/***********************************************************************/ /* */ /* Objective Caml */ /* */ /* Xavier Leroy and Damien Doligez, INRIA Rocquencourt */ /* */ /* Copyright 1996 Institut National de Recherche en Informatique et */ /* en Automatique. All rights reserved. This file is distributed */ /* under the terms of the GNU Library General Public License, with */ /* the special exception on linking described in file ../LICENSE. */ /* */ /***********************************************************************/ /* $Id$ */ #include #include "alloc.h" #include "callback.h" #include "config.h" #include "fail.h" #include "memory.h" #include "misc.h" #include "mlvalues.h" #include "roots.h" #include "signals.h" #include "sys.h" #if macintosh #include "rotatecursor.h" #endif /* macintosh */ #ifdef _WIN32 typedef void (*sighandler)(int sig); extern sighandler win32_signal(int sig, sighandler action); #define signal(sig,act) win32_signal(sig,act) #endif int volatile async_signal_mode = 0; int volatile pending_signal = 0; int volatile something_to_do = 0; int volatile force_major_slice = 0; value signal_handlers = 0; void (*enter_blocking_section_hook)(void) = NULL; void (*leave_blocking_section_hook)(void) = NULL; void (* volatile async_action_hook)(void) = NULL; void process_event(void) { int signal_number; void (*async_action)(void); if (force_major_slice) minor_collection (); /* FIXME should be check_urgent_gc */ /* If a signal arrives between the following two instructions, it will be lost. To do: use atomic swap or atomic read-and-clear for processors that support it? */ signal_number = pending_signal; pending_signal = 0; if (signal_number) execute_signal(signal_number, 0); /* If an async action is scheduled between the following two instructions, it will be lost. */ async_action = async_action_hook; async_action_hook = NULL; if (async_action != NULL) (*async_action)(); #if macintosh ROTATECURSOR_MAGIC (); #endif } static int rev_convert_signal_number(int signo); void execute_signal(int signal_number, int in_signal_handler) { value res; #ifdef POSIX_SIGNALS sigset_t sigs; /* Block the signal before executing the handler, and record in sigs the original signal mask */ sigemptyset(&sigs); sigaddset(&sigs, signal_number); sigprocmask(SIG_BLOCK, &sigs, &sigs); #endif res = callback_exn(Field(signal_handlers, signal_number), Val_int(rev_convert_signal_number(signal_number))); #ifdef POSIX_SIGNALS if (! in_signal_handler) { /* Restore the original signal mask */ sigprocmask(SIG_SETMASK, &sigs, NULL); } else if (Is_exception_result(res)) { /* Restore the original signal mask and unblock the signal itself */ sigdelset(&sigs, signal_number); sigprocmask(SIG_SETMASK, &sigs, NULL); } #endif if (Is_exception_result(res)) mlraise(Extract_exception(res)); } void handle_signal(int signal_number) { #if !defined(POSIX_SIGNALS) && !defined(BSD_SIGNALS) signal(signal_number, handle_signal); #endif if (async_signal_mode){ leave_blocking_section (); execute_signal(signal_number, 1); enter_blocking_section (); }else{ pending_signal = signal_number; something_to_do = 1; } } void urge_major_slice (void) { force_major_slice = 1; something_to_do = 1; } CAMLexport void enter_blocking_section(void) { int temp; while (1){ Assert (!async_signal_mode); /* If a signal arrives between the next two instructions, it will be lost. */ temp = pending_signal; pending_signal = 0; if (temp) execute_signal(temp, 0); async_signal_mode = 1; if (!pending_signal) break; async_signal_mode = 