(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* Automatique. Distributed only by permission. *) (* *) (***********************************************************************) (* $Id$ *) (* Emission of Intel 386 assembly code *) open Misc open Cmm open Arch open Proc open Reg open Mach open Linearize open Emitaux (* Tradeoff between code size and code speed *) let fastcode_flag = ref true let stack_offset = ref 0 (* Layout of the stack frame *) let frame_size () = (* includes return address *) !stack_offset + 4 * num_stack_slots.(0) + 8 * num_stack_slots.(1) + 4 let slot_offset loc cl = match loc with Incoming n -> frame_size() + n | Local n -> if cl = 0 then !stack_offset + n * 4 else !stack_offset + num_stack_slots.(0) * 4 + n * 8 | Outgoing n -> n (* Symbols are prefixed with _, except under Linux with ELF binaries *) let symbol_prefix = match Config.system with "linux_elf" -> "" | "solaris" -> "" | _ -> "_" let emit_symbol s = emit_string symbol_prefix; Emitaux.emit_symbol '$' s (* Output a label *) let label_prefix = match Config.system with "linux_elf" -> ".L" | "solaris" -> ".L" | _ -> "L" let emit_label lbl = emit_string label_prefix; emit_int lbl (* Some data directives have different names under Solaris *) let word_dir = match Config.system with "solaris" -> ".value" | _ -> ".word" let skip_dir = match Config.system with "solaris" -> ".zero" | _ -> ".space" let use_ascii_dir = match Config.system with "solaris" -> false | _ -> true (* Output a .align directive. The numerical argument to .align is log2 of alignment size, except under ELF, where it is the alignment size... *) let emit_align = match Config.system with "linux_elf" | "solaris" -> (fun n -> ` .align {emit_int n}\n`) | _ -> (fun n -> ` .align {emit_int(Misc.log2 n)}\n`) (* Output a pseudo-register *) let emit_reg = function { loc = Reg r } -> emit_string (register_name r) | { loc = Stack s } as r -> let ofs = slot_offset s (register_class r) in `{emit_int ofs}(%esp)` | { loc = Unknown } -> fatal_error "Emit_i386.emit_reg" (* Output a reference to the lower 8 bits or lower 16 bits of a register *) let reg_low_byte_name = [| "%al"; "%bl"; "%cl"; "%dl" |] let reg_low_half_name = [| "%ax"; "%bx"; "%cx"; "%dx"; "%si"; "%di"; "%bp" |] let emit_reg8 r = match r.loc with Reg r when r < 4 -> emit_string (reg_low_byte_name.(r)) | _ -> fatal_error "Emit_i386.emit_reg8" let emit_reg16 r = match r.loc with Reg r when r < 7 -> emit_string (reg_low_half_name.(r)) | _ -> fatal_error "Emit_i386.emit_reg16" (* Check if the given register overlaps (same location) with the given array of registers *) let register_overlap reg arr = try for i = 0 to Array.length arr - 1 do if reg.loc = arr.(i).loc then raise Exit done; false with Exit -> true (* Output an addressing mode *) let emit_addressing addr r n = match addr with Ibased(s, d) -> `{emit_symbol s}`; if d <> 0 then ` + {emit_int d}` | Iindexed d -> if d <> 0 then emit_int d; `({emit_reg r.(n)})` | Iindexed2 d -> if d <> 0 then emit_int d; `({emit_reg r.(n)}, {emit_reg r.