(***********************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU Library General Public License, with *) (* the special exception on linking described in file ../LICENSE. *) (* *) (***********************************************************************) (** 64-bit integers. This module provides operations on the type [int64] of signed 64-bit integers. Unlike the built-in [int] type, the type [int64] is guaranteed to be exactly 64-bit wide on all platforms. All arithmetic operations over [int64] are taken modulo 2{^64} Performance notice: values of type [int64] occupy more memory space than values of type [int], and arithmetic operations on [int64] are generally slower than those on [int]. Use [int64] only when the application requires exact 64-bit arithmetic. *) val zero : int64 (** The 64-bit integer 0. *) val one : int64 (** The 64-bit integer 1. *) val minus_one : int64 (** The 64-bit integer -1. *) external neg : int64 -> int64 = "%int64_neg" (** Unary negation. *) external add : int64 -> int64 -> int64 = "%int64_add" (** Addition. *) external sub : int64 -> int64 -> int64 = "%int64_sub" (** Subtraction. *) external mul : int64 -> int64 -> int64 = "%int64_mul" (** Multiplication. *) external div : int64 -> int64 -> int64 = "%int64_div" (** Integer division. Raise [Division_by_zero] if the second argument is zero. This division rounds the real quotient of its arguments towards zero, as specified for {!Pervasives.(/)}. *) external rem : int64 -> int64 -> int64 = "%int64_mod" (** Integer remainder. If [y] is not zero, the result of [Int64.rem x y] satisfies the following property: [x = Int64.add (Int64.mul (Int64.div x y) y) (Int64.rem x y)]. If [y = 0], [Int64.rem x y] raises [Division_by_zero]. *) val succ : int64 -> int64 (** Successor. [Int64.succ x] is [Int64.add x Int64.one]. *) val pred : int64 -> int64 (** Predecessor. [Int64.pred x] is [Int64.sub x Int64.one]. *) val abs : int64 -> int64 (** Return the absolute value of its argument. *) val max_int : int64 (** The greatest representable 64-bit integer, 2{^63} - 1. *) val min_int : int64 (** The smallest representable 64-bit integer, -2{^63}. *) external logand : int64 -> int64 -> int64 = "%int64_and" (** Bitwise logical and. *) external logor : int64 -> int64 -> int64 = "%int64_or" (** Bitwise logical or. *) external logxor : int64 -> int64 -> int64 = "%int64_xor" (** Bitwise logical exclusive or. *) val lognot : int64 -> int64 (** Bitwise logical negation *) external shift_left : int64 -> int -> int64 = "%int64_lsl" (** [Int64.shift_left x y] shifts [x] to the left by [y] bits. The result is unspecified if [y < 0] or [y >= 64]. *) external shift_right : int64 -> int -> int64 = "%int64_asr" (** [Int64.shift_right x y] shifts [x] to the right by [y] bits. This is an arithmetic shift: the sign bit of [x] is replicated and inserted in the vacated bits. The result is unspecified if [y < 0] or [y >= 64]. *) external shift_right_logical : int64 -> int -> int64 = "%int64_lsr" (** [Int64.shift_right_logical x y] shifts [x] to the right by [y] bits. This is a logical shift: zeroes are inserted in the vacated bits regardless of the sign of [x]. The result is unspecified if [y < 0] or [y >= 64]. *) external of_int : int -> int64 = "%int64_of_int" (** Convert the given integer (type [int]) to a 64-bit integer (type [int64]). *) external to_int : int64 -> int = "%int64_to_int" (** Convert the given 64-bit integer (type [int64]) to an integer (type [int]). On 64-bit platforms, the 64-bit integer is taken modulo 2{^63}, i.e. the high-order bit is lost during the conversion. On 32-bit platforms, the 64-bit integer is taken modulo 2{^31}, i.e. the top 33 bits are lost during the conversion. *) external of_float : float -> int64 = "caml_int64_of_float" (** Convert the given floating-point number to a 64-bit integer, discarding the fractional part (truncate towards 0). The result of the conversion is undefined if, after truncation, the number is outside the range \[{!Int64.min_int}, {!Int64.max_int}\]. *) external to_float : int64 -> float = "caml_int64_to_float" (** Convert the given 64-bit integer to a floating-point number. *) external of_int32 : int32 -> int64 = "%int64_of_int32" (** Convert the given 32-bit integer (type [int32]) to a 64-bit integer (type [int64]). *) external to_int32 : int64 -> int32 = "%int64_to_int32" (** Convert the given 64-bit integer (type [int64]) to a 32-bit integer (type [int32]). The 64-bit integer is taken modulo 2{^32}, i.e. the top 32 bits are lost during the conversion. *) external of_nativeint : nativeint -> int64 = "%int64_of_nativeint" (** Convert the given native integer (type [nativeint]) to a 64-bit integer (type [int64]). *) external to_nativeint : int64 -> nativeint = "%int64_to_nativeint" (** Convert the given 64-bit integer (type [int64]) to a native integer. On 32-bit platforms, the 64-bit integer is taken modulo 2{^32}. On 64-bit platforms, the conversion is exact. *) external of_string : string -> int64 = "caml_int64_of_string" (** Convert the given string to a 64-bit integer. The string is read in decimal (by default) or in hexadecimal, octal or binary if the string begins with [0x], [0o] or [0b] respectively. Raise [Failure "int_of_string"] if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type [int64]. *) val to_string : int64 -> string (** Return the string representation of its argument, in decimal. *) external bits_of_float : float -> int64 = "caml_int64_bits_of_float" (** Return the internal representation of the given float according to the IEEE 754 floating-point 'double format' bit layout. Bit 63 of the result represents the sign of the float; bits 62 to 52 represent the (biased) exponent; bits 51 to 0 represent the mantissa. *) external float_of_bits : int64 -> float = "caml_int64_float_of_bits" (** Return the floating-point number whose internal representation, according to the IEEE 754 floating-point 'double format' bit layout, is the given [int64]. *) type t = int64 (** An alias for the type of 64-bit integers. *) val compare: t -> t -> int (** The comparison function for 64-bit integers, with the same specification as {!Pervasives.compare}. Along with the type [t], this function [compare] allows the module [Int64] to be passed as argument to the functors {!Set.Make} and {!Map.Make}. *) val equal: t -> t -> bool (** The equal function for int64s. @since 4.03.0 *) (**/**) (** {6 Deprecated functions} *) external format : string -> int64 -> string = "caml_int64_format" (** Do not use this deprecated function. Instead, used {!Printf.sprintf} with a [%L...] format. *)