(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Valerie Menissier-Morain, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU Library General Public License, with *) (* the special exception on linking described in file ../../LICENSE. *) (* *) (***********************************************************************) (* $Id$ *) open Int_misc open Nat type big_int = { sign : int; abs_value : nat } let create_big_int sign nat = if sign = 1 || sign = -1 || (sign = 0 && is_zero_nat nat 0 (num_digits_nat nat 0 (length_nat nat))) then { sign = sign; abs_value = nat } else invalid_arg "create_big_int" (* Sign of a big_int *) let sign_big_int bi = bi.sign let zero_big_int = { sign = 0; abs_value = make_nat 1 } let unit_big_int = { sign = 1; abs_value = nat_of_int 1 } (* Number of digits in a big_int *) let num_digits_big_int bi = num_digits_nat (bi.abs_value) 0 (length_nat bi.abs_value) (* Opposite of a big_int *) let minus_big_int bi = { sign = - bi.sign; abs_value = copy_nat (bi.abs_value) 0 (num_digits_big_int bi)} (* Absolute value of a big_int *) let abs_big_int bi = { sign = if bi.sign = 0 then 0 else 1; abs_value = copy_nat (bi.abs_value) 0 (num_digits_big_int bi)} (* Comparison operators on big_int *) (* compare_big_int (bi, bi2) = sign of (bi-bi2) i.e. 1 if bi > bi2 0 if bi = bi2 -1 if bi < bi2 *) let compare_big_int bi1 bi2 = if bi1.sign = 0 && bi2.sign = 0 then 0 else if bi1.sign < bi2.sign then -1 else if bi1.sign > bi2.sign then 1 else if bi1.sign = 1 then compare_nat (bi1.abs_value) 0 (num_digits_big_int bi1) (bi2.abs_value) 0 (num_digits_big_int bi2) else compare_nat (bi2.abs_value) 0 (num_digits_big_int bi2) (bi1.abs_value) 0 (num_digits_big_int bi1) let eq_big_int bi1 bi2 = compare_big_int bi1 bi2 = 0 and le_big_int bi1 bi2 = compare_big_int bi1 bi2 <= 0 and ge_big_int bi1 bi2 = compare_big_int bi1 bi2 >= 0 and lt_big_int bi1 bi2 = compare_big_int bi1 bi2 < 0 and gt_big_int bi1 bi2 = compare_big_int bi1 bi2 > 0 let max_big_int bi1 bi2 = if lt_big_int bi1 bi2 then bi2 else bi1 and min_big_int bi1 bi2 = if gt_big_int bi1 bi2 then bi2 else bi1 (* Operations on big_int *) let pred_big_int bi = match bi.sign with 0 -> { sign = -1; abs_value = nat_of_int 1} | 1 -> let size_bi = num_digits_big_int bi in let copy_bi = copy_nat (bi.abs_value) 0 size_bi in decr_nat copy_bi 0 size_bi 0; { sign = if is_zero_nat copy_bi 0 size_bi then 0 else 1; abs_value = copy_bi } | _ -> let size_bi = num_digits_big_int bi in let size_res = succ (size_bi) in let copy_bi = create_nat (size_res) in blit_nat copy_bi 0 (bi.abs_value) 0 size_bi; set_digit_nat copy_bi size_bi 0; incr_nat copy_bi 0 size_res 1; { sign = -1; abs_value = copy_bi } let succ_big_int bi = match bi.sign with 0 -> {sign = 1; abs_value = nat_of_int 1} | -1 -> let size_bi = num_digits_big_int bi in let copy_bi = copy_nat (bi.abs_value) 0 size_bi in decr_nat copy_bi 0 size_bi 0; { sign = if is_zero_nat copy_bi 0 size_bi then 0 else -1; abs_value = copy_bi } | _ -> let size_bi = num_digits_big_int bi in let size_res = succ (size_bi) in let copy_bi = create_nat (size_res) in blit_nat copy_bi 0 (bi.abs_value) 0 size_bi; set_digit_nat copy_bi size_bi 0; incr_nat copy_bi 0 size_res 1; { sign = 1; abs_value = copy_bi } let add_big_int bi1 bi2 = let size_bi1 = num_digits_big_int bi1 and size_bi2 = num_digits_big_int bi2 in if bi1.sign = bi2.sign then (* Add absolute values if signs are the same *) { sign = bi1.sign; abs_value = match