(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* Automatique. Distributed only by permission. *) (* *) (***********************************************************************) (* $Id$ *) (* Description of the Sparc processor *) open Misc open Cmm open Reg open Arch open Mach (* Exceptions raised to signal cases not handled here *) exception Use_default (* Recognition of addressing modes *) type addressing_expr = Asymbol of string | Alinear of expression | Aadd of expression * expression let rec select_addr = function Cconst_symbol s -> (Asymbol s, 0) | Cop((Caddi | Cadda), [arg; Cconst_int m]) -> let (a, n) = select_addr arg in (a, n + m) | Cