(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1997 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Instruction selection for the Intel x86 *) open Misc open Arch open Proc open Cmm open Mach (* Auxiliary for recognizing addressing modes *) type addressing_expr = Asymbol of string | Alinear of expression | Aadd of expression * expression | Ascale of expression * int | Ascaledadd of expression * expression * int let rec select_addr exp = match exp with Cconst_symbol s -> (Asymbol s, 0) | Cop((Caddi | Caddv | Cadda), [arg; Cconst_int m]) -> let (a, n) = select_addr arg in (a, n + m) | Cop(Csubi, [arg; Cconst_int m]) -> let (a, n) = select_addr arg in (a, n - m) | Cop((Caddi | Caddv | Cadda), [Cconst_int m; arg]) -> let (a, n) = select_addr arg in (a, n + m) | Cop(Clsl, [arg; Cconst_int(1|2|3 as shift)]) -> begin match select_addr arg with (Alinear e, n) -> (Ascale(e, 1 lsl shift), n lsl shift) | _ -> (Alinear exp, 0) end | Cop(Cmuli, [arg; Cconst_int(2|4|8 as mult)]) -> begin match select_addr arg with (Alinear e, n) -> (Ascale(e, mult), n * mult) | _ -> (Alinear exp, 0) end | Cop(Cmuli, [Cconst_int(2|4|8 as mult); arg]) -> begin match select_addr arg with (Alinear e, n) -> (Ascale(e, mult), n * mult) | _ -> (Alinear exp, 0) end | Cop((Caddi | Cadda | Caddv), [arg1; arg2]) -> begin match (select_addr arg1, select_addr arg2) with ((Alinear e1, n1), (Alinear e2, n2)) -> (Aadd(e1, e2), n1 + n2) | ((Alinear e1, n1), (Ascale(e2, scale), n2)) -> (Ascaledadd(e1, e2, scale), n1 + n2) | ((Ascale(e1, scale), n1), (Alinear e2, n2)) -> (Ascaledadd(e2, e1, scale), n1 + n2) | (_, (Ascale(e2, scale), n2)) -> (Ascaledadd(arg1, e2, scale), n2) | ((Ascale(e1, scale), n1), _) -> (Ascaledadd(arg2, e1, scale), n1) | _ -> (Aadd(arg1, arg2), 0) end | arg -> (Alinear arg, 0) (* C functions to be turned into Ifloatspecial instructions if -ffast-math *) let inline_float_ops = ["atan"; "atan2"; "cos"; "log"; "log10"; "sin"; "sqrt"; "tan"] (* Estimate number of float temporaries needed to evaluate expression (Ershov's algorithm) *) let rec float_needs = function Cop((Cnegf | Cabsf), [arg]) -> float_needs arg | Cop((Caddf | Csubf | Cmulf | Cdivf), [arg1; arg2]) -> let n1 = float_needs arg1 in let n2 = float_needs arg2 in if n1 = n2 then 1 + n1 else if n1 > n2 then n1 else n2 | Cop(Cextcall(fn, _ty_res, _alloc, _dbg), args) when !fast_math && List.mem fn inline_float_ops -> begin match args with [arg] -> float_needs arg | [arg1; arg2] -> max (float_needs arg2 + 1) (float_needs arg1) | _ -> assert false end | _ -> 1 (* Special constraints on operand and result registers *) exception Use_default let eax = phys_reg 0 let ecx = phys_reg 2 let edx = phys_reg 3 let tos = phys_reg 100 let pseudoregs_for_operation op arg res = match op with (* Two-address binary operations *) Iintop(Iadd|Isub|Imul|Iand|Ior|Ixor) -> ([|res.(0); arg.(1)|], res, false) (* Two-address unary operations *) | Iintop_imm((Iadd|Isub|Imul|Iand|Ior|Ixor|Ilsl|Ilsr|Iasr), _) -> (res, res, false) (* For imull, first arg must be in eax, eax is clobbered, and result is in edx. *) | Iintop(Imulh) -> ([| eax; arg.(1) |], [| edx |], true) (* For shifts with variable shift count, second arg must be in ecx *) | Iintop(Ilsl|Ilsr|Iasr) -> ([|res.(0); ecx|], res, false) (* For div and mod, first arg must be in eax, edx is clobbered, and result is in eax or edx respectively. Keep it simple, just force second argument in ecx. *) | Iintop(Idiv) -> ([| eax; ecx |], [| eax |], true) | Iintop(Imod) -> ([| eax; ecx |], [| edx |], true) (* For floating-point operations and floating-point loads, the result is always left at the top of the floating-point stack *) | Iconst_float _ | Inegf | Iabsf | Iaddf | Isubf | Imulf | Idivf | Ifloatofint | Iload((Single | Double | Double_u), _) | Ispecific(Isubfrev | Idivfrev | Ifloatarithmem _ | Ifloatspecial _) -> (arg, [| tos |], false) (* don't move it immediately *) (* For storing a byte, the argument must be in eax...edx. (But for a short, any reg will do!) Keep it simple, just force the argument to be in edx. *) | Istore((Byte_unsigned | Byte_signed), _, _) -> let newarg = Array.copy arg in newarg.