(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Description of the Power PC *) open Misc open Cmm open Reg open Arch open Mach (* Instruction selection *) let word_addressed = false (* Registers available for register allocation *) (* Integer register map: 0 temporary, null register for some operations 1 stack pointer 2 pointer to table of contents 3 - 10 function arguments and results 11 - 12 temporaries 13 pointer to small data area 14 - 27 general purpose, preserved by C 28 domain state pointer 29 trap pointer 30 allocation limit 31 allocation pointer Floating-point register map: 0 temporary 1 - 13 function arguments and results 14 - 31 general purpose, preserved by C *) let int_reg_name = [| "3"; "4"; "5"; "6"; "7"; "8"; "9"; "10"; "14"; "15"; "16"; "17"; "18"; "19"; "20"; "21"; "22"; "23"; "24"; "25"; "26"; "27" |] let float_reg_name = [| "1"; "2"; "3"; "4"; "5"; "6"; "7"; "8"; "9"; "10"; "11"; "12"; "13"; "14"; "15"; "16"; "17"; "18"; "19"; "20"; "21"; "22"; "23"; "24"; "25"; "26"; "27"; "28"; "29"; "30"; "31" |] let num_register_classes = 2 let register_class r = match r.typ with | Val | Int | Addr -> 0 | Float -> 1 let num_available_registers = [| 22; 31 |] let first_available_register = [| 0; 100 |] let register_name r = if r < 100 then int_reg_name.(r) else float_reg_name.(r - 100) let rotate_registers = true (* Representation of hard registers by pseudo-registers *) let hard_int_reg = let v = Array.make 22 Reg.dummy in for i = 0 to 21 do v.(i) <- Reg.at_location Int (Reg i) done; v let hard_float_reg = let v = Array.make 31 Reg.dummy in for i = 0 to 30 do v.(i) <- Reg.at_location Float (Reg(100 + i)) done; v let all_phys_regs = Array.append hard_int_reg hard_float_reg let phys_reg n = if n < 100 then hard_int_reg.(n) else hard_float_reg.(n - 100) let stack_slot slot ty = Reg.at_location ty (Stack slot) (* Calling conventions *) let loc_int last_int make_stack reg_use_stack int ofs = if !int <= last_int then begin let l = phys_reg !int in incr int; if reg_use_stack then ofs := !ofs + size_int; l end else begin let l = stack_slot (make_stack !ofs) Int in ofs := !ofs + size_int; l end let loc_float last_float make_stack reg_use_stack int float ofs = if !float <= last_float then begin let l = phys_reg !float in incr float; (* On 64-bit platforms, passing a float in a float register reserves a normal register as well *) if size_int = 8 then incr int; if reg_use_stack then ofs := !ofs + size_float; l end else begin ofs := Misc.align !ofs size_float; let l = stack_slot (make_stack !ofs) Float in ofs := !ofs + size_float; l end let loc_int_pair last_int make_stack int ofs = (* 64-bit quantities split across two registers must either be in a consecutive pair of registers where the lowest numbered is an even-numbered register; or in a stack slot that is 8-byte aligned. *) int := Misc.align !int 2; if !int <= last_int - 1 then begin let reg_lower = phys_reg !int in let reg_upper = phys_reg (1 + !int) in int := !int + 2; [| reg_lower; reg_upper |] end else begin ofs := Misc.align !ofs 8; let stack_lower = stack_slot (make_stack !ofs) Int in let stack_upper = stack_slot (make_stack (size_int + !ofs)) Int in ofs := !ofs + 8; [| stack_lower; stack_upper |] end let calling_conventions first_int last_int first_float last_float make_stack arg = let loc = Array.make (Array.length arg) Reg.dummy in let int = ref first_int in let float = ref first_float in let ofs = ref 0 in for i = 0 to Array.length arg - 1 do match arg.(i) with | Val | Int | Addr -> loc.(i) <- loc_int last_int make_stack false int ofs | Float -> loc.(i) <- loc_float last_float make_stack false int float ofs done; (loc, Misc.align !ofs 16) (* keep stack 16-aligned *) let incoming ofs = Incoming ofs let outgoing ofs = Outgoing ofs let not_supported _ofs = fatal_error "Proc.loc_results: cannot call" let max_arguments_for_tailcalls = 8 let loc_arguments arg = calling_conventions 0 7 100 112 outgoing arg let loc_parameters arg = let (loc, _ofs) = calling_conventions 0 7 100 112 incoming arg in loc let loc_results res = let (loc, _ofs) = calling_conventions 0 7 100 112 not_supported res in loc (* C calling conventions for ELF32: use GPR 3-10 and FPR 1-8 just like ML calling conventions. Using a float register does not affect the int registers. Always reserve 8 bytes at bottom of stack, plus whatever is needed to hold the overflow arguments. C calling conventions for ELF64v1: Use GPR 3-10 for the first integer arguments. Use FPR 1-13 for the first float arguments. Always reserve stack space for all arguments, even when passed in registers. Always reserve at least 8 words (64 bytes) for the arguments. Always reserve 48 bytes at bottom of stack, plus whatever is needed to hold the arguments. The reserved 48 bytes