compare_nat (bi1.abs_value) 0 size_bi1 (bi2.abs_value) 0 size_bi2 with -1 -> let res = create_nat (succ size_bi2) in (blit_nat res 0 (bi2.abs_value) 0 size_bi2; set_digit_nat res size_bi2 0; add_nat res 0 (succ size_bi2) (bi1.abs_value) 0 size_bi1 0; res) |_ -> let res = create_nat (succ size_bi1) in (blit_nat res 0 (bi1.abs_value) 0 size_bi1; set_digit_nat res size_bi1 0; add_nat res 0 (succ size_bi1) (bi2.abs_value) 0 size_bi2 0; res)} else (* Subtract absolute values if signs are different *) match compare_nat (bi1.abs_value) 0 size_bi1 (bi2.abs_value) 0 size_bi2 with 0 -> zero_big_int | 1 -> { sign = bi1.sign; abs_value = let res = copy_nat (bi1.abs_value) 0 size_bi1 in (sub_nat res 0 size_bi1 (bi2.abs_value) 0 size_bi2 1; res) } | _ -> { sign = bi2.sign; abs_value = let res = copy_nat (bi2.abs_value) 0 size_bi2 in (sub_nat res 0 size_bi2 (bi1.abs_value) 0 size_bi1 1; res) } (* Coercion with int type *) let big_int_of_int i = { sign = sign_int i; abs_value = let res = (create_nat 1) in (if i = monster_int then (set_digit_nat res 0 biggest_int; incr_nat res 0 1 1; ()) else set_digit_nat res 0 (abs i)); res } let add_int_big_int i bi = add_big_int (big_int_of_int i) bi let sub_big_int bi1 bi2 = add_big_int bi1 (minus_big_int bi2) (* Returns i * bi *) let mult_int_big_int i bi = let size_bi = num_digits_big_int bi in let size_res = succ size_bi in if i = monster_int then let res = create_nat size_res in blit_nat res 0 (bi.abs_value) 0 size_bi; mult_digit_nat res 0 size_res (bi.abs_value) 0 size_bi (nat_of_int biggest_int) 0; { sign = - (sign_big_int bi); abs_value = res } else let res = make_nat (size_res) in mult_digit_nat res 0 size_res (bi.abs_value) 0 size_bi (nat_of_int (abs i)) 0; { sign = (sign_int i) * (sign_big_int bi); abs_value = res } let mult_big_int bi1 bi2 = let size_bi1 = num_digits_big_int bi1 and size_bi2 = num_digits_big_int bi2 in let size_res = size_bi1 + size_bi2 in let res = make_nat (size_res) in { sign = bi1.sign * bi2.sign; abs_value = if size_bi2 > size_bi1 then (mult_nat res 0 size_res (bi2.abs_value) 0 size_bi2 (bi1.abs_value) 0 size_bi1;res) else (mult_nat res 0 size_res (bi1.abs_value) 0 size_bi1 (bi2.abs_value) 0 size_bi2;res) } (* (quotient, rest) of the euclidian division of 2 big_int *) let quomod_big_int bi1 bi2 = if bi2.sign = 0 then raise Division_by_zero else let size_bi1 = num_digits_big_int bi1 and size_bi2 = num_digits_big_int bi2 in match compare_nat (bi1.abs_value) 0 size_bi1 (bi2.abs_value) 0 size_bi2 with -1 -> (* 1/2 -> 0, reste 1, -1/2 -> -1, reste 1 *) if bi1.sign = -1 then (big_int_of_int(-1), add_big_int bi2 bi1) else (big_int_of_int 0, bi1) | 0 -> (big_int_of_int (bi1.sign * bi2.sign), zero_big_int) | _ -> let bi1_negatif = bi1.sign = -1 in let size_q = if bi1_negatif then succ (max (succ (size_bi1 - size_bi2)) 1) else max (succ (size_bi1 - size_bi2)) 1 and size_r = succ (max size_bi1 size_bi2) (* r is long enough to contain both quotient and remainder *) (* of the euclidian division *) in (* set up quotient, remainder *) let q = create_nat size_q and r = create_nat size_r in blit_nat r 0 (bi1.abs_value) 0 size_bi1; set_to_zero_nat r size_bi1 (size_r - size_bi1); (* do the division of |bi1| by |bi2| - at the beginning, r contains |bi1| - at the end, r contains * in the size_bi2 least significant digits, the remainder * in the size_r-size_bi2 most significant digits, the quotient note the conditions for application of div_nat