_label lbl}\n` end | Lop(Iconst_symbol s) -> add_used_symbol s; if !pic_code then ` lea {emit_reg i.res.(0)}, {emit_symbol s}\n` else ` mov {emit_reg i.res.(0)}, OFFSET {emit_symbol s}\n` | Lop(Icall_ind) -> ` call {emit_reg i.arg.(0)}\n`; record_frame i.live | Lop(Icall_imm s) -> add_used_symbol s; ` call {emit_symbol s}\n`; record_frame i.live | Lop(Itailcall_ind) -> output_epilogue(); ` jmp {emit_reg i.arg.(0)}\n` | Lop(Itailcall_imm s) -> if s = !function_name then ` jmp {emit_label !tailrec_entry_point}\n` else begin add_used_symbol s; output_epilogue(); ` jmp {emit_symbol s}\n` end | Lop(Iextcall(s, alloc)) -> add_used_symbol s; if alloc then begin ` lea rax, {emit_symbol s}\n`; ` call {emit_symbol "caml_c_call"}\n`; record_frame i.live end else begin ` call {emit_symbol s}\n` end | Lop(Istackoffset n) -> if n < 0 then ` add rsp, {emit_int(-n)}\n` else ` sub rsp, {emit_int(n)}\n`; stack_offset := !stack_offset + n | Lop(Iload(chunk, addr)) -> let dest = i.res.(0) in begin match chunk with | Word -> ` mov {emit_reg dest}, QWORD PTR {emit_addressing addr i.arg 0}\n` | Byte_unsigned -> ` movzx {emit_reg dest}, BYTE PTR {emit_addressing addr i.arg 0}\n` | Byte_signed -> ` movsx {emit_reg dest}, BYTE PTR {emit_addressing addr i.arg 0}\n` | Sixteen_unsigned -> ` movzx {emit_reg dest}, WORD PTR {emit_addressing addr i.arg 0}\n` | Sixteen_signed -> ` movsx {emit_reg dest}, WORD PTR {emit_addressing addr i.arg 0}\n` | Thirtytwo_unsigned -> ` movzx {emit_reg dest}, DWORD PTR {emit_addressing addr i.arg 0}\n` | Thirtytwo_signed -> ` movsx {emit_reg dest}, DWORD PTR {emit_addressing addr i.arg 0}\n` | Single -> ` cvtss2sd {emit_reg dest}, REAL4 PTR {emit_addressing addr i.arg 0}\n` | Double | Double_u -> ` movlpd {emit_reg dest}, REAL8 PTR {emit_addressing addr i.arg 0}\n` end | Lop(Istore(chunk, addr)) -> begin match chunk with | Word -> ` mov QWORD PTR {emit_addressing addr i.arg 1}, {emit_reg i.arg.(0)}\n` | Byte_unsigned | Byte_signed -> ` mov BYTE PTR {emit_addressing addr i.arg 1}, {emit_reg8 i.arg.(0)}\n` | Sixteen_unsigned | Sixteen_signed -> ` mov WORD PTR {emit_addressing addr i.arg 1}, {emit_reg16 i.arg.(0)}\n` | Thirtytwo_signed | Thirtytwo_unsigned -> ` mov DWORD PTR {emit_addressing addr i.arg 1}, {emit_reg32 i.arg.(0)}\n` | Single -> ` cvtsd2ss xmm15, {emit_reg i.arg.(0)}\n`; ` movss REAL4 PTR {emit_addressing addr i.arg 1}, xmm15\n` | Double | Double_u -> ` movlpd REAL8 PTR {emit_addressing addr i.arg 1}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(0)}\n` end | Lop(Ialloc n) -> if !fastcode_flag then begin let lbl_redo = new_label() in `{emit_label lbl_redo}: sub r15, {emit_int n}\n`; ` cmp r15, {emit_symbol "caml_young_limit"}\n`; let lbl_call_gc = new_label() in let lbl_frame = record_frame_label i.live in ` jb {emit_label lbl_call_gc}\n`; ` lea {emit_reg i.res.(0)}, [r15+8]\n`; call_gc_sites := { gc_lbl = lbl_call_gc; gc_return_lbl = lbl_redo; gc_frame = lbl_frame } :: !call_gc_sites end else begin begin match n with 16 -> ` call {emit_symbol "caml_alloc1"}\n` | 24 -> ` call {emit_symbol "caml_alloc2"}\n` | 32 -> ` call {emit_symbol "caml_alloc3"}\n` | _ -> ` mov rax, {emit_int n}\n`; ` call {emit_symbol "caml_allocN"}\n` end; `{record_frame i.live} lea {emit_reg i.res.