(***********************************************************************) (* *) (* OCaml *) (* *) (* Luc Maranget, projet Moscova, INRIA Rocquencourt *) (* *) (* Copyright 2000 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* Store for actions in object style *) exception Found of int type 'a t_store = {act_get : unit -> 'a array ; act_store : 'a -> int} let mk_store same = let r_acts = ref [] in let store act = let rec store_rec i = function | [] -> i,[act] | act0::rem -> if same act0 act then raise (Found i) else let i,rem = store_rec (i+1) rem in i,act0::rem in try let i,acts = store_rec 0 !r_acts in r_acts := acts ; i with | Found i -> i and get () = Array.of_list !r_acts in {act_store=store ; act_get=get} module type S = sig type primitive val eqint : primitive val neint : primitive val leint : primitive val ltint : primitive val geint : primitive val gtint : primitive type act val bind : act -> (act -> act) -> act val make_offset : act -> int -> act val make_prim : primitive -> act list -> act val make_isout : act -> act -> act val make_isin : act -> act -> act val make_if : act -> act -> act -> act val make_switch : act -> int array -> act array -> act end (* The module will ``produce good code for the case statement'' *) (* Adaptation of R.L. Berstein ``Producing good code for the case statement'' Sofware Practice and Experience, 15(10) (1985) and D.L. Spuler ``Two-Way Comparison Search Trees, a Generalisation of Binary Search Trees and Split Trees'' ``Compiler Code Generation for Multiway Branch Statement as a Static Search Problem'' Technical Reports, James Cook University *) (* Main adaptation is considering interval tests (implemented as one addition + one unsigned test and branch) which leads to exhaustive search for finding the optimal test sequence in small cases and heuristics otherwise. *) module Make (Arg : S) = struct type 'a inter = {cases : (int * int * int) array ; actions : 'a array} type 'a t_ctx = {off : int ; arg : 'a} let cut = ref 8 and more_cut = ref 16 let pint chan i = if i = min_int then Printf.fprintf chan "-oo" else if i=max_int then Printf.fprintf chan "oo" else Printf.fprintf chan "%d" i let pcases chan cases = for i =0 to Array.length cases-1 do let l,h,act = cases.(i) in if l=h then Printf.fprintf chan "%d:%d " l act else Printf.fprintf chan "%a..%a:%d " pint l pint h act done let prerr_inter i = Printf.fprintf stderr "cases=%a" pcases i.cases let get_act cases i = let _,_,r = cases.(i) in r and get_low cases i = let r,_,_ = cases.(i) in r type ctests = { mutable n : int ; mutable ni : int ; } let too_much = {n=max_int ; ni=max_int} let ptests chan {n=n ; ni=ni} = Printf.fprintf chan "{n=%d ; ni=%d}" n ni let pta chan t = for i =0 to Array.length t-1 do Printf.fprintf chan "%d: %a\n" i ptests t.(i) done let count_tests s = let r = Array.init (Array.length s.actions) (fun _ -> {n=0 ; ni=0 }) in let c = s.cases in let imax = Array.length c-1 in for i=0 to imax do let l,h,act = c.(i) in let x = r.(act) in x.n <- x.n+1 ; if l < h && i<> 0 && i<>imax then x.ni <- x.ni+1 ; done ; r let less_tests c1 c2 = if c1.n < c2.n then true else if c1.n = c2.n then begin if c1.ni < c2.ni then true else false end else false and eq_tests c1 c2 = c1.n = c2.n && c1.ni=c2.ni let min_tests c1 c2 = if less_tests c1 c2 then c1 else c2 let less2tests (c1,d1) (c2,d2) = if eq_tests c1 c2 then less_tests d1 d2 else less_tests c1 c2 let add_test t1 t2 = t1.n <- t1.n + t2.n ; t1.ni <- t1.ni + t2.ni ; type t_ret = Inter of int * int | Sep of int | No let pret chan = function | Inter (i,j)-> Printf.fprintf chan "Inter %d %d" i j | Sep i -> Printf.fprintf chan "Sep %d" i | No -> Printf.fprintf chan "No" let coupe cases i = let l,_,_ = cases.