are automatically added in emit.mlp and need not appear here. C calling conventions for ELF64v2: Use GPR 3-10 for the first integer arguments. Use FPR 1-13 for the first float arguments. If all arguments fit in registers, don't reserve stack space. Otherwise, reserve stack space for all arguments. Always reserve 32 bytes at bottom of stack, plus whatever is needed to hold the arguments. The reserved 32 bytes are automatically added in emit.mlp and need not appear here. *) let external_calling_conventions first_int last_int first_float last_float make_stack stack_ofs reg_use_stack ty_args = let loc = Array.make (List.length ty_args) [| Reg.dummy |] in let int = ref first_int in let float = ref first_float in let ofs = ref stack_ofs in List.iteri (fun i ty_arg -> match ty_arg with | XInt | XInt32 -> loc.(i) <- [| loc_int last_int make_stack reg_use_stack int ofs |] | XInt64 -> if size_int = 4 then begin assert (not reg_use_stack); loc.(i) <- loc_int_pair last_int make_stack int ofs end else loc.(i) <- [| loc_int last_int make_stack reg_use_stack int ofs |] | XFloat -> loc.(i) <- [| loc_float last_float make_stack reg_use_stack int float ofs |]) ty_args; (loc, Misc.align !ofs 16) (* Keep stack 16-aligned *) let loc_external_arguments ty_args = match abi with | ELF32 -> external_calling_conventions 0 7 100 107 outgoing 8 false ty_args | ELF64v1 -> let (loc, ofs) = external_calling_conventions 0 7 100 112 outgoing 0 true ty_args in (loc, max ofs 64) | ELF64v2 -> let (loc, ofs) = external_calling_conventions 0 7 100 112 outgoing 0 true ty_args in if Array.fold_left (fun stk r -> assert (Array.length r = 1); match r.(0).loc with | Stack _ -> true | _ -> stk) false loc then (loc, ofs) else (loc, 0) (* Results are in GPR 3 and FPR 1 *) let loc_external_results res = let (loc, _ofs) = calling_conventions 0 1 100 100 not_supported res in loc (* Exceptions are in GPR 3 *) let loc_exn_bucket = phys_reg 0 (* For ELF32 see: "System V Application Binary Interface PowerPC Processor Supplement" http://refspecs.linux-foundation.org/elf/elfspec_ppc.pdf For ELF64v1 see: "64-bit PowerPC ELF Application Binary Interface Supplement 1.9" http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html For ELF64v2 see: "64-Bit ELF V2 ABI Specification -- Power Architecture" http://openpowerfoundation.org/wp-content/uploads/resources/leabi/ content/dbdoclet.50655239___RefHeading___Toc377640569.html All of these specifications seem to agree on the numberings we need. *) let int_dwarf_reg_numbers = [| 3; 4; 5; 6; 7; 8; 9; 10; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; |] let float_dwarf_reg_numbers = [| 33; 34; 35; 36; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47; 48; 49; 50; 51; 52; 53; 54; 55; 56; 57; 58; 59; 60; 61; 62; 63; |] let dwarf_register_numbers ~reg_class = match reg_class with | 0 -> int_dwarf_reg_numbers | 1 -> float_dwarf_reg_numbers | _ -> Misc.fatal_errorf "Bad register class %d" reg_class let stack_ptr_dwarf_register_number = 1 (* Volatile registers: none *) let regs_are_volatile _rs = false (* Registers destroyed by operations *) let destroyed_at_c_call = Array.of_list(List.map phys_reg [0; 1; 2; 3; 4; 5; 6; 7; 100; 101; 102; 103; 104; 105; 106; 107; 108; 109; 110; 111; 112]) let destroyed_at_oper = function Iop(Icall_ind _ | Icall_imm _ | Iextcall { alloc = true; _ }) -> all_phys_regs | Iop(Iextcall { alloc = false; _ }) -> destroyed_at_c_call | _ -> [||] let destroyed_at_raise = all_phys_regs let destroyed_at_reloadretaddr = [| phys_reg 11 |] (* Maximal register pressure *) let safe_register_pressure = function Iextcall _ -> 14 | _ -> 22 let max_register_pressure = function Iextcall _ -> [| 14; 18 |] | _ -> [| 22; 30 |] (* Pure operations (without any side effect besides updating their result registers). *) let op_is_pure = function | Icall_ind _ | Icall_imm _ | Itailcall_ind _ | Itailcall_imm _ | Iextcall _ | Istackoffset _ | Istore _ | Ialloc _ | Iintop(Icheckbound _) | Iintop_imm(Icheckbound _, _) -> false | Ispecific(Imultaddf | Imultsubf) -> true | Ispecific _ -> false | _ -> true (* Layout of the stack *) (* See [reserved_stack_space] in emit.mlp. *) let reserved_stack_space_required () = match abi with | ELF32 -> false | ELF64v1 | ELF64v2 -> true let frame_required fd = let is_elf32 = match abi with | ELF32 -> true | ELF64v1 | ELF64v2 -> false in reserved_stack_space_required () || fd.fun_num_stack_slots.(0) > 0 || fd.fun_num_stack_slots.(1) > 0 || (fd.fun_contains_calls && is_elf32) let prologue_required fd = frame_required fd (* Calling the assembler *) let assemble_file infile outfile = Ccomp.command (Config.asm ^ " " ^ (String.concat " " (Misc.debug_prefix_map_flags ())) ^ " -o " ^ Filename.quote outfile ^ " " ^ Filename.quote infile) let init () = ()