(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU Library General Public License. *) (* *) (***********************************************************************) (* $Id$ *) (** Association tables over ordered types. This module implements applicative association tables, also known as finite maps or dictionaries, given a total ordering function over the keys. All operations over maps are purely applicative (no side-effects). The implementation uses balanced binary trees, and therefore searching and insertion take time logarithmic in the size of the map. *) module type OrderedType = sig type t val compare : t -> t -> int end (** The input signature of the functor [Map.Make]. [t] is the type of the map keys. [compare] is a total ordering function over the keys. This is a two-argument function [f] such that [f e1 e2] is zero if the keys [e1] and [e2] are equal, [f e1 e2] is strictly negative if [e1] is smaller than [e2], and [f e1 e2] is strictly positive if [e1] is greater than [e2]. Example: a suitable ordering function is the generic structural comparison function {!Pervasives.compare}. *) module type S = sig type key type +'a t val empty : 'a t val add : key -> 'a -> 'a t -> 'a t val find : key -> 'a t -> 'a val remove : key -> 'a t -> 'a t val mem : key -> 'a t -> bool val iter : (key -> 'a -> unit) -> 'a t -> unit val map : ('a -> 'b) -> 'a t -> 'b t val mapi : (key -> 'a -> 'b) -> 'a t -> 'b t val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b end module Make (Ord : OrderedType) : S with type key = Ord.t (** Functor building an implementation of the map structure given a totally ordered type. *)