(n+1)})` | Iscaled(scale, d) -> if d <> 0 then emit_int d; `(, {emit_reg r.(n)}, {emit_int scale})` | Iindexed2scaled(scale, d) -> if d <> 0 then emit_int d; `({emit_reg r.(n)}, {emit_reg r.(n+1)}, {emit_int scale})` (* Record live pointers at call points *) type frame_descr = { fd_lbl: int; (* Return address *) fd_frame_size: int; (* Size of stack frame *) fd_live_offset: int list } (* Offsets/regs of live addresses *) let frame_descriptors = ref([] : frame_descr list) let record_frame_label live = let lbl = new_label() in let live_offset = ref [] in Reg.Set.iter (function {typ = Addr; loc = Reg r} -> live_offset := ((r lsl 1) + 1) :: !live_offset | {typ = Addr; loc = Stack s} as reg -> live_offset := slot_offset s (register_class reg) :: !live_offset | _ -> ()) live; frame_descriptors := { fd_lbl = lbl; fd_frame_size = frame_size(); fd_live_offset = !live_offset } :: !frame_descriptors; lbl let record_frame live = let lbl = record_frame_label live in `{emit_label lbl}:\n` let emit_frame fd = ` .long {emit_label fd.fd_lbl}\n`; ` {emit_string word_dir} {emit_int fd.fd_frame_size}\n`; ` {emit_string word_dir} {emit_int (List.length fd.fd_live_offset)}\n`; List.iter (fun n -> ` {emit_string word_dir} {emit_int n}\n`) fd.fd_live_offset; emit_align 4 (* Record calls to the GC -- we've moved them out of the way *) type gc_call = { gc_lbl: label; (* Entry label *) gc_return_lbl: label; (* Where to branch after GC *) gc_frame: label } (* Label of frame descriptor *) let call_gc_sites = ref ([] : gc_call list) let emit_call_gc gc = `{emit_label gc.gc_lbl}: call {emit_symbol "caml_call_gc"}\n`; `{emit_label gc.gc_frame}: jmp {emit_label gc.gc_return_lbl}\n` (* Names for instructions *) let instr_for_intop = function Iadd -> "addl" | Isub -> "subl" | Imul -> "imull" | Iand -> "andl" | Ior -> "orl" | Ixor -> "xorl" | Ilsl -> "sall" | Ilsr -> "shrl" | Iasr -> "sarl" | _ -> fatal_error "Emit_i386: instr_for_intop" let instr_for_floatop = function Inegf -> "fchs" | Iabsf -> "fabs" | Iaddf -> "faddl" | Isubf -> "fsubl" | Imulf -> "fmull" | Idivf -> "fdivl" | Ispecific Isubfrev -> "fsubrl" | Ispecific Idivfrev -> "fdivrl" | _ -> fatal_error "Emit_i386: instr_for_floatop" let instr_for_floatop_reversed = function Iaddf -> "faddl" | Isubf -> "fsubrl" | Imulf -> "fmull" | Idivf -> "fdivrl" | Ispecific Isubfrev -> "fsubl" | Ispecific Idivfrev -> "fdivl" | _ -> fatal_error "Emit_i386: instr_for_floatop_reversed" let instr_for_floatop_pop = function Iaddf -> "faddp" | Isubf -> "fsubp" | Imulf -> "fmulp" | Idivf -> "fdivp" | Ispecific Isubfrev -> "fsubrp" | Ispecific Idivfrev -> "fdivrp" | _ -> fatal_error "Emit_i386: instr_for_floatop_pop" let instr_for_floatarithmem = function Ifloatadd -> "faddl" | Ifloatsub -> "fsubl" | Ifloatsubrev -> "fsubrl" | Ifloatmul -> "fmull" | Ifloatdiv -> "fdivl" | Ifloatdivrev -> "fdivrl" let name_for_cond_branch = function Isigned Ceq -> "e" | Isigned Cne -> "ne" | Isigned Cle -> "le" | Isigned Cgt -> "g" | Isigned Clt -> "l" | Isigned Cge -> "ge" | Iunsigned Ceq -> "e" | Iunsigned Cne -> "ne" | Iunsigned Cle -> "be" | Iunsigned Cgt -> "a" | Iunsigned Clt -> "b" | Iunsigned Cge -> "ae" (* Output an = 0 or <> 0 test. *) let output_test_zero arg = match arg.loc with Reg r -> ` testl {emit_reg arg}, {emit_reg arg}\n` | _ -> ` cmpl $0, {emit_reg arg}\n` (* Deallocate the stack frame before a return or tail call *) let output_epilogue () = let n = frame_size() - 4 in if n > 0 then ` addl ${emit_int n}, %esp\n` (* Output the assembly code for an instruction *) (* Name of current function *) let function_name = ref "" (* Entry point for tail recursive calls *) let tailrec_entry_point = ref 0 (* Label of trap for out-of-range accesses *) let range_check_trap = ref 0 let float_constants = ref ([] : (int * string) list) let tos = phys_reg 100 let emit_instr i = match i.desc with Lend -> () | Lop(Imove | Ispill | Ireload) -> let src = i.arg.(0) and dst = i.res.(0) in if src.loc <> dst.loc then begin if src.typ = Float then if src = tos then ` fstpl {emit_reg dst}\n` else begin ` fldl {emit_reg src}\n`; ` fstpl {emit_reg dst}\n` end else ` movl {emit_reg src}, {emit_reg dst}\n` end | Lop(Iconst_int n) -> if Nativeint.sign n = 0 then begin match i.res.(0).loc with Reg n -> ` xorl {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n` | _ -> ` movl $0, {emit_reg i.res.(0)}\n` end else ` movl ${emit_nativeint n}, {emit_reg i.res.(0)}\n` | Lop(Iconst_float s) -> let f = float_of_string s in if f = 0.0 then ` fldz\n` else if f = 1.0 then ` fld1\n` else begin let lbl = new_label() in float_constants := (lbl, s) :: !float_constants; ` fldl {emit_label lbl}\n` end | Lop(Iconst_symbol s) -> ` movl ${emit_symbol s}, {emit_reg i.res.(0)}\n` | Lop(Icall_ind) -> ` call *{emit_reg i.arg.(0)}\n`; record_frame i.live | Lop(Icall_imm s) -> ` call {emit_symbol s}\n`; record_frame i.live | Lop(Itailcall_ind) -> output_epilogue(); ` jmp *{emit_reg i.arg.(0)}\n` | Lop(Itailcall_imm s) -> if s = !function_name then ` jmp {emit_label !tailrec_entry_point}\n` else begin output_epilogue(); ` jmp {emit_symbol s}\n` end | Lop(Iextcall(s, alloc)) -> if alloc then begin ` movl ${emit_symbol s}, %eax\n`; ` call {emit_symbol "caml_c_call"}\n`; record_frame i.live end else begin ` call {emit_symbol s}\n` end | Lop(Istackoffset n) -> if n < 0 then ` addl ${emit_int(-n)}, %esp\n` else ` subl ${emit_int(n)}, %esp\n`; stack_offset := !stack_offset + n | Lop(Iload(chunk, addr)) -> let dest = i.res.(0) in begin match dest.typ with Int | Addr -> begin match (chunk, dest.loc) with (Word, _) -> ` movl {emit_addressing addr i.arg 0}, {emit_reg dest}\n` | (Byte_unsigned, Reg r) when r < 4 & not (register_overlap dest i.arg) -> ` xorl {emit_reg dest}, {emit_reg dest}\n`; ` movb {emit_addressing addr i.arg 0}, {emit_reg8 dest}\n` | (Byte_unsigned, _) -> ` movzbl {emit_addressing addr i.arg 0}, {emit_reg dest}\n` | (Byte_signed, _) -> ` movsbl {emit_addressing addr i.arg 0}, {emit_reg dest}\n` | (Sixteen_unsigned, Reg r) when not (register_overlap dest i.arg) -> ` xorl {emit_reg dest}, {emit_reg dest}\n`; ` movw {emit_addressing addr i.arg 0}, {emit_reg16 dest}\n` | (Sixteen_unsigned, _) -> ` movzwl {emit_addressing addr i.arg 0}, {emit_reg dest}\n` | (Sixteen_signed, _) -> ` movswl {emit_addressing addr i.arg 0}, {emit_reg dest}\n` end | Float -> ` fldl {emit_addressing addr i.arg 0}\n` end | Lop(Istore(Word, addr)) -> begin match i.arg.