are verified here *) div_nat r 0 size_r (bi2.abs_value) 0 size_bi2; (* separate quotient and remainder *) blit_nat q 0 r size_bi2 (size_r - size_bi2); let not_null_mod = not (is_zero_nat r 0 size_bi2) in (* correct the signs, adjusting the quotient and remainder *) if bi1_negatif && not_null_mod then (* bi1<0, r>0, noting r for (r, size_bi2) the remainder, *) (* we have |bi1|=q * |bi2| + r with 0 < r < |bi2|, *) (* thus -bi1 = q * |bi2| + r *) (* and bi1 = (-q) * |bi2| + (-r) with -|bi2| < (-r) < 0 *) (* thus bi1 = -(q+1) * |bi2| + (|bi2|-r) *) (* with 0 < (|bi2|-r) < |bi2| *) (* so the quotient has for sign the opposite of the bi2'one *) (* and for value q+1 *) (* and the remainder is strictly positive *) (* has for value |bi2|-r *) (let new_r = copy_nat (bi2.abs_value) 0 size_bi2 in (* new_r contains (r, size_bi2) the remainder *) { sign = - bi2.sign; abs_value = (set_digit_nat q (pred size_q) 0; incr_nat q 0 size_q 1; q) }, { sign = 1; abs_value = (sub_nat new_r 0 size_bi2 r 0 size_bi2 1; new_r) }) else (if bi1_negatif then set_digit_nat q (pred size_q) 0; { sign = if is_zero_nat q 0 size_q then 0 else bi1.sign * bi2.sign; abs_value = q }, { sign = if not_null_mod then 1 else 0; abs_value = copy_nat r 0 size_bi2 }) let div_big_int bi1 bi2 = fst (quomod_big_int bi1 bi2) and mod_big_int bi1 bi2 = snd (quomod_big_int bi1 bi2) let gcd_big_int bi1 bi2 = let size_bi1 = num_digits_big_int bi1 and size_bi2 = num_digits_big_int bi2 in if is_zero_nat (bi1.abs_value) 0 size_bi1 then abs_big_int bi2 else if is_zero_nat (bi2.abs_value) 0 size_bi2 then { sign = 1; abs_value = bi1.abs_value } else { sign = 1; abs_value = match compare_nat (bi1.abs_value) 0 size_bi1 (bi2.abs_value) 0 size_bi2 with 0 -> bi1.abs_value | 1 -> let res = copy_nat (bi1.abs_value) 0 size_bi1 in let len = gcd_nat res 0 size_bi1 (bi2.abs_value) 0 size_bi2 in copy_nat res 0 len | _ -> let res = copy_nat (bi2.abs_value) 0 size_bi2 in let len = gcd_nat res 0 size_bi2 (bi1.abs_value) 0 size_bi1 in copy_nat res 0 len } (* Coercion operators *) let monster_big_int = big_int_of_int monster_int;; let monster_nat = monster_big_int.abs_value;; let is_int_big_int bi = num_digits_big_int bi == 1 && match compare_nat bi.abs_value 0 1 monster_nat 0 1 with | 0 -> bi.sign == -1 | -1 -> true | _ -> false;; let int_of_big_int bi = try let n = int_of_nat bi.abs_value in if bi.sign = -1 then - n else n with Failure _ -> if eq_big_int bi monster_big_int then monster_int else failwith "int_of_big_int";; (* Coercion with nat type *) let nat_of_big_int bi = if bi.sign = -1 then failwith "nat_of_big_int" else copy_nat (bi.abs_value) 0 (num_digits_big_int bi) let sys_big_int_of_nat nat off len = let length = num_digits_nat nat off len in { sign = if is_zero_nat nat off length then 0 else 1; abs_value = copy_nat nat off length } let big_int_of_nat nat = sys_big_int_of_nat nat 0 (length_nat nat) (* Coercion with string type *) let string_of_big_int bi = if bi.sign = -1 then "-" ^ string_of_nat bi.abs_value else string_of_nat bi.abs_value let sys_big_int_of_string_aux s ofs len sgn = if len < 1 then failwith "sys_big_int_of_string"; let n = sys_nat_of_string 10 s ofs len in if is_zero_nat n 0 (length_nat n) then zero_big_int else {sign = sgn; abs_value = n} ;; let sys_big_int_of_string s ofs len = match s.