(0)}, [r15+8]\n` end | Lop(Iintop(Icomp cmp)) -> ` cmp {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`; let b = name_for_cond_branch cmp in ` set{emit_string b} al\n`; ` movzx {emit_reg i.res.(0)}, al\n` | Lop(Iintop_imm(Icomp cmp, n)) -> ` cmp {emit_reg i.arg.(0)}, {emit_int n}\n`; let b = name_for_cond_branch cmp in ` set{emit_string b} al\n`; ` movzx {emit_reg i.res.(0)}, al\n` | Lop(Iintop Icheckbound) -> if !range_check_trap = 0 then range_check_trap := new_label(); ` cmp {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`; ` jbe {emit_label !range_check_trap}\n` | Lop(Iintop_imm(Icheckbound, n)) -> if !range_check_trap = 0 then range_check_trap := new_label(); ` cmp {emit_reg i.arg.(0)}, {emit_int n}\n`; ` jbe {emit_label !range_check_trap}\n` | Lop(Iintop(Idiv | Imod)) -> ` cqto\n`; ` idiv {emit_reg i.arg.(1)}\n` | Lop(Iintop(Ilsl | Ilsr | Iasr as op)) -> (* We have i.arg.(0) = i.res.(0) and i.arg.(1) = %rcx *) ` {emit_string(instr_for_intop op)} {emit_reg i.res.(0)}, cl\n` | Lop(Iintop op) -> (* We have i.arg.(0) = i.res.(0) *) ` {emit_string(instr_for_intop op)} {emit_reg i.arg.(0)}, {emit_reg i.res.(1)}\n` | Lop(Iintop_imm(Iadd, n)) when i.arg.(0).loc <> i.res.(0).loc -> ` lea {emit_reg i.res.(0)}, {emit_int n}[{emit_reg i.arg.(0)}], \n` | Lop(Iintop_imm(Iadd, 1) | Iintop_imm(Isub, -1)) -> ` inc {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Iadd, -1) | Iintop_imm(Isub, 1)) -> ` dec {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Idiv, n)) -> (* Note: i.arg.(0) = i.res.(0) = rdx (cf. selection.ml) *) let l = Misc.log2 n in ` mov rax, {emit_reg i.arg.(0)}\n`; ` add {emit_reg i.arg.(0)}, {emit_int(n-1)}\n`; ` test rax, rax\n`; ` cmovns {emit_reg i.arg.(0)}, rax\n`; ` sar {emit_reg i.res.(0)}, {emit_int l}\n` | Lop(Iintop_imm(Imod, n)) -> (* Note: i.arg.(0) = i.res.(0) = rdx (cf. selection.ml) *) ` mov rax, {emit_reg i.arg.(0)}\n`; ` test rax, rax\n`; ` lea rax, {emit_int(n-1)}[%rax]\n`; ` cmovns rax, {emit_reg i.arg.(0)}\n`; ` and rax, {emit_int (-n)}\n`; ` sub {emit_reg i.res.(0)}, rax\n` | Lop(Iintop_imm(op, n)) -> (* We have i.arg.(0) = i.res.(0) *) ` {emit_string(instr_for_intop op)} {emit_reg i.res.(0)}, {emit_int n}\n` | Lop(Inegf) -> ` xorpd {emit_reg i.res.(0)}, {emit_symbol "caml_negf_mask"}\n` | Lop(Iabsf) -> ` andpd {emit_reg i.res.(0)}, {emit_symbol "caml_absf_mask"}\n` | Lop(Iaddf | Isubf | Imulf | Idivf as floatop) -> ` {emit_string(instr_for_floatop floatop)} {emit_reg i.arg.(0)}, {emit_reg i.res.(1)}\n` | Lop(Ifloatofint) -> ` cvtsi2sdq {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}\n` | Lop(Iintoffloat) -> ` cvttsd2siq {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}\n` | Lop(Ispecific(Ilea addr)) -> ` lea {emit_reg i.res.(0)}, {emit_addressing addr i.arg 0}\n` | Lop(Ispecific(Istore_int(n, addr))) -> ` mov QWORD PTR {emit_addressing addr i.arg 0}, {emit_nativeint n}\n` | Lop(Ispecific(Istore_symbol(s, addr))) -> assert (not !pic_code); ` mov QWORD PTR {emit_addressing addr i.arg 0}, OFFSET {emit_symbol s}\n` | Lop(Ispecific(Ioffset_loc(n, addr))) -> ` add QWORD PTR {emit_addressing addr i.arg 0}, {emit_int n}\n` | Lop(Ispecific(Ifloatarithmem(op, addr))) -> ` {emit_string(instr_for_floatarithmem op)} {emit_reg i.res.