(* Insertion of moves to suggest possible spilling / reloading points before register allocation. *) open Reg open Mach (* We say that a register is "destroyed" if it is live across a construct that potentially destroys all physical registers: function calls or try...with constructs. The "destroyed" registers must therefore reside in the stack during these instructions.. We will insert spills (stores) just after they are defined, and reloads just before their first use following a "destroying" construct. Instructions with more live registers than actual registers also "destroy" registers: we mark as "destroyed" the registers live across the instruction that haven't been used for the longest time. These registers will be spilled and reloaded as described above. *) (* Association of spill registers to registers *) let spill_env = ref (Reg.Map.empty: Reg.t Reg.Map.t) let spill_reg r = try Reg.Map.find r !spill_env with Not_found -> let spill_r = Reg.new r.typ in spill_r.spill <- true; if String.length r.name > 0 then spill_r.name <- "spilled-" ^ r.name; spill_env := Reg.Map.add r spill_r !spill_env; spill_r (* Record the position of last use of registers *) let use_date = ref (Reg.Map.empty: int Reg.Map.t) let current_date = ref 0 let record_use regv = for i = 0 to Array.length regv - 1 do let r = regv.(i) in let prev_date = try Reg.Map.find r !use_date with Not_found -> 0 in if !current_date > prev_date then use_date := Reg.Map.add r !current_date !use_date done (* Check if the register pressure overflows the maximum pressure allowed at that point. If so, spill enough registers to lower the pressure. *) let add_superpressure_regs op live_regs res_regs spilled = let max_pressure = Proc.max_register_pressure op in let regs = Reg.add_set_array live_regs res_regs in (* Compute the pressure in each register class *) let pressure = Array.new Proc.num_register_classes 0 in Reg.Set.iter (fun r -> if Reg.Set.mem r spilled then () else begin let c = Proc.register_class r in pressure.(c) <- pressure.(c) + 1 end) regs; (* Check if pressure is exceeded for each class. *) let rec check_pressure class spilled = if class >= Proc.num_register_classes then spilled else if pressure.(class) <= max_pressure.(class) then check_pressure (class+1) spilled else begin (* Find the least recently used, unspilled, unallocated, live register in the class *) let lru_date = ref 1000000 and lru_reg = ref Reg.dummy in Reg.Set.iter (fun r -> if Proc.register_class r = class & not (Reg.Set.mem r spilled) & r.loc = Unknown then begin try let d = Reg.Map.find r !use_date in if d < !lru_date then begin lru_date := d; lru_reg := r end with Not_found -> (* Should not happen *) () end) live_regs; pressure.(class) <- pressure.(class) - 1; check_pressure class (Reg.Set.add !lru_reg spilled) end in check_pressure 0 spilled (* First pass: insert reload instructions based on an approximation of what is destroyed at pressure points. *) let add_reloads regset i = Reg.Set.fold (fun r i -> instr_cons (Iop Ireload) [|spill_reg r|] [|r|] i) regset i let reload_at_exit = ref Reg.Set.empty let reload_at_break = ref Reg.Set.empty let rec reload i before = incr current_date; record_use i.arg; record_use i.res; match i.desc with Iend -> (i, before) | Ireturn | Iop(Itailcall_ind) | Iop(Itailcall_imm _) -> (add_reloads (Reg.inter_set_array before i.arg) i, Reg.Set.empty) | Iop(Icall_ind | Icall_imm _ | Iextcall(_, true)) -> (* All regs live across must be spilled *) let (new_next, finally) = reload i.next i.live in (add_reloads (Reg.inter_set_array before i.arg) (instr_cons i.desc i.arg i.res new_next), finally) | Iop op -> let new_before = (* Quick check to see if the register pressure is below the maximum *) if Reg.Set.cardinal i.live + Array.length i.res <= Proc.safe_register_pressure op then before else add_superpressure_regs op i.live i.res before in let after = Reg.diff_set_array (Reg.diff_set_array new_before i.arg) i.res in let (new_next, finally) = reload i.next after in (add_reloads (Reg.inter_set_array new_before i.arg) (instr_cons i.desc i.arg i.res new_next), finally) | Iifthenelse(test, ifso, ifnot) -> let at_fork = Reg.diff_set_array before i.arg in let date_fork = !current_date in let (new_ifso, after_ifso) = reload ifso at_fork in let date_ifso = !current_date in current_date := date_fork; let (new_ifnot, after_ifnot) = reload ifnot at_fork in current_date := max date_ifso !current_date; let (new_next, finally) = reload i.next (Reg.Set.union after_ifso after_ifnot) in (add_reloads (Reg.inter_set_array before i.arg) (instr_cons (Iifthenelse(test, new_ifso, new_ifnot)) i.arg i.res new_next), finally) | Iswitch(index, cases) -> let at_fork = Reg.diff_set_array before i.arg in let date_fork = !current_date in let date_join = ref 0 in let after_cases = ref Reg.Set.empty in let new_cases = Array.map (fun c -> current_date := date_fork; let (new_c, after_c) = reload c at_fork in after_cases := Reg.Set.union !after_cases after_c; date_join := max !date_join !current_date; new_c) cases in current_date := !date_join; let (new_next, finally) = reload i.next !after_cases in (add_reloads (Reg.inter_set_array before i.arg) (instr_cons (Iswitch(index, new_cases)) i.arg i.res new_next), finally) | Iloop(body) -> let date_start = !current_date in let at_head = ref before in let final_body = ref body in begin try while