0; } if (enter_blocking_section_hook != NULL) enter_blocking_section_hook(); } CAMLexport void leave_blocking_section(void) { #ifdef _WIN32 int signal_number; #endif if (leave_blocking_section_hook != NULL) leave_blocking_section_hook(); #ifdef _WIN32 /* Under Win32, asynchronous signals such as ctrl-C are not processed immediately (see ctrl_handler in win32.c), but simply set pending_signal and let the system call run to completion. Hence, test pending_signal here and act upon it, before we get a chance to process the result of the system call. */ signal_number = pending_signal; pending_signal = 0; if (signal_number) execute_signal(signal_number, 1); #endif Assert(async_signal_mode); async_signal_mode = 0; } #ifndef SIGABRT #define SIGABRT -1 #endif #ifndef SIGALRM #define SIGALRM -1 #endif #ifndef SIGFPE #define SIGFPE -1 #endif #ifndef SIGHUP #define SIGHUP -1 #endif #ifndef SIGILL #define SIGILL -1 #endif #ifndef SIGINT #define SIGINT -1 #endif #ifndef SIGKILL #define SIGKILL -1 #endif #ifndef SIGPIPE #define SIGPIPE -1 #endif #ifndef SIGQUIT #define SIGQUIT -1 #endif #ifndef SIGSEGV #define SIGSEGV -1 #endif #ifndef SIGTERM #define SIGTERM -1 #endif #ifndef SIGUSR1 #define SIGUSR1 -1 #endif #ifndef SIGUSR2 #define SIGUSR2 -1 #endif #ifndef SIGCHLD #define SIGCHLD -1 #endif #ifndef SIGCONT #define SIGCONT -1 #endif #ifndef SIGSTOP #define SIGSTOP -1 #endif #ifndef SIGTSTP #define SIGTSTP -1 #endif #ifndef SIGTTIN #define SIGTTIN -1 #endif #ifndef SIGTTOU #define SIGTTOU -1 #endif #ifndef SIGVTALRM #define SIGVTALRM -1 #endif #ifndef SIGPROF #define SIGPROF -1 #endif static int posix_signals[] = { SIGABRT, SIGALRM, SIGFPE, SIGHUP, SIGILL, SIGINT, SIGKILL, SIGPIPE, SIGQUIT, SIGSEGV, SIGTERM, SIGUSR1, SIGUSR2, SIGCHLD, SIGCONT, SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, SIGVTALRM, SIGPROF }; CAMLexport int convert_signal_number(int signo) { if (signo < 0 && signo >= -(sizeof(posix_signals) / sizeof(int))) return posix_signals[-signo-1]; else return signo; } static int rev_convert_signal_number(int signo) { int i; for (i = 0; i < sizeof(posix_signals) / sizeof(int); i++) if (signo == posix_signals[i]) return -i - 1; return signo; } #ifndef NSIG #define NSIG 64 #endif CAMLprim value install_signal_handler(value signal_number, value action) { CAMLparam2 (signal_number, action); int sig; void (*act)(int signo), (*oldact)(int signo); #ifdef POSIX_SIGNALS struct sigaction sigact, oldsigact; #endif CAMLlocal1 (res); sig = convert_signal_number(Int_val(signal_number)); if (sig < 0 || sig >= NSIG) invalid_argument("Sys.signal: unavailable signal"); switch(action) { case Val_int(0): /* Signal_default */ act = SIG_DFL; break; case Val_int(1): /* Signal_ignore */ act = SIG_IGN; break; default: /* Signal_handle */ act = handle_signal; break; } #ifdef POSIX_SIGNALS sigact.sa_handler = act; sigemptyset(&sigact.sa_mask); sigact.sa_flags = 0; if (sigaction(sig, &sigact, &oldsigact) == -1) caml_sys_error(NO_ARG); oldact = oldsigact.sa_handler; #else oldact = signal(sig, act); if (oldact == SIG_ERR) caml_sys_error(NO_ARG); #endif if (oldact == handle_signal) { res = alloc_small (1, 0); /* Signal_handle */ Field(res, 0) = Field(signal_handlers, sig); } else if (oldact == SIG_IGN) res = Val_int(1); /* Signal_ignore */ else res = Val_int(0); /* Signal_default */ if (Is_block(action)) { if (signal_handlers == 0) { signal_handlers = alloc(NSIG, 0); register_global_root(&signal_handlers); } modify(&Field(signal_handlers, sig), Field(action, 0)); } CAMLreturn (res); }