(i) in l, Array.sub cases 0 i, Array.sub cases i (Array.length cases-i) let case_append c1 c2 = let len1 = Array.length c1 and len2 = Array.length c2 in match len1,len2 with | 0,_ -> c2 | _,0 -> c1 | _,_ -> let l1,h1,act1 = c1.(Array.length c1-1) and l2,h2,act2 = c2.(0) in if act1 = act2 then let r = Array.create (len1+len2-1) c1.(0) in for i = 0 to len1-2 do r.(i) <- c1.(i) done ; let l = if len1-2 >= 0 then begin let _,h,_ = r.(len1-2) in if h+1 < l1 then h+1 else l1 end else l1 and h = if 1 < len2-1 then begin let l,_,_ = c2.(1) in if h2+1 < l then l-1 else h2 end else h2 in r.(len1-1) <- (l,h,act1) ; for i=1 to len2-1 do r.(len1-1+i) <- c2.(i) done ; r else if h1 > l1 then let r = Array.create (len1+len2) c1.(0) in for i = 0 to len1-2 do r.(i) <- c1.(i) done ; r.(len1-1) <- (l1,l2-1,act1) ; for i=0 to len2-1 do r.(len1+i) <- c2.(i) done ; r else if h2 > l2 then let r = Array.create (len1+len2) c1.(0) in for i = 0 to len1-1 do r.(i) <- c1.(i) done ; r.(len1) <- (h1+1,h2,act2) ; for i=1 to len2-1 do r.(len1+i) <- c2.(i) done ; r else Array.append c1 c2 let coupe_inter i j cases = let lcases = Array.length cases in let low,_,_ = cases.(i) and _,high,_ = cases.(j) in low,high, Array.sub cases i (j-i+1), case_append (Array.sub cases 0 i) (Array.sub cases (j+1) (lcases-(j+1))) type kind = Kvalue of int | Kinter of int | Kempty let pkind chan = function | Kvalue i ->Printf.fprintf chan "V%d" i | Kinter i -> Printf.fprintf chan "I%d" i | Kempty -> Printf.fprintf chan "E" let rec pkey chan = function | [] -> () | [k] -> pkind chan k | k::rem -> Printf.fprintf chan "%a %a" pkey rem pkind k let t = Hashtbl.create 17 let make_key cases = let seen = ref [] and count = ref 0 in let rec got_it act = function | [] -> seen := (act,!count):: !seen ; let r = !count in incr count ; r | (act0,index) :: rem -> if act0 = act then index else got_it act rem in let make_one l h act = if l=h then Kvalue (got_it act !seen) else Kinter (got_it act !seen) in let rec make_rec i pl = if i < 0 then [] else let l,h,act = cases.(i) in if pl = h+1 then make_one l h act::make_rec (i-1) l else Kempty::make_one l h act::make_rec (i-1) l in let l,h,act = cases.(Array.length cases-1) in make_one l h act::make_rec (Array.length cases-2) l let same_act t = let len = Array.length t in let a = get_act t (len-1) in let rec do_rec i = if i < 0 then true else let b = get_act t i in b=a && do_rec (i-1) in do_rec (len-2) (* Intervall test x in [l,h] works by checking x-l in [0,h-l] * This may be false for arithmetic modulo 2^31 * Subtracting l may change the relative ordering of values and invalid the invariant that matched values are given in increasing order To avoid this, interval check is allowed only when the integers indeed present in the whole case interval are in [-2^16 ; 2^16] This condition is checked by zyva *) let inter_limit = 1 lsl 16 let ok_inter = ref false let rec opt_count top cases = let key = make_key cases in try let r = Hashtbl.find t key in r with | Not_found -> let r = let lcases = Array.length cases in match lcases with | 0 -> assert false | _ when same_act cases -> No, ({n=0; ni=0},{n=0; ni=0}) | _ -> if lcases < !cut then enum top cases else if lcases < !more_cut then heuristic top cases else divide top cases in Hashtbl.add t key r ; r and divide top cases = let lcases = Array.length cases in let m = lcases/2 in let _,left,right = coupe cases m in let ci = {n=1 ; ni=0} and cm = {n=1 ; ni=0} and _,(cml,cleft) = opt_count false left and _,(cmr,cright) = opt_count false right in add_test ci cleft ; add_test ci cright ; if less_tests cml cmr then add_test cm cmr else add_test cm cml ; Sep m,(cm, ci) and heuristic top cases = let lcases = Array.length cases in let sep,csep = divide false cases and inter,cinter = if !ok_inter then begin let _,_,act0 = cases.