(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* typetexp.ml,v 1.34.4.9 2002/01/07 08:39:16 garrigue Exp *) (* Typechecking of type expressions for the core language *) open Misc open Parsetree open Types open Ctype exception Already_bound type error = Unbound_type_variable of string | Unbound_type_constructor of Longident.t | Unbound_type_constructor_2 of Path.t | Type_arity_mismatch of Longident.t * int * int | Bound_type_variable of string | Recursive_type | Unbound_class of Longident.t | Unbound_row_variable of Longident.t | Type_mismatch of (type_expr * type_expr) list | Alias_type_mismatch of (type_expr * type_expr) list | Present_has_conjunction of string | Present_has_no_type of string | Constructor_mismatch of type_expr * type_expr | Not_a_variant of type_expr | Variant_tags of string * string | Invalid_variable_name of string | Cannot_quantify of string * type_expr exception Error of Location.t * error type variable_context = int * (string, type_expr) Tbl.t (* Translation of type expressions *) let type_variables = ref (Tbl.empty : (string, type_expr) Tbl.t) let univars = ref ([] : (string * type_expr) list) let pre_univars = ref ([] : type_expr list) let used_variables = ref (Tbl.empty : (string, type_expr * Location.t) Tbl.t) let reset_type_variables () = reset_global_level (); type_variables := Tbl.empty let narrow () = (increase_global_level (), !type_variables) let widen (gl, tv) = restore_global_level gl; type_variables := tv let enter_type_variable strict loc name = try if name <> "" && name.[0] = '_' then raise (Error (loc, Invalid_variable_name ("'" ^ name))); let v = Tbl.find name !type_variables in if strict then raise Already_bound; v with Not_found -> let v = new_global_var() in type_variables := Tbl.add name v !type_variables; v let type_variable loc name = try Tbl.find name !type_variables with Not_found -> raise(Error(loc, Unbound_type_variable ("'" ^ name))) let wrap_method ty = match (Ctype.repr ty).desc with Tpoly _ -> ty | _ -> Ctype.newty (Tpoly (ty, [])) let new_pre_univar () = let v = newvar () in pre_univars := v :: !pre_univars; v let rec swap_list = function x :: y :: l -> y :: x :: swap_list l | l -> l type policy = Fixed | Extensible | Univars let rec transl_type env policy styp = match styp.ptyp_desc with Ptyp_any -> if policy = Univars then new_pre_univar () else if policy = Fixed then raise (Error (styp.ptyp_loc, Unbound_type_variable "_")) else newvar () | Ptyp_var name -> if name <> "" && name.[0] = '_' then raise (Error (styp.ptyp_loc, Invalid_variable_name ("'" ^ name))); begin try instance (List.assoc name !univars) with Not_found -> try instance (fst(Tbl.find name !used_variables)) with Not_found -> let v = if policy = Univars then new_pre_univar () else newvar () in used_variables := Tbl.add name (v, styp.ptyp_loc) !used_variables; v end | Ptyp_arrow(l, st1, st2) -> let ty1 = transl_type env policy st1 in let ty2 = transl_type env policy st2 in newty (Tarrow(l, ty1, ty2, Cok)) | Ptyp_tuple stl -> newty (Ttuple(List.map (transl_type env policy) stl)) | Ptyp_constr(lid, stl) -> let (path, decl) = try Env.lookup_type lid env with Not_found -> raise(Error(styp.ptyp_loc, Unbound_type_constructor lid)) in if List.length stl <> decl.type_arity then raise(Error(styp.ptyp_loc, Type_arity_mismatch(lid, decl.type_arity, List.length stl))); let args = List.map (transl_type env policy) stl in let params = Ctype.instance_list decl.type_params in let unify_param = match decl.type_manifest with None -> unify_var | Some ty -> if (repr ty).level = Btype.generic_level then unify_var else unify in List.iter2 (fun (sty, ty) ty' -> try unify_param env ty' ty with Unify trace -> raise (Error(sty.ptyp_loc, Type_mismatch (swap_list trace)))) (List.combine stl args) params; let constr = newconstr path args in begin try Ctype.enforce_constraints env constr with Unify trace -> raise (Error(styp.ptyp_loc, Type_mismatch trace)) end; constr | Ptyp_object fields -> newobj (transl_fields env policy fields) | Ptyp_class(lid, stl, present) -> let (path, decl, is_variant) = try let (path, decl) = Env.lookup_type lid env in let rec check decl = match decl.type_manifest with None -> raise Not_found | Some ty -> match (repr ty).desc with Tvariant row when Btype.static_row row -> () | Tconstr (path, _, _) -> check (Env.find_type path env) | _ -> raise Not_found in check decl; Location.prerr_warning styp.ptyp_loc Warnings.Deprecated; (path, decl,true) with Not_found -> try if present <> [] then raise Not_found; let lid2 = match lid with Longident.Lident s -> Longident.Lident ("#" ^ s) | Longident.Ldot(r, s) -> Longident.Ldot (r, "#" ^ s) | Longident.Lapply(_, _) -> fatal_error "Typetexp.transl_type" in let (path, decl) = Env.lookup_type lid2 env in (path, decl, false) with Not_found -> raise(Error(styp.ptyp_loc, Unbound_class lid)) in if List.length stl <> decl.type_arity then raise(Error(styp.ptyp_loc, Type_arity_mismatch(lid, decl.type_arity, List.length stl))); let args = List.map (transl_type env policy) stl in let params = Ctype.instance_list decl.type_params in List.iter2 (fun (sty, ty) ty' -> try unify_var env ty' ty with Unify trace -> raise (Error(sty.ptyp_loc, Type_mismatch (swap_list trace)))) (List.combine stl args) params; let ty = try Ctype.expand_head env (newconstr path args) with Unify trace -> raise (Error(styp.ptyp_loc, Type_mismatch trace)) in begin match ty.desc with Tvariant row -> let row = Btype.row_repr row in List.iter (fun l -> if not (List.mem_assoc l row.row_fields) then raise(Error(styp.ptyp_loc, Present_has_no_type l))) present; let bound = ref row.row_bound in let fields = List.map (fun (l,f) -> l, if List.mem l present then f else match Btype.row_field_repr f with | Rpresent (Some ty) -> bound := ty :: !bound; Reither(false, [ty], false, ref None) | Rpresent None -> Reither (true, [], false, ref None) | _ -> f) row.row_fields in let row = { row_closed = true; row_fields = fields; row_bound = !bound; row_name = Some (path, args); row_fixed = false; row_more = newvar () } in let static = Btype.static_row row in let row = if static then row else { row with row_more = if policy = Univars then new_pre_univar () else newvar () } in newty (Tvariant row) | Tobject (fi, _) -> let _, tv = flatten_fields fi in if policy = Univars then pre_univars := tv :: !pre_univars; ty | _ -> assert false end | Ptyp_alias(st, alias) -> begin try let t = try List.assoc alias !univars with Not_found -> instance (fst(Tbl.find alias !used_variables)) in let ty = transl_type env policy st in begin try unify_var env t ty with Unify trace -> let trace = swap_list trace in raise(Error(styp.ptyp_loc, Alias_type_mismatch trace)) end; ty with Not_found -> if !Clflags.principal then begin_def (); let t = newvar () in used_variables := Tbl.add alias (t, styp.ptyp_loc) !used_variables; let ty = transl_type env policy st in begin try unify_var env t ty with Unify trace -> let trace = swap_list trace in raise(Error(styp.ptyp_loc, Alias_type_mismatch trace)) end; if !Clflags.principal then begin end_def (); generalize_structure t; end; instance t end | Ptyp_variant(fields, closed, present) -> let bound = ref [] and name = ref None in let mkfield l f = newty (Tvariant {row_fields=[l,f]; row_more=newvar(); row_bound=[]; row_closed=true; row_fixed=false; row_name=None}) in let add_typed_field loc l f fields = try let f' = List.assoc l fields in let ty = mkfield l f and ty' = mkfield l f' in if equal env false [ty] [ty'] then fields else raise(Error(loc, Constructor_mismatch (ty,ty'))) with Not_found -> (l, f) :: fields in let rec add_field fields = function Rtag (l, c, stl) -> name := None; let f = match present with Some present when not (List.mem l present) -> let tl = List.map (transl_type env policy) stl in bound := tl @ !bound; Reither(c, tl, false, ref None) | _ -> if List.length stl > 1 || c && stl <> [] then raise(Error(styp.ptyp_loc, Present_has_conjunction l)); match stl with [] -> Rpresent None | st :: _ -> Rpresent (Some(transl_type env policy st)) in add_typed_field styp.ptyp_loc l f fields | Rinherit sty -> let ty = transl_type env policy sty in let nm = match repr ty with {desc=Tconstr(p, tl, _)} -> Some(p, tl) | _ -> None in name := if fields = [] then nm else None; let fl = match expand_head env ty, nm with {desc=Tvariant row}, _ when Btype.static_row row -> let row = Btype.row_repr row in row.row_fields | {desc=Tvar}, Some(p, _) -> raise(Error(sty.ptyp_loc, Unbound_type_constructor_2 p)) | _ -> raise(Error(sty.ptyp_loc, Not_a_variant ty)) in List.fold_left (fun fields (l, f) -> let f = match present with Some present when not (List.mem l present) -> begin match f with Rpresent(Some ty) -> bound := ty :: !bound; Reither(false, [ty], false, ref None) | Rpresent None -> Reither(true, [], false, ref None) | _ -> assert false end | _ -> f in add_typed_field sty.ptyp_loc l f fields) fields fl in let fields = List.fold_left add_field [] fields in begin match present with None -> () | Some present -> List.iter (fun l -> if not (List.mem_assoc l fields) then raise(Error(styp.ptyp_loc, Present_has_no_type l))) present end; (* Check for tag conflicts *) let ht = Hashtbl.create (List.length fields + 1) in List.iter (fun (l,_) -> let h = Btype.hash_variant l in try let l' = Hashtbl.find ht h in if l <> l' then raise(Error(styp.ptyp_loc, Variant_tags(l, l'))) with Not_found -> Hashtbl.add ht h l) fields; let row = { row_fields = List.rev fields; row_more = newvar (); row_bound = !bound; row_closed = closed; row_fixed = false; row_name = !name } in let static = Btype.static_row row in let row = if static then row else { row with row_more = if policy = Univars then new_pre_univar () else if policy = Fixed && not static then raise(Error(styp.ptyp_loc, Unbound_type_variable "[..]")) else row.row_more } in newty (Tvariant row) | Ptyp_poly(vars, st) -> begin_def(); let new_univars = List.map (fun name -> name, newvar()) vars in let old_univars = !univars in univars := new_univars @ !univars; let ty = transl_type env policy st in univars := old_univars; end_def(); generalize ty; let ty_list = List.fold_left (fun tyl (name, ty1) -> let v = Btype.proxy ty1 in if deep_occur v ty then begin if v.level <> Btype.generic_level || v.desc <> Tvar then raise (Error (styp.ptyp_loc, Cannot_quantify (name, v))); v.desc <- Tunivar; v :: tyl end else tyl) [] new_univars in let ty' = Btype.newgenty (Tpoly(ty, List.rev ty_list)) in unify_var env (newvar()) ty'; ty' and transl_fields env policy = function [] -> newty Tnil | {pfield_desc = Pfield_var}::_ -> if policy = Univars then new_pre_univar () else newvar () | {pfield_desc = Pfield(s, e)}::l -> let ty1 = transl_type env policy e in let ty2 = transl_fields env policy l in newty (Tfield (s, Fpresent, ty1, ty2)) (* Make the rows "fixed" in this type, to make universal check easier *) let rec make_fixed_univars ty = let ty = repr ty in if ty.level >= Btype.lowest_level then begin Btype.mark_type_node ty; match ty.desc with | Tvariant row -> let row = Btype.row_repr row in if (Btype.row_more row).desc = Tunivar then ty.desc <- Tvariant {row with row_fixed=true; row_fields = List.map (fun (s,f as p) -> match Btype.row_field_repr f with Reither (c, tl, m, r) -> s, Reither (c, tl, true, r) | _ -> p) row.row_fields}; Btype.iter_row make_fixed_univars row | _ -> Btype.iter_type_expr make_fixed_univars ty end let make_fixed_univars ty = make_fixed_univars ty; Btype.unmark_type ty let globalize_used_variables env fixed = let r = ref [] in Tbl.iter (fun name (ty, loc) -> let v = new_global_var () in let snap = Btype.snapshot () in if try unify env v ty; true with _ -> Btype.backtrack snap; false then try r := (loc, v, Tbl.find name !type_variables) :: !r with Not_found -> if fixed && (repr ty).desc = Tvar then raise(Error(loc, Unbound_type_variable ("'"^name))); let v2 = new_global_var () in r := (loc, v, v2) :: !r; type_variables := Tbl.add name v2 !type_variables) !used_variables; used_variables := Tbl.empty; fun () -> List.iter (function (loc, t1, t2) -> try unify env t1 t2 with Unify trace -> raise (Error(loc, Type_mismatch trace))) !r let transl_simple_type env fixed styp = univars := []; used_variables := Tbl.empty; let typ = transl_type env (if fixed then Fixed else Extensible) styp in globalize_used_variables env fixed (); make_fixed_univars typ; typ let transl_simple_type_univars env styp = univars := []; used_variables := Tbl.empty; pre_univars := []; begin_def (); let typ = transl_type env Univars styp in (* Only keep already global variables in used_variables *) let new_variables = !used_variables in used_variables := Tbl.empty; Tbl.iter (fun name p -> if Tbl.mem name !type_variables then used_variables := Tbl.add name p !used_variables) new_variables; globalize_used_variables env false (); end_def (); generalize typ; let univs = List.fold_left (fun acc v -> let v = repr v in if v.level <> Btype.generic_level || v.desc <> Tvar then acc else (v.desc <- Tunivar ; v :: acc)) [] !pre_univars in make_fixed_univars typ; instance (Btype.newgenty (Tpoly (typ, univs))) let transl_simple_type_delayed env styp = univars := []; used_variables := Tbl.empty; let typ = transl_type env Extensible styp in (typ, globalize_used_variables env false) let transl_type_scheme env styp = reset_type_variables(); begin_def(); let typ = transl_simple_type env false styp in end_def(); generalize typ; typ (* Error report *) open Format open Printtyp let report_error ppf = function | Unbound_type_variable name -> fprintf ppf "Unbound type parameter %s" name | Unbound_type_constructor lid -> fprintf ppf "Unbound type constructor %a" longident lid | Unbound_type_constructor_2 p -> fprintf ppf "The type constructor@ %a@ is not yet completely defined" path p | Type_arity_mismatch(lid, expected, provided) -> fprintf ppf "@[The type constructor %a@ expects %i argument(s),@ \ but is here applied to %i argument(s)@]" longident lid expected provided | Bound_type_variable name -> fprintf ppf "Already bound type parameter '%s" name | Recursive_type -> fprintf ppf "This type is recursive" | Unbound_class lid -> fprintf ppf "Unbound class %a" longident lid | Unbound_row_variable lid -> fprintf ppf "Unbound row variable in #%a" longident lid | Type_mismatch trace -> Printtyp.unification_error true trace (function ppf -> fprintf ppf "This type") ppf (function ppf -> fprintf ppf "should be an instance of type") | Alias_type_mismatch trace -> Printtyp.unification_error true trace (function ppf -> fprintf ppf "This alias is bound to type") ppf (function ppf -> fprintf ppf "but is used as an instance of type") | Present_has_conjunction l -> fprintf ppf "The present constructor %s has a conjunctive type" l | Present_has_no_type l -> fprintf ppf "The present constructor %s has no type" l | Constructor_mismatch (ty, ty') -> Printtyp.reset_and_mark_loops_list [ty; ty']; fprintf ppf "@[%s %a@ %s@ %a@]" "This variant type contains a constructor" Printtyp.type_expr ty "which should be" Printtyp.type_expr ty' | Not_a_variant ty -> Printtyp.reset_and_mark_loops ty; fprintf ppf "@[The type %a@ is not a polymorphic variant type@]" Printtyp.type_expr ty | Variant_tags (lab1, lab2) -> fprintf ppf "Variant tags `%s@ and `%s have same hash value.@ Change one of them." lab1 lab2 | Invalid_variable_name name -> fprintf ppf "The type variable name %s is not allowed in programs" name | Cannot_quantify (name, v) -> fprintf ppf "This type scheme cannot quantify '%s :@ %s." name (if v.desc = Tvar then "it escapes this scope" else if v.desc = Tunivar then "it is aliased to another variable" else "it is not a variable")