(***********************************************************************) (* *) (* Caml Special Light *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1995 Institut National de Recherche en Informatique et *) (* Automatique. Distributed only by permission. *) (* *) (***********************************************************************) (* $Id$ *) (* Register allocation by coloring of the interference graph *) open Reg (* Preallocation of spilled registers in the stack. *) let allocate_spilled reg = if reg.spill then begin let class = Proc.register_class reg in let nslots = Proc.num_stack_slots.(class) in let conflict = Array.new nslots false in List.iter (fun r -> match r.loc with Stack(Local n) -> if Proc.register_class r = class then conflict.(n) <- true | _ -> ()) reg.interf; let slot = ref 0 in while !slot < nslots & conflict.(!slot) do incr slot done; reg.loc <- Stack(Local !slot); if !slot >= nslots then Proc.num_stack_slots.(class) <- !slot + 1 end (* Compute the degree (= number of neighbours of the same type) of each register, and split them in two sets: unconstrained (degree < number of available registers) and constrained (degree >= number of available registers). Spilled registers are ignored in the process. *) let unconstrained = ref Reg.Set.empty let constrained = ref Reg.Set.empty let find_degree reg = if reg.spill then () else begin let deg = ref 0 in let class = Proc.register_class reg in List.iter (fun r -> if not r.spill & Proc.register_class r = class then incr deg) reg.interf; reg.degree <- !deg; if !deg >= Proc.num_available_registers.(class) then constrained := Reg.Set.add reg !constrained else unconstrained := Reg.Set.add reg !unconstrained end (* Remove a register from the interference graph *) let remove_reg reg = reg.degree <- 0; (* 0 means r is no longer part of the graph *) let class = Proc.register_class reg in List.iter (fun r -> if Proc.register_class r = class & r.degree > 0 then begin let olddeg = r.degree in r.degree <- olddeg - 1; if olddeg = Proc.num_available_registers.(class) then begin (* r was constrained and becomes unconstrained *) constrained := Reg.Set.remove r !constrained; unconstrained := Reg.Set.add r !unconstrained end end) reg.interf (* Remove all registers one by one, unconstrained if possible, otherwise constrained with lowest spill cost. Return the list of registers removed in reverse order. The spill cost measure is [r.spill_cost / r.degree]. [r.spill_cost] estimates the number of accesses to this register. *) let rec remove_all_regs stack = if not (Reg.Set.is_empty !unconstrained) then begin (* Pick any unconstrained register *) let r = Reg.Set.choose !unconstrained in unconstrained := Reg.Set.remove r !unconstrained; remove_all_regs (r :: stack) end else if not (Reg.Set.is_empty !constrained) then begin (* Find a constrained reg with minimal cost *) let r = ref Reg.dummy in let min_degree = ref 0 and min_spill_cost = ref 1 in (* initially !min_spill_cost / !min_degree is +infty *) Reg.Set.iter (fun r2 -> (* if r2.spill_cost / r2.degree < !min_spill_cost / !min_degree *) if r2.spill_cost * !min_degree < !min_spill_cost * r2.degree then begin r := r2; min_degree := r2.degree; min_spill_cost := r2.spill_cost end) !constrained; constrained := Reg.Set.remove !r !constrained; remove_all_regs (!r :: stack) end else stack (* All regs have been removed *) (* Iterate over all registers preferred by the given register (transitively) *) let iter_preferred f reg = let rec walk r w = if not r.visited then begin f r w; begin match r.prefer with [] -> () | p -> r.visited <- true; List.iter (fun (r1, w1) -> walk r1 (min w w1)) p; r.visited <- false end end in reg.visited <- true; List.iter (fun (r, w) -> walk r w) reg.prefer; reg.visited <- false (* Assign a location to a register, the best we can *) let assign_location reg = let class = Proc.register_class reg in let first_reg = Proc.first_available_register.