(0) and _,_,act1 = cases.(lcases-1) in if act0 = act1 then begin let low, high, inside, outside = coupe_inter 1 (lcases-2) cases in let _,(cmi,cinside) = opt_count false inside and _,(cmo,coutside) = opt_count false outside and cmij = {n=1 ; ni=(if low=high then 0 else 1)} and cij = {n=1 ; ni=(if low=high then 0 else 1)} in add_test cij cinside ; add_test cij coutside ; if less_tests cmi cmo then add_test cmij cmo else add_test cmij cmi ; Inter (1,lcases-2),(cmij,cij) end else Inter (-1,-1),(too_much, too_much) end else Inter (-1,-1),(too_much, too_much) in if less2tests csep cinter then sep,csep else inter,cinter and enum top cases = let lcases = Array.length cases in let lim, with_sep = let best = ref (-1) and best_cost = ref (too_much,too_much) in for i = 1 to lcases-(1) do let _,left,right = coupe cases i in let ci = {n=1 ; ni=0} and cm = {n=1 ; ni=0} and _,(cml,cleft) = opt_count false left and _,(cmr,cright) = opt_count false right in add_test ci cleft ; add_test ci cright ; if less_tests cml cmr then add_test cm cmr else add_test cm cml ; if less2tests (cm,ci) !best_cost then begin if top then Printf.fprintf stderr "Get it: %d\n" i ; best := i ; best_cost := (cm,ci) end done ; !best, !best_cost in let ilow, ihigh, with_inter = if not !ok_inter then let rlow = ref (-1) and rhigh = ref (-1) and best_cost= ref (too_much,too_much) in for i=1 to lcases-2 do let low, high, inside, outside = coupe_inter i i cases in if low=high then begin let _,(cmi,cinside) = opt_count false inside and _,(cmo,coutside) = opt_count false outside and cmij = {n=1 ; ni=0} and cij = {n=1 ; ni=0} in add_test cij cinside ; add_test cij coutside ; if less_tests cmi cmo then add_test cmij cmo else add_test cmij cmi ; if less2tests (cmij,cij) !best_cost then begin rlow := i ; rhigh := i ; best_cost := (cmij,cij) end end done ; !rlow, !rhigh, !best_cost else let rlow = ref (-1) and rhigh = ref (-1) and best_cost= ref (too_much,too_much) in for i=1 to lcases-2 do for j=i to lcases-2 do let low, high, inside, outside = coupe_inter i j cases in let _,(cmi,cinside) = opt_count false inside and _,(cmo,coutside) = opt_count false outside and cmij = {n=1 ; ni=(if low=high then 0 else 1)} and cij = {n=1 ; ni=(if low=high then 0 else 1)} in add_test cij cinside ; add_test cij coutside ; if less_tests cmi cmo then add_test cmij cmo else add_test cmij cmi ; if less2tests (cmij,cij) !best_cost then begin rlow := i ; rhigh := j ; best_cost := (cmij,cij) end done done ; !rlow, !rhigh, !best_cost in let r = ref (Inter (ilow,ihigh)) and rc = ref with_inter in if less2tests with_sep !rc then begin r := Sep lim ; rc := with_sep end ; !r, !rc let make_if_test konst test arg i ifso ifnot = Arg.make_if (Arg.make_prim test [arg ; konst i]) ifso ifnot let make_if_lt konst arg i ifso ifnot = match i with | 1 -> make_if_test konst Arg.leint arg 0 ifso ifnot | _ -> make_if_test konst Arg.ltint arg i ifso ifnot and make_if_le konst arg i ifso ifnot = match i with | -1 -> make_if_test konst Arg.ltint arg 0 ifso ifnot | _ -> make_if_test konst Arg.leint arg i ifso ifnot and make_if_gt konst arg i ifso ifnot = match i with | -1 -> make_if_test konst Arg.geint arg 0 ifso ifnot | _ -> make_if_test konst Arg.gtint arg i ifso ifnot and make_if_ge konst arg i ifso ifnot = match i with | 1 -> make_if_test konst Arg.gtint arg 0 ifso ifnot | _ -> make_if_test konst Arg.geint arg i ifso ifnot and make_if_eq konst arg i ifso ifnot = make_if_test konst Arg.eqint arg i ifso ifnot and make_if_ne konst arg i ifso ifnot = make_if_test konst Arg.neint arg i ifso ifnot let do_make_if_out h arg ifso ifno = Arg.make_if (Arg.make_isout h arg) ifso ifno let make_if_out konst ctx l d mk_ifso mk_ifno = match l with | 0 -> do_make_if_out (konst d) ctx.arg (mk_ifso ctx) (mk_ifno ctx) | _ -> Arg.bind (Arg.make_offset ctx.arg (-l)) (fun arg -> let ctx = {off= (-l+ctx.off) ; arg=arg} in do_make_if_out (konst d) arg (mk_ifso ctx) (mk_ifno ctx)) let do_make_if_in h arg ifso ifno = Arg.make_if (Arg.make_isin h arg) ifso ifno let make_if_in konst ctx l d mk_ifso mk_ifno = match l with | 0 -> do_make_if_in (konst d) ctx.arg (mk_ifso ctx) (mk_ifno ctx) | _ -> Arg.bind (Arg.make_offset ctx.arg (-l)) (fun arg -> let ctx = {off= (-l+ctx.off) ; arg=arg} in do_make_if_in (konst d) arg (mk_ifso ctx) (mk_ifno ctx)) let rec c_test konst ctx ({cases=cases ; actions=actions} as s) = let lcases = Array.length cases in assert(lcases > 0) ; if lcases = 1 then actions.(get_act cases 0) ctx else begin let w,c = opt_count false cases in (* Printf.fprintf stderr "off=%d tactic=%a for %a\n" ctx.off pret w pcases cases ; *) match w with | No -> actions.(get_act cases 0) ctx | Inter (i,j) -> let low,high,inside, outside = coupe_inter i j cases in let _,(cinside,_) = opt_count false inside and _,(coutside,_) = opt_count false outside in (* Costs are retrieved to put the code with more remaining tests in the privileged (positive) branch of ``if'' *) if low=high then begin if less_tests coutside cinside then make_if_eq konst ctx.arg (low+ctx.off) (c_test konst ctx {s with cases=inside}) (c_test konst ctx {s with cases=outside}) else make_if_ne konst ctx.arg (low+ctx.off) (c_test konst ctx {s with cases=outside}) (c_test konst ctx {s with cases=inside}) end else begin if less_tests coutside cinside then make_if_in konst ctx (low+ctx.off) (high-low) (fun ctx -> c_test konst ctx {s with cases=inside}) (fun ctx -> c_test konst ctx {s with cases=outside}) else make_if_out konst ctx (low+ctx.off) (high-low) (fun ctx -> c_test konst ctx {s with cases=outside}) (fun ctx -> c_test konst ctx {s with cases=inside}) end | Sep i -> let lim,left,right = coupe cases i in let _,(cleft,_) = opt_count false left and _,(cright,_) = opt_count false right in let left = {s with cases=left} and right = {s with cases=right} in if i=1 && (lim+ctx.off)=1 && get_low cases 0+ctx.off=0 then make_if_ne konst ctx.arg 0 (c_test konst ctx right) (c_test konst ctx left) else if less_tests cright cleft then make_if_lt konst ctx.arg (lim+ctx.off) (c_test konst ctx left) (c_test konst ctx right) else make_if_ge konst ctx.arg (lim+ctx.off) (c_test konst ctx right) (c_test konst ctx left) end (* Minimal density of switches *) let theta = ref 0.33333 (* Minmal number of tests to make a switch *) let switch_min = ref 3 (* Particular case 0, 1, 2 *) let particular_case cases i j = j-i = 2 && (let l1,h1,act1 = cases.(i) and l2,h2,act2 = cases.(i+1) and l3,h3,act3 = cases.(i+2) in l1+1=l2 && l2+1=l3 && l3=h3 && act1 <> act3) let approx_count cases i j n_actions = let l = j-i+1 in if l < !cut then let _,(_,{n=ntests}) = opt_count false (Array.sub cases i l) in ntests else l-1 (* Sends back a boolean that says whether is switch is worth or not *) let dense {cases=cases ; actions=actions} i j = if i=j then true else let l,_,_ = cases.