(0) <- edx; (newarg, res, false) (* Other instructions are regular *) | _ -> raise Use_default let chunk_double = function Single -> false | Double -> true | Double_u -> true | _ -> assert false (* The selector class *) class selector = object (self) inherit Selectgen.selector_generic as super method is_immediate (_n : int) = true method! is_simple_expr e = match e with | Cop(Cextcall(fn, _, _, _), args) when !fast_math && List.mem fn inline_float_ops -> (* inlined float ops are simple if their arguments are *) List.for_all self#is_simple_expr args | _ -> super#is_simple_expr e method select_addressing _chunk exp = match select_addr exp with (Asymbol s, d) -> (Ibased(s, d), Ctuple []) | (Alinear e, d) -> (Iindexed d, e) | (Aadd(e1, e2), d) -> (Iindexed2 d, Ctuple[e1; e2]) | (Ascale(e, scale), d) -> (Iscaled(scale, d), e) | (Ascaledadd(e1, e2, scale), d) -> (Iindexed2scaled(scale, d), Ctuple[e1; e2]) method! select_store is_assign addr exp = match exp with Cconst_int n -> (Ispecific(Istore_int(Nativeint.of_int n, addr, is_assign)), Ctuple []) | (Cconst_natint n | Cconst_blockheader n) -> (Ispecific(Istore_int(n, addr, is_assign)), Ctuple []) | Cconst_pointer n -> (Ispecific(Istore_int(Nativeint.of_int n, addr, is_assign)), Ctuple []) | Cconst_natpointer n -> (Ispecific(Istore_int(n, addr, is_assign)), Ctuple []) | Cconst_symbol s -> (Ispecific(Istore_symbol(s, addr, is_assign)), Ctuple []) | _ -> super#select_store is_assign addr exp method! select_operation op args = match op with (* Recognize the LEA instruction *) Caddi | Caddv | Cadda | Csubi -> begin match self#select_addressing Word_int (Cop(op, args)) with (Iindexed _, _) | (Iindexed2 0, _) -> super#select_operation op args | (addr, arg) -> (Ispecific(Ilea addr), [arg]) end (* Recognize float arithmetic with memory. In passing, apply Ershov's algorithm to reduce stack usage *) | Caddf -> self#select_floatarith Iaddf Iaddf Ifloatadd Ifloatadd args | Csubf -> self#select_floatarith Isubf (Ispecific Isubfrev) Ifloatsub Ifloatsubrev args | Cmulf -> self#select_floatarith Imulf Imulf Ifloatmul Ifloatmul args | Cdivf -> self#select_floatarith Idivf (Ispecific Idivfrev) Ifloatdiv Ifloatdivrev args (* Recognize store instructions *) | Cstore ((Word_int | Word_val) as chunk, _) -> begin match args with [loc; Cop(Caddi, [Cop(Cload _, [loc']); Cconst_int n])] when loc = loc' -> let (addr, arg) = self#select_addressing chunk loc in (Ispecific(Ioffset_loc(n, addr)), [arg]) | _ -> super#select_operation op args end (* Recognize inlined floating point operations *) | Cextcall(fn, _ty_res, false, _dbg) when !fast_math && List.mem fn inline_float_ops -> (Ispecific(Ifloatspecial fn), args) (* i386 does not support immediate operands for multiply high signed *) | Cmulhi -> (Iintop Imulh, args) (* Default *) | _ -> super#select_operation op args (* Recognize float arithmetic with mem *) method select_floatarith regular_op reversed_op mem_op mem_rev_op args = match args with [arg1; Cop(Cload chunk, [loc2])] -> let (addr, arg2) = self#select_addressing chunk loc2 in (Ispecific(Ifloatarithmem(chunk_double chunk, mem_op, addr)), [arg1; arg2]) | [Cop(Cload chunk, [loc1]); arg2] -> let (addr, arg1) = self#select_addressing chunk loc1 in (Ispecific(Ifloatarithmem(chunk_double chunk, mem_rev_op, addr)), [arg2; arg1]) | [arg1; arg2] -> (* Evaluate bigger subexpression first to minimize stack usage. Because of right-to-left evaluation, rightmost arg is evaluated first *) if float_needs arg1 <= float_needs arg2 then (regular_op, [arg1; arg2]) else (reversed_op, [arg2; arg1]) | _ -> fatal_error "Proc_i386: select_floatarith" (* Deal with register constraints *) method! insert_op_debug op dbg rs rd = try let (rsrc, rdst, move_res) = pseudoregs_for_operation op rs rd in self#insert_moves rs rsrc; self#insert_debug (Iop op) dbg rsrc rdst; if move_res then begin self#insert_moves rdst rd; rd end else rdst with Use_default -> super#insert_op_debug op dbg rs rd (* Selection of push instructions for external calls *) method select_push exp = match exp with Cconst_int n -> (Ispecific(Ipush_int(Nativeint.of_int n)), Ctuple []) | Cconst_natint n -> (Ispecific(Ipush_int n), Ctuple []) | Cconst_pointer n -> (Ispecific(Ipush_int(Nativeint.of_int n)), Ctuple []) | Cconst_natpointer n -> (Ispecific(Ipush_int n), Ctuple []) | Cconst_symbol s -> (Ispecific(Ipush_symbol s), Ctuple []) | Cop(Cload (Word_int | Word_val as chunk), [loc]) -> let (addr, arg) = self#select_addressing chunk loc in (Ispecific(Ipush_load addr), arg) | Cop(Cload Double_u, [loc]) -> let (addr, arg) = self#select_addressing Double_u loc in (Ispecific(Ipush_load_float addr), arg) | _ -> (Ispecific(Ipush), exp) method! mark_c_tailcall = Proc.contains_calls := true method! emit_extcall_args env args = let rec size_pushes = function | [] -> 0 | e :: el -> Selectgen.size_expr env e + size_pushes el in let sz1 = size_pushes args in let sz2 = Misc.align sz1 stack_alignment in let rec emit_pushes = function | [] -> if sz2 > sz1 then self#insert (Iop (Istackoffset (sz2 - sz1))) [||] [||] | e :: el -> emit_pushes el; let (op, arg) = self#select_push e in match self#emit_expr env arg with | None -> () | Some r -> self#insert (Iop op) r [||] in emit_pushes args; ([||], sz2) end let fundecl f = (new selector)#emit_fundecl f