[ofs] with | '-' -> sys_big_int_of_string_aux s (ofs+1) (len-1) (-1) | '+' -> sys_big_int_of_string_aux s (ofs+1) (len-1) 1 | _ -> sys_big_int_of_string_aux s ofs len 1 ;; let big_int_of_string s = sys_big_int_of_string s 0 (String.length s) let power_base_nat base nat off len = if is_zero_nat nat off len then nat_of_int 1 else let power_base = make_nat (succ length_of_digit) in let (pmax, pint) = make_power_base base power_base in let (n, rem) = let (x, y) = quomod_big_int (sys_big_int_of_nat nat off len) (big_int_of_int (succ pmax)) in (int_of_big_int x, int_of_big_int y) in if n = 0 then copy_nat power_base (pred rem) 1 else begin let res = make_nat n and res2 = make_nat (succ n) and l = num_bits_int n - 2 in let p = ref (1 lsl l) in blit_nat res 0 power_base pmax 1; for i = l downto 0 do let len = num_digits_nat res 0 n in let len2 = min n (2 * len) in let succ_len2 = succ len2 in square_nat res2 0 len2 res 0 len; begin if n land !p > 0 then (set_to_zero_nat res 0 len; mult_digit_nat res 0 succ_len2 res2 0 len2 power_base pmax; ()) else blit_nat res 0 res2 0 len2 end; set_to_zero_nat res2 0 len2; p := !p lsr 1 done; if rem > 0 then (mult_digit_nat res2 0 (succ n) res 0 n power_base (pred rem); res2) else res end let power_int_positive_int i n = match sign_int n with 0 -> unit_big_int | -1 -> invalid_arg "power_int_positive_int" | _ -> let nat = power_base_int (abs i) n in { sign = if i >= 0 then sign_int i else if n land 1 = 0 then 1 else -1; abs_value = nat} let power_big_int_positive_int bi n = match sign_int n with 0 -> unit_big_int | -1 -> invalid_arg "power_big_int_positive_int" | _ -> let bi_len = num_digits_big_int bi in let res_len = bi_len * n in let res = make_nat res_len and res2 = make_nat res_len and l = num_bits_int n - 2 in let p = ref (1 lsl l) in blit_nat res 0 (bi.abs_value) 0 bi_len; for i = l downto 0 do let len = num_digits_nat res 0 res_len in let len2 = min res_len (2 * len) in let succ_len2 = succ len2 in square_nat res2 0 len2 res 0 len; (if n land !p > 0 then (set_to_zero_nat res 0 len; mult_nat res 0 succ_len2 res2 0 len2 (bi.abs_value) 0 bi_len; set_to_zero_nat res2 0 len2) else blit_nat res 0 res2 0 len2; set_to_zero_nat res2 0 len2); p := !p lsr 1 done; {sign = if bi.sign >= 0 then bi.sign else if n land 1 = 0 then 1 else -1; abs_value = res} let power_int_positive_big_int i bi = match sign_big_int bi with 0 -> unit_big_int | -1 -> invalid_arg "power_int_positive_big_int" | _ -> let nat = power_base_nat (abs i) (bi.abs_value) 0 (num_digits_big_int bi) in { sign = if i >= 0 then sign_int i else if is_digit_odd (bi.abs_value) 0 then -1 else 1; abs_value = nat } let power_big_int_positive_big_int bi1 bi2 = match sign_big_int bi2 with 0 -> unit_big_int | -1 -> invalid_arg "power_big_int_positive_big_int" | _ -> let nat = bi2.abs_value and off = 0 and len_bi2 = num_digits_big_int bi2 in let bi1_len = num_digits_big_int bi1 in let res_len = int_of_big_int (mult_int_big_int bi1_len bi2) in let res = make_nat res_len and res2 = make_nat res_len and l = (len_bi2 * length_of_digit - num_leading_zero_bits_in_digit nat (pred len_bi2)) - 2 in let p = ref (1 lsl l) in blit_nat res 0 (bi1.abs_value) 0 bi1_len; for i = l downto 0 do let nat = copy_nat bi2.abs_value 0 len_bi2 in let len = num_digits_nat res 0 res_len in let len2 = min res_len (2 * len) in let succ_len2 = succ len2 in square_nat res2 0 len2 res 0 len; land_digit_nat nat 0 (nat_of_int !p) 0; if is_zero_nat nat 0 len_bi2 then (blit_nat res 0 res2 0 len2; set_to_zero_nat res2 0 len2) else (set_to_zero_nat res 0 len; mult_nat res 0 succ_len2 res2 