(class) in let num_regs = Proc.num_available_registers.(class) in let last_reg = first_reg + num_regs in let score = Array.new num_regs 0 in (* Favor the registers that have been assigned to pseudoregs for which we have a preference. If these pseudoregs have not been assigned already, avoid the registers with which they conflict. *) iter_preferred (fun r w -> match r.loc with Reg n -> if n >= first_reg & n < last_reg then score.(n - first_reg) <- score.(n - first_reg) + w | Unknown -> List.iter (fun neighbour -> match neighbour.loc with Reg n -> if n >= first_reg & n < last_reg then score.(n - first_reg) <- score.(n - first_reg) - w | _ -> ()) r.interf | _ -> ()) reg; List.iter (fun neighbour -> (* Prohibit the registers that have been assigned to our neighbours *) begin match neighbour.loc with Reg n -> if n >= first_reg & n < last_reg then score.(n - first_reg) <- (-1000000) | _ -> () end; (* Avoid the registers that have been assigned to pseudoregs for which our neighbours have a preference *) iter_preferred (fun r w -> match r.loc with Reg n -> if n >= first_reg & n < last_reg then score.(n - first_reg) <- score.(n - first_reg) - (w - 1) (* w-1 to break the symmetry when two conflicting regs have the same preference for a third reg. *) | _ -> ()) neighbour) reg.interf; (* Pick the register with the best score *) let best_score = ref (-1000000) and best_reg = ref (-1) in for n = 0 to num_regs - 1 do if score.(n) > !best_score then begin best_score := score.(n); best_reg := n end done; (* Found a register? *) if !best_reg >= 0 then reg.loc <- Reg(first_reg + !best_reg) else begin (* Sorry, we must put the pseudoreg in a stack location *) (* First, check if we have a preference for an incoming location we do not conflict with. *) let best_score = ref 0 and best_incoming_loc = ref (-1) in List.iter (fun (r, w) -> match r.loc with Stack(Incoming n) -> if w > !best_score & List.for_all (fun neighbour -> neighbour.loc <> r.loc) reg.interf then begin best_score := w; best_incoming_loc := n end | _ -> ()) reg.prefer; if !best_incoming_loc >= 0 then reg.loc <- Stack(Incoming !best_incoming_loc) else begin (* Now, look for a location in the local area *) let nslots = Proc.num_stack_slots.(class) in let score = Array.new nslots 0 in (* Compute the scores as for registers *) List.iter (fun (r, w) -> match r.loc with Stack(Local n) -> if Proc.register_class r = class then score.(n) <- score.(n) + w | Unknown -> List.iter (fun neighbour -> match neighbour.loc with Stack(Local n) -> if Proc.register_class neighbour = class then score.(n) <- score.(n) - w | _ -> ()) r.interf | _ -> ()) reg.prefer; List.iter (fun neighbour -> begin match neighbour.loc with Stack(Local n) -> if Proc.register_class neighbour = class then score.(n) <- (-1000000) | _ -> () end; List.iter (fun (r, w) -> match r.loc with Stack(Local n) -> if Proc.register_class r = class then score.(n) <- score.(n) - w | _ -> ()) neighbour.prefer) reg.interf; (* Pick the location with the best score *) let best_score = ref (-1000000) and best_slot = ref (-1) in for n = 0 to nslots - 1 do if score.(n) > !best_score then begin best_score := score.(n); best_slot := n end done; (* Found one? *) if !best_slot >= 0 then reg.loc <- Stack(Local !best_slot) else begin (* Allocate a new stack slot *) reg.loc <- Stack(Local nslots); Proc.num_stack_slots.(class) <- nslots + 1 end end end; (* Cancel the preferences of this register so that they don't influence transitively the allocation of registers that prefer this reg. *) reg.prefer <- [] let allocate_registers() = (* First pass: preallocate spill registers Second pass: compute the degrees Third pass: determine coloring order by successive removals of regs Fourth pass: assign registers in that order *) for i = 0 to Proc.num_register_classes - 1 do Proc.num_stack_slots.(i) <- 0 done; List.iter allocate_spilled (Reg.all_registers()); List.iter find_degree (Reg.all_registers()); List.iter assign_location (remove_all_regs [])