true do current_date := date_start; let (new_body, new_at_head) = reload body !at_head in let merged_at_head = Reg.Set.union !at_head new_at_head in if Reg.Set.equal merged_at_head !at_head then begin final_body := new_body; raise Exit end; at_head := merged_at_head done with Exit -> () end; let (new_next, finally) = reload i.next Reg.Set.empty in (instr_cons (Iloop(!final_body)) i.arg i.res new_next, finally) | Icatch(body, handler) -> let saved_reload_at_exit = !reload_at_exit in reload_at_exit := Reg.Set.empty; let (new_body, after_body) = reload body before in let at_exit = !reload_at_exit in reload_at_exit := saved_reload_at_exit; let (new_handler, after_handler) = reload handler at_exit in let (new_next, finally) = reload i.next (Reg.Set.union after_body after_handler) in (instr_cons (Icatch(new_body, new_handler)) i.arg i.res new_next, finally) | Iexit -> reload_at_exit := Reg.Set.union !reload_at_exit before; (i, Reg.Set.empty) | Itrywith(body, handler) -> let (new_body, after_body) = reload body before in let (new_handler, after_handler) = reload handler handler.live in let (new_next, finally) = reload i.next (Reg.Set.union after_body after_handler) in (instr_cons (Itrywith(new_body, new_handler)) i.arg i.res new_next, finally) | Iraise -> (add_reloads (Reg.inter_set_array before i.arg) i, Reg.Set.empty) (* Second pass: add spill instructions based on what we've decided to reload. That is, any register that may be reloaded in the future must be spilled just after its definition. *) (* As an optimization, if a register needs to be spilled in one branch of a conditional but not in the other, then we spill it late on entrance in the branch that needs it spilled. This strategy is turned off in loops, as it may prevent a spill from being lifted up all the way out of the loop. Optimization currently turned off -- does not work as implemented. *) let spill_at_exit = ref Reg.Set.empty let spill_at_raise = ref Reg.Set.empty let add_spills regset i = Reg.Set.fold (fun r i -> instr_cons (Iop Ispill) [|r|] [|spill_reg r|] i) regset i let rec spill i finally = match i.desc with Iend -> (i, finally) | Ireturn | Iop(Itailcall_ind) | Iop(Itailcall_imm _) -> (i, Reg.Set.empty) | Iop Ireload -> let (new_next, after) = spill i.next finally in let before1 = Reg.diff_set_array after i.res in (instr_cons i.desc i.arg i.res new_next, Reg.add_set_array before1 i.res) | Iop _ -> let (new_next, after) = spill i.next finally in let before1 = Reg.diff_set_array after i.res in let before = match i.desc with Iop(Icall_ind) | Iop(Icall_imm _) | Iop(Iextcall(_, _)) -> Reg.Set.union before1 !spill_at_raise | _ -> before1 in (instr_cons i.desc i.arg i.res (add_spills (Reg.inter_set_array after i.res) new_next), before) | Iifthenelse(test, ifso, ifnot) -> let (new_next, at_join) = spill i.next finally in let (new_ifso, before_ifso) = spill ifso at_join in let (new_ifnot, before_ifnot) = spill ifnot at_join in (instr_cons (Iifthenelse(test, new_ifso, new_ifnot)) i.arg i.res new_next, Reg.Set.union before_ifso before_ifnot) (**** if !inside_loop then (instr_cons (Iifthenelse(test, add_spills (Reg.Set.diff before_ifso before_ifnot) new_ifso, add_spills (Reg.Set.diff before_ifnot before_ifso) new_ifnot)) i.arg i.res new_next, Reg.Set.inter before_ifso before_ifnot) *****) | Iswitch(index, cases) -> let (new_next, at_join) = spill i.next finally in let before = ref Reg.Set.empty in let new_cases = Array.map (fun c -> let (new_c, before_c) = spill c at_join in before := Reg.Set.union !before before_c; new_c) cases in (instr_cons (Iswitch(index, new_cases)) i.arg i.res new_next, !before) | Iloop(body) -> let (new_next, _) = spill i.next finally in let at_head = ref Reg.Set.empty in let final_body = ref body in begin try while true do let (new_body, before_body) = spill body !at_head in let new_at_head = Reg.Set.union !at_head before_body in if Reg.Set.equal new_at_head !at_head then begin final_body := new_body; raise Exit end; at_head := new_at_head done with Exit -> () end; (instr_cons (Iloop(!final_body)) i.arg i.res new_next, !at_head) | Icatch(body, handler) -> let (new_next, at_join) = spill i.next finally in let (new_handler, at_exit) = spill handler at_join in let saved_spill_at_exit = !spill_at_exit in spill_at_exit := at_exit; let (new_body, before) = spill body at_join in spill_at_exit := saved_spill_at_exit; (instr_cons (Icatch(new_body, new_handler)) i.arg i.res new_next, before) | Iexit -> (i, !spill_at_exit) | Itrywith(body, handler) -> let (new_next, at_join) = spill i.next finally in let (new_handler, before_handler) = spill handler at_join in let saved_spill_at_raise = !spill_at_raise in spill_at_raise := before_handler; let (new_body, before_body) = spill body at_join in spill_at_raise := saved_spill_at_raise; (instr_cons (Itrywith(new_body, new_handler)) i.arg i.res new_next, before_body) | Iraise -> (i, !spill_at_raise) (* Entry point *) let fundecl f = spill_env := Reg.Map.empty; use_date := Reg.Map.empty; current_date := 0; let (body1, _) = reload f.fun_body Reg.Set.empty in let (body2, tospill_at_entry) = spill body1 Reg.Set.empty in let new_body = add_spills (Reg.inter_set_array tospill_at_entry f.fun_args) body2 in spill_env := Reg.Map.empty; use_date := Reg.Map.empty; { fun_name = f.fun_name; fun_args = f.fun_args; fun_body = new_body; fun_fast = f.fun_fast }