0 len2 (bi1.abs_value) 0 bi1_len; set_to_zero_nat res2 0 len2); p := !p lsr 1 done; {sign = if bi1.sign >= 0 then bi1.sign else if is_digit_odd (bi2.abs_value) 0 then -1 else 1; abs_value = res} (* base_power_big_int compute bi*base^n *) let base_power_big_int base n bi = match sign_int n with 0 -> bi | -1 -> let nat = power_base_int base (-n) in let len_nat = num_digits_nat nat 0 (length_nat nat) and len_bi = num_digits_big_int bi in if len_bi < len_nat then invalid_arg "base_power_big_int" else if len_bi = len_nat && compare_digits_nat (bi.abs_value) len_bi nat len_nat = -1 then invalid_arg "base_power_big_int" else let copy = create_nat (succ len_bi) in blit_nat copy 0 (bi.abs_value) 0 len_bi; set_digit_nat copy len_bi 0; div_nat copy 0 (succ len_bi) nat 0 len_nat; if not (is_zero_nat copy 0 len_nat) then invalid_arg "base_power_big_int" else { sign = bi.sign; abs_value = copy_nat copy len_nat 1 } | _ -> let nat = power_base_int base n in let len_nat = num_digits_nat nat 0 (length_nat nat) and len_bi = num_digits_big_int bi in let new_len = len_bi + len_nat in let res = make_nat new_len in (if len_bi > len_nat then mult_nat res 0 new_len (bi.abs_value) 0 len_bi nat 0 len_nat else mult_nat res 0 new_len nat 0 len_nat (bi.abs_value) 0 len_bi) ; if is_zero_nat res 0 new_len then zero_big_int else create_big_int (bi.sign) res (* Coercion with float type *) let float_of_big_int bi = float_of_string (string_of_big_int bi) (* XL: suppression de big_int_of_float et nat_of_float. *) (* Other functions needed *) (* Integer part of the square root of a big_int *) let sqrt_big_int bi = match bi.sign with | 0 -> zero_big_int | -1 -> invalid_arg "sqrt_big_int" | _ -> {sign = 1; abs_value = sqrt_nat (bi.abs_value) 0 (num_digits_big_int bi)} let square_big_int bi = if bi.sign == 0 then zero_big_int else let len_bi = num_digits_big_int bi in let len_res = 2 * len_bi in let res = make_nat len_res in square_nat res 0 len_res (bi.abs_value) 0 len_bi; {sign = 1; abs_value = res} (* round off of the futur last digit (of the integer represented by the string argument of the function) that is now the previous one. if s contains an integer of the form (10^n)-1 then s <- only 0 digits and the result_int is true else s <- the round number and the result_int is false *) let round_futur_last_digit s off_set length = let l = pred (length + off_set) in if Char.code(String.get s l) >= Char.code '5' then let rec round_rec l = let current_char = String.get s l in if current_char = '9' then (String.set s l '0'; if l = off_set then true else round_rec (pred l)) else (String.set s l (Char.chr (succ (Char.code current_char))); false) in round_rec (pred l) else false (* Approximation with floating decimal point a` la approx_ratio_exp *) let approx_big_int prec bi = let len_bi = num_digits_big_int bi in let n = max 0 (int_of_big_int ( add_int_big_int (-prec) (div_big_int (mult_big_int (big_int_of_int (pred len_bi)) (big_int_of_string "963295986")) (big_int_of_string "100000000")))) in let s = string_of_big_int (div_big_int bi (power_int_positive_int 10 n)) in let (sign, off, len) = if String.get s 0 = '-' then ("-", 1, succ prec) else ("", 0, prec) in if (round_futur_last_digit s off (succ prec)) then (sign^"1."^(String.make prec '0')^"e"^ (string_of_int (n + 1 - off + String.length s))) else (sign^(String.sub s off 1)^"."^ (String.sub s (succ off) (pred prec)) ^"e"^(string_of_int (n - succ off + String.length s)))