(0).typ with Int | Addr -> ` movl {emit_reg i.arg.(0)}, {emit_addressing addr i.arg 1}\n` | Float -> if i.arg.(0) = tos then ` fstpl {emit_addressing addr i.arg 1}\n` else begin ` fldl {emit_reg i.arg.(0)}\n`; ` fstpl {emit_addressing addr i.arg 1}\n` end end | Lop(Istore(chunk, addr)) -> (* i.arg.(0) is guaranteed to be in %edx, actually *) begin match chunk with Word -> fatal_error "Emit_i386: store word" | Byte_unsigned | Byte_signed -> ` movb {emit_reg8 i.arg.(0)}, {emit_addressing addr i.arg 1}\n` | Sixteen_unsigned | Sixteen_signed -> ` movw {emit_reg16 i.arg.(0)}, {emit_addressing addr i.arg 1}\n` end | Lop(Ialloc n) -> if !fastcode_flag then begin let lbl_redo = new_label() in `{emit_label lbl_redo}: movl {emit_symbol "young_ptr"}, %eax\n`; ` subl ${emit_int n}, %eax\n`; ` movl %eax, {emit_symbol "young_ptr"}\n`; ` cmpl {emit_symbol "young_limit"}, %eax\n`; let lbl_call_gc = new_label() in let lbl_frame = record_frame_label i.live in ` jb {emit_label lbl_call_gc}\n`; ` leal 4(%eax), {emit_reg i.res.(0)}\n`; call_gc_sites := { gc_lbl = lbl_call_gc; gc_return_lbl = lbl_redo; gc_frame = lbl_frame } :: !call_gc_sites end else begin begin match n with 8 -> ` call {emit_symbol "caml_alloc1"}\n` | 12 -> ` call {emit_symbol "caml_alloc2"}\n` | 16 -> ` call {emit_symbol "caml_alloc3"}\n` | _ -> ` movl ${emit_int n}, %eax\n`; ` call {emit_symbol "caml_alloc"}\n` end; `{record_frame i.live} leal 4(%eax), {emit_reg i.res.(0)}\n` end | Lop(Iintop(Icomp cmp)) -> ` cmpl {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`; let b = name_for_cond_branch cmp in ` set{emit_string b} %al\n`; ` movzbl %al, {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Icomp cmp, n)) -> ` cmpl ${emit_int n}, {emit_reg i.arg.(0)}\n`; let b = name_for_cond_branch cmp in ` set{emit_string b} %al\n`; ` movzbl %al, {emit_reg i.res.(0)}\n` | Lop(Iintop Icheckbound) -> if !range_check_trap = 0 then range_check_trap := new_label(); ` cmpl {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`; ` jbe {emit_label !range_check_trap}\n` | Lop(Iintop_imm(Icheckbound, n)) -> if !range_check_trap = 0 then range_check_trap := new_label(); ` cmpl ${emit_int n}, {emit_reg i.arg.(0)}\n`; ` jbe {emit_label !range_check_trap}\n` | Lop(Iintop(Idiv | Imod)) -> ` cltd\n`; ` idivl {emit_reg i.arg.(1)}\n` | Lop(Iintop(Ilsl | Ilsr | Iasr as op)) -> (* We have i.arg.(0) = i.res.(0) and i.arg.(1) = %ecx *) ` {emit_string(instr_for_intop op)} %cl, {emit_reg i.res.(0)}\n` | Lop(Iintop op) -> (* We have i.arg.(0) = i.res.(0) *) ` {emit_string(instr_for_intop op)} {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Iadd, 1) | Iintop_imm(Isub, -1)) -> ` incl {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Iadd, -1) | Iintop_imm(Isub, 1)) -> ` decl {emit_reg i.res.(0)}\n` | Lop(Iintop_imm(Idiv, n)) -> let l = Misc.log2 n in let lbl = new_label() in output_test_zero i.arg.