(i) and _,h,_ = cases.(j) in let ntests = approx_count cases i j (Array.length actions) in (* (ntests+1) >= theta * (h-l+1) *) particular_case cases i j || (ntests >= !switch_min && float_of_int ntests +. 1.0 >= !theta *. (float_of_int h -. float_of_int l +. 1.0)) (* Compute clusters by dynamic programming Adaptation of the correction to Bernstein ``Correction to `Producing Good Code for the Case Statement' '' S.K. Kannan and T.A. Proebsting Software Practice and Exprience Vol. 24(2) 233 (Feb 1994) *) let comp_clusters ({cases=cases ; actions=actions} as s) = let len = Array.length cases in let min_clusters = Array.create len max_int and k = Array.create len 0 in let get_min i = if i < 0 then 0 else min_clusters.(i) in for i = 0 to len-1 do for j = 0 to i do if dense s j i && get_min (j-1) + 1 < min_clusters.(i) then begin k.(i) <- j ; min_clusters.(i) <- get_min (j-1) + 1 end done ; done ; min_clusters.(len-1),k (* Assume j > i *) let make_switch {cases=cases ; actions=actions} i j = let ll,_,_ = cases.(i) and _,hh,_ = cases.(j) in let tbl = Array.create (hh-ll+1) 0 and t = Hashtbl.create 17 and index = ref 0 in let get_index act = try Hashtbl.find t act with | Not_found -> let i = !index in incr index ; Hashtbl.add t act i ; i in for k=i to j do let l,h,act = cases.(k) in let index = get_index act in for kk=l-ll to h-ll do tbl.(kk) <- index done done ; let acts = Array.create !index actions.(0) in Hashtbl.iter (fun act i -> acts.(i) <- actions.(act)) t ; (fun ctx -> match -ll-ctx.off with | 0 -> Arg.make_switch ctx.arg tbl acts | _ -> Arg.bind (Arg.make_offset ctx.arg (-ll-ctx.off)) (fun arg -> Arg.make_switch arg tbl acts)) let make_clusters ({cases=cases ; actions=actions} as s) n_clusters k = let len = Array.length cases in let r = Array.create n_clusters (0,0,0) and t = Hashtbl.create 17 and index = ref 0 and bidon = ref (Array.length actions) in let get_index act = try let i,_ = Hashtbl.find t act in i with | Not_found -> let i = !index in incr index ; Hashtbl.add t act (i,(fun _ -> actions.(act))) ; i and add_index act = let i = !index in incr index ; incr bidon ; Hashtbl.add t !bidon (i,act) ; i in let rec zyva j ir = let i = k.(j) in begin if i=j then let l,h,act = cases.(i) in r.(ir) <- (l,h,get_index act) else (* assert i < j *) let l,_,_ = cases.(i) and _,h,_ = cases.(j) in r.(ir) <- (l,h,add_index (make_switch s i j)) end ; if i > 0 then zyva (i-1) (ir-1) in zyva (len-1) (n_clusters-1) ; let acts = Array.create !index (fun _ -> assert false) in Hashtbl.iter (fun _ (i,act) -> acts.(i) <- act) t ; {cases = r ; actions = acts} ;; let zyva (low,high) konst arg cases actions = let old_ok = !ok_inter in ok_inter := (abs low <= inter_limit && abs high <= inter_limit) ; if !ok_inter <> old_ok then Hashtbl.clear t ; let s = {cases=cases ; actions=actions} in (* Printf.eprintf "ZYVA: %b\n" !ok_inter ; pcases stderr cases ; prerr_endline "" ; *) let n_clusters,k = comp_clusters s in let clusters = make_clusters s n_clusters k in let r = c_test konst {arg=arg ; off=0} clusters in r and test_sequence konst arg cases actions = let old_ok = !ok_inter in ok_inter := false ; if !ok_inter <> old_ok then Hashtbl.clear t ; let s = {cases=cases ; actions=Array.map (fun act -> (fun _ -> act)) actions} in (* Printf.eprintf "SEQUENCE: %b\n" !ok_inter ; pcases stderr cases ; prerr_endline "" ; *) let r = c_test konst {arg=arg ; off=0} s in r ;; end