(0)}, {emit_addressing addr i.arg 1}\n` | Lreloadretaddr -> () | Lreturn -> output_epilogue(); ` ret\n` | Llabel lbl -> `{emit_Llabel fallthrough lbl}:\n` | Lbranch lbl -> ` jmp {emit_label lbl}\n` | Lcondbranch(tst, lbl) -> begin match tst with Itruetest -> output_test_zero i.arg.(0); ` jne {emit_label lbl}\n` | Ifalsetest -> output_test_zero i.arg.(0); ` je {emit_label lbl}\n` | Iinttest cmp -> ` cmp {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`; let b = name_for_cond_branch cmp in ` j{emit_string b} {emit_label lbl}\n` | Iinttest_imm((Isigned Ceq | Isigned Cne | Iunsigned Ceq | Iunsigned Cne) as cmp, 0) -> output_test_zero i.arg.(0); let b = name_for_cond_branch cmp in ` j{emit_string b} {emit_label lbl}\n` | Iinttest_imm(cmp, n) -> ` cmp {emit_reg i.arg.(0)}, {emit_int n}\n`; let b = name_for_cond_branch cmp in ` j{emit_string b} {emit_label lbl}\n` | Ifloattest(cmp, neg) -> emit_float_test cmp neg i.arg lbl | Ioddtest -> ` test {emit_reg8 i.arg.(0)}, 1\n`; ` jne {emit_label lbl}\n` | Ieventest -> ` test {emit_reg8 i.arg.(0)}, 1\n`; ` je {emit_label lbl}\n` end | Lcondbranch3(lbl0, lbl1, lbl2) -> ` cmp {emit_reg i.arg.(0)}, 1\n`; begin match lbl0 with None -> () | Some lbl -> ` jb {emit_label lbl}\n` end; begin match lbl1 with None -> () | Some lbl -> ` je {emit_label lbl}\n` end; begin match lbl2 with None -> () | Some lbl -> ` jg {emit_label lbl}\n` end | Lswitch jumptbl -> let lbl = new_label() in if !pic_code then begin ` lea r11, {emit_label lbl}\n`; ` jmp [r11+{emit_reg i.arg.(0)}*8]\n` end else begin ` jmp [{emit_reg i.arg.(0)}*8 + {emit_label lbl}]\n` end; ` .DATA\n`; emit_align 8; `{emit_label lbl}:`; for i = 0 to Array.length jumptbl - 1 do ` QWORD {emit_label jumptbl.(i)}\n` done; ` .CODE\n` | Lsetuptrap lbl -> ` call {emit_label lbl}\n` | Lpushtrap -> ` push r14\n`; ` mov r14, rsp\n`; stack_offset := !stack_offset + 16 | Lpoptrap -> ` pop r14\n`; ` add rsp, 8\n`; stack_offset := !stack_offset - 16 | Lraise -> ` mov rsp, r14\n`; ` pop r14\n`; ` ret\n` let rec emit_all fallthrough i = match i.desc with | Lend -> () | _ -> emit_instr fallthrough i; emit_all (Linearize.has_fallthrough i.desc) i.next (* Emission of the floating-point constants *) let emit_float s = (* MASM doesn't like floating-point constants such as 2e9. Turn them into 2.0e9. *) let pos_e = ref (-1) and pos_dot = ref (-1) in for i = 0 to String.length s - 1 do match s.[i] with 'e'|'E' -> pos_e := i | '.' -> pos_dot := i | _ -> () done; if !pos_dot < 0 && !pos_e >= 0 then begin emit_string (String.sub s 0 !pos_e); emit_string ".0"; emit_string (String.sub s !pos_e (String.length s - !pos_e)) end else emit_string s let emit_float_constant (lbl, cst) = `{emit_label lbl} REAL8 {emit_float cst}\n` (* Emission of a function declaration *) let fundecl fundecl = function_name := fundecl.fun_name; fastcode_flag := fundecl.fun_fast; tailrec_entry_point := new_label(); stack_offset := 0; float_constants := []; call_gc_sites := []; range_check_trap := 0; ` .CODE\n`; emit_align 16; ` PUBLIC {emit_symbol fundecl.fun_name}\n`; `{emit_symbol fundecl.fun_name}:\n`; if frame_required() then begin let n = frame_size() - 8 in ` sub rsp, {emit_int n}\n` end; `{emit_label !tailrec_entry_point}:\n`; emit_all true fundecl.fun_body; List.iter emit_call_gc !call_gc_sites; if !range_check_trap > 0 then `{emit_label !range_check_trap}: call {emit_symbol "caml_ml_array_bound_error"}\n`; (* Never returns, but useful to have retaddr on stack for debugging *) if !float_constants <> [] then begin ` .DATA\n`; List.iter emit_float_constant !float_constants end (* Emission of data *) let emit_item = function Cglobal_symbol s -> ` PUBLIC {emit_symbol s}\n`; | Cdefine_symbol s -> add_def_symbol s; `{emit_symbol s} LABEL QWORD\n` | Cdefine_label lbl -> `{emit_label (100000 + lbl)} LABEL QWORD\n` | Cint8 n -> ` BYTE {emit_int n}\n` | Cint16 n -> ` WORD {emit_int n}\n` | Cint32 n -> ` DWORD {emit_nativeint n}\n` | Cint n -> ` QWORD {emit_nativeint n}\n` | Csingle f -> ` REAL4 {emit_float f}\n` | Cdouble f -> ` REAL8 {emit_float f}\n` | Csymbol_address s -> add_used_symbol s; ` QWORD {emit_symbol s}\n` | Clabel_address lbl -> ` QWORD {emit_label (100000 + lbl)}\n` | Cstring s -> emit_bytes_directive " BYTE " s | Cskip n -> if n > 0 then ` BYTE {emit_int n} DUP (?)\n` | Calign n -> emit_align n let data l = ` .DATA\n`; List.iter emit_item l (* Beginning / end of an assembly file *) let begin_assembly() = ` EXTERN _caml_young_ptr: QWORD\n`; ` EXTERN _caml_young_limit: QWORD\n`; ` EXTERN _caml_exception_pointer: QWORD\n`; ` EXTERN _caml_extra_params: QWORD\n`; ` EXTERN _caml_call_gc: PROC\n`; ` EXTERN _caml_c_call: PROC\n`; ` EXTERN _caml_allocN: PROC\n`; ` EXTERN _caml_alloc1: PROC\n`; ` EXTERN _caml_alloc2: PROC\n`; ` EXTERN _caml_alloc3: PROC\n`; ` EXTERN _caml_ml_array_bound_error: PROC\n`; let lbl_begin = Compilenv.make_symbol (Some "data_begin") in add_def_symbol lbl_begin; ` .DATA\n`; ` PUBLIC {emit_symbol lbl_begin}\n`; `{emit_symbol lbl_begin} LABEL QWORD\n`; let lbl_begin = Compilenv.make_symbol (Some "code_begin") in add_def_symbol lbl_begin; ` .CODE\n`; ` PUBLIC {emit_symbol lbl_begin}\n`; `{emit_symbol lbl_begin} LABEL QWORD\n` let end_assembly() = let lbl_end = Compilenv.make_symbol (Some "code_end") in add_def_symbol lbl_begin; ` .CODE\n`; ` PUBLIC {emit_symbol lbl_end}\n`; `{emit_symbol lbl_end} LABEL QWORD\n`; ` .DATA\n`; let lbl_end = Compilenv.make_symbol (Some "data_end") in add_def_symbol lbl_begin; ` PUBLIC {emit_symbol lbl_end}\n`; `{emit_symbol lbl_end} LABEL QWORD\n`; ` QWORD 0\n`; let lbl = Compilenv.make_symbol (Some "frametable") in add_def_symbol lbl; ` PUBLIC {emit_symbol lbl}\n`; `{emit_symbol lbl} LABEL QWORD\n`; ` QWORD {emit_int (List.length !frame_descriptors)}\n`; List.iter emit_frame !frame_descriptors; frame_descriptors := []; `\n;External functions\n\n`; StringSet.iter (fun s -> if not (StringSet.mem s !symbols_defined) then ` EXTERN {emit_symbol s}: PROC\n`) !symbols_used; symbols_used := StringSet.empty; symbols_defined := StringSet.empty; `END\n`