(0); ` jge {emit_label lbl}\n`; ` addl ${emit_int(n-1)}, {emit_reg i.arg.(0)}\n`; `{emit_label lbl}: sarl ${emit_int l}, {emit_reg i.arg.(0)}\n` | Lop(Iintop_imm(Imod, n)) -> let l = Misc.log2 n in let lbl = new_label() in ` movl {emit_reg i.arg.(0)}, %eax\n`; ` testl %eax, %eax\n`; ` jge {emit_label lbl}\n`; ` addl ${emit_int(n-1)}, %eax\n`; `{emit_label lbl}: andl ${emit_int(-n)}, %eax\n`; ` subl %eax, {emit_reg i.arg.(0)}\n` | Lop(Iintop_imm(op, n)) -> (* We have i.arg.(0) = i.res.(0) *) ` {emit_string(instr_for_intop op)} ${emit_int n}, {emit_reg i.res.(0)}\n` | Lop(Inegf | Iabsf as floatop) -> if i.arg.(0) <> tos then ` fldl {emit_reg i.arg.(0)}\n`; ` {emit_string(instr_for_floatop floatop)}\n` | Lop(Iaddf | Isubf | Imulf | Idivf | Ispecific(Isubfrev | Idivfrev) as floatop) -> if i.arg.(0) = tos && i.arg.(1) = tos then (* both operands on top of FP stack *) ` {emit_string(instr_for_floatop_pop floatop)} %st, %st(1)\n` else if i.arg.(0) = tos then (* first operand on stack *) ` {emit_string(instr_for_floatop floatop)} {emit_reg i.arg.(1)}\n` else if i.arg.(1) = tos then (* second operand on stack *) ` {emit_string(instr_for_floatop_reversed floatop)} {emit_reg i.arg.(0)}\n` else begin (* both operands in memory *) ` fldl {emit_reg i.arg.(0)}\n`; ` {emit_string(instr_for_floatop floatop)} {emit_reg i.arg.(1)}\n` end | Lop(Ifloatofint) -> begin match i.arg.(0).loc with Stack s -> ` fildl {emit_reg i.arg.(0)}\n` | _ -> ` pushl {emit_reg i.arg.(0)}\n`; ` fildl (%esp)\n`; ` addl $4, %esp\n` end | Lop(Iintoffloat) -> if i.arg.(0) <> tos then ` fldl {emit_reg i.arg.(0)}\n`; stack_offset := !stack_offset - 8; ` subl $8, %esp\n`; ` fnstcw 4(%esp)\n`; ` movl 4(%esp), %eax\n`; ` movb $12, %ah\n`; ` movl %eax, (%esp)\n`; ` fldcw (%esp)\n`; begin match i.res.(0).loc with Stack s -> ` fistpl {emit_reg i.res.(0)}\n` | _ -> ` fistpl (%esp)\n`; ` movl (%esp), {emit_reg i.res.(0)}\n` end; ` fldcw 4(%esp)\n`; ` addl $8, %esp\n`; stack_offset := !stack_offset + 8 | Lop(Ispecific(Ilea addr)) -> ` lea {emit_addressing addr i.arg 0}, {emit_reg i.res.(0)}\n` | Lop(Ispecific(Istore_int(n, addr))) -> ` movl ${emit_int n}, {emit_addressing addr i.arg 0}\n` | Lop(Ispecific(Istore_symbol(s, addr))) -> ` movl ${emit_symbol s}, {emit_addressing addr i.arg 0}\n` | Lop(Ispecific(Ioffset_loc(n, addr))) -> ` addl ${emit_int n}, {emit_addressing addr i.arg 0}\n` | Lop(Ispecific(Ipush)) -> (* Push arguments in reverse order *) for n = Array.length i.arg - 1 downto 0 do let r = i.arg.(n) in match r with {loc = Reg _; typ = Float} -> ` subl $8, %esp\n`; ` fstpl 0(%esp)\n`; stack_offset := !stack_offset + 8 | {loc = Stack sl; typ = Float} -> let ofs = slot_offset sl 1 in ` pushl {emit_int(ofs + 4)}(%esp)\n`; ` pushl {emit_int(ofs + 4)}(%esp)\n`; stack_offset := !stack_offset + 8 | _ -> ` pushl {emit_reg r}\n`; stack_offset := !stack_offset + 4 done | Lop(Ispecific(Ipush_int n)) -> ` pushl ${emit_int n}\n`; stack_offset := !stack_offset + 4 | Lop(Ispecific(Ipush_symbol s)) -> ` pushl ${emit_symbol s}\n`; stack_offset := !stack_offset + 4 | Lop(Ispecific(Ipush_load addr)) -> ` pushl {emit_addressing addr i.arg 0}\n`; stack_offset := !stack_offset + 4 | Lop(Ispecific(Ipush_load_float addr)) -> ` pushl {emit_addressing (offset_addressing addr 4) i.arg 0}\n`; ` pushl {emit_addressing addr i.arg 0}\n`; stack_offset := !stack_offset + 8 | Lop(Ispecific(Ifloatarithmem(op, addr))) -> if i.arg.(0) <> tos then ` fldl {emit_reg i.arg.(0)}\n`; ` {emit_string(instr_for_floatarithmem op)} {emit_addressing addr i.arg 1}\n` | Lreloadretaddr -> () | Lreturn -> output_epilogue(); ` ret\n` | Llabel lbl -> `{emit_label lbl}:\n` | Lbranch lbl -> ` jmp {emit_label lbl}\n` | Lcondbranch(tst, lbl) -> begin match tst with Itruetest -> output_test_zero i.arg.(0); ` jne {emit_label lbl}\n` | Ifalsetest -> output_test_zero i.arg.(0); ` je {emit_label lbl}\n` | Iinttest cmp -> ` cmpl {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`; let b = name_for_cond_branch cmp in ` j{emit_string b} {emit_label lbl}\n` | Iinttest_imm((Isigned Ceq | Isigned Cne | Iunsigned Ceq | Iunsigned Cne) as cmp, 0) -> output_test_zero i.arg.(0); let b = name_for_cond_branch cmp in ` j{emit_string b} {emit_label lbl}\n` | Iinttest_imm(cmp, n) -> ` cmpl ${emit_int n}, {emit_reg i.arg.(0)}\n`; let b = name_for_cond_branch cmp in ` j{emit_string b} {emit_label lbl}\n` | Ifloattest((Ceq | Cne as cmp), neg) -> if i.arg.(1) <> tos then ` fldl {emit_reg i.arg.(1)}\n`; if i.arg.(0) <> tos then ` fldl {emit_reg i.arg.(0)}\n`; ` fucompp\n`; ` fnstsw %ax\n`; let neg1 = if cmp = Ceq then neg else not neg in if neg1 then begin (* branch if different *) ` andb $68, %ah\n`; ` xorb $64, %ah\n`; ` jne {emit_label lbl}\n` end else begin (* branch if equal *) ` andb $69, %ah\n`; ` cmpb $64, %ah\n`; ` je {emit_label lbl}\n` end | Ifloattest(cmp, neg) -> let actual_cmp = if i.arg.(0) = tos && i.arg.(1) = tos then begin (* both args on top of FP stack *) ` fcompp\n`; cmp end else if i.arg.(0) = tos then begin (* first arg on top of FP stack *) ` fcompl {emit_reg i.arg.(1)}\n`; cmp end else if i.arg.(1) = tos then begin (* second arg on top of FP stack *) ` fcompl {emit_reg i.arg.(0)}\n`; Cmm.swap_comparison cmp end else begin ` fldl {emit_reg i.arg.(0)}\n`; ` fcompl {emit_reg i.arg.(1)}\n`; cmp end in ` fnstsw %ax\n`; begin match actual_cmp with Cle -> ` andb $69, %ah\n`; ` decb %ah\n`; ` cmpb $64, %ah\n`; if neg then ` jae ` else ` jb ` | Cge -> ` andb $5, %ah\n`; if neg then ` jne ` else ` je ` | Clt -> ` andb $69, %ah\n`; ` cmpb $1, %ah\n`; if neg then ` jne ` else ` je ` | Cgt -> ` andb $69, %ah\n`; if neg then ` jne ` else ` je ` | _ -> fatal_error "Emit_i386: floattest" end; `{emit_label lbl}\n` | Ioddtest -> ` testl $1, {emit_reg i.arg.(0)}\n`; ` jne {emit_label lbl}\n` | Ieventest -> ` testl $1, {emit_reg i.arg.(0)}\n`; ` je {emit_label lbl}\n` end | Lcondbranch3(lbl0, lbl1, lbl2) -> ` cmpl $1, {emit_reg i.arg.(0)}\n`; begin match lbl0 with None -> () | Some lbl -> ` jb {emit_label lbl}\n` end; begin match lbl1 with None -> () | Some lbl -> ` je {emit_label lbl}\n` end; begin match lbl2 with None -> () | Some lbl -> ` jg {emit_label lbl}\n` end | Lswitch jumptbl -> let lbl = new_label() in ` jmp *{emit_label lbl}(, {emit_reg i.arg.(0)}, 4)\n`; ` .data\n`; `{emit_label lbl}:`; for i = 0 to Array.length jumptbl - 1 do ` .long {emit_label jumptbl.(i)}\n` done; ` .text\n` | Lsetuptrap lbl -> ` call {emit_label lbl}\n` | Lpushtrap -> ` pushl {emit_symbol "caml_exception_pointer"}\n`; ` movl %esp, {emit_symbol "caml_exception_pointer"}\n`; stack_offset := !stack_offset + 8 | Lpoptrap -> ` popl {emit_symbol "caml_exception_pointer"}\n`; ` addl $4, %esp\n`; stack_offset := !stack_offset - 8 | Lraise -> ` movl {emit_symbol "caml_exception_pointer"}, %esp\n`; ` popl {emit_symbol "caml_exception_pointer"}\n`; ` ret\n` let rec emit_all i = match i.desc with Lend -> () | _ -> emit_instr i; emit_all i.next (* Emission of the floating-point constants *) let emit_float_constant (lbl, cst) = ` .data\n`; `{emit_label lbl}: .double {emit_string cst}\n` (* Emission of a function declaration *) let fundecl fundecl = function_name := fundecl.fun_name; fastcode_flag := fundecl.fun_fast; tailrec_entry_point := new_label(); stack_offset := 0; float_constants := []; call_gc_sites := []; range_check_trap := 0; ` .text\n`; emit_align 4; ` .globl {emit_symbol fundecl.fun_name}\n`; `{emit_symbol fundecl.fun_name}:\n`; let n = frame_size() - 4 in if n > 0 then ` subl ${emit_int n}, %esp\n`; `{emit_label !tailrec_entry_point}:\n`; emit_all fundecl.fun_body; List.iter emit_call_gc !call_gc_sites; if !range_check_trap > 0 then `{emit_label !range_check_trap}: call {emit_symbol "array_bound_error"}\n`; (* Never returns, but useful to have retaddr on stack for debugging *) List.iter emit_float_constant !float_constants (* Emission of data *) let emit_item = function Cdefine_symbol s -> ` .globl {emit_symbol s}\n`; `{emit_symbol s}:\n` | Cdefine_label lbl -> `{emit_label (10000 + lbl)}:\n` | Cint8 n -> ` .byte {emit_int n}\n` | Cint16 n -> ` {emit_string word_dir} {emit_int n}\n` | Cint n -> ` .long {emit_nativeint n}\n` | Cfloat f -> ` .double {emit_string f}\n` | Csymbol_address s -> ` .long {emit_symbol s}\n` | Clabel_address lbl -> ` .long {emit_label (10000 + lbl)}\n` | Cstring s -> if use_ascii_dir then emit_string_directive " .ascii " s else emit_bytes_directive " .byte " s | Cskip n -> if n > 0 then ` {emit_string skip_dir} {emit_int n}\n` | Calign n -> emit_align n let data l = ` .data\n`; List.iter emit_item l (* Beginning / end of an assembly file *) let begin_assembly() = let lbl_begin = Compilenv.current_unit_name() ^ "_begin" in ` .data\n`; ` .globl {emit_symbol lbl_begin}\n`; `{emit_symbol lbl_begin}:\n` let end_assembly() = ` .data\n`; let lbl_end = Compilenv.current_unit_name() ^ "_end" in ` .globl {emit_symbol lbl_end}\n`; `{emit_symbol lbl_end}:\n`; ` .long 0\n`; let lbl = Compilenv.current_unit_name() ^ "_frametable" in ` .globl {emit_symbol lbl}\n`; `{emit_symbol lbl}:\n`; ` .long {emit_int (List.length !frame_descriptors)}\n`; List.iter emit_frame !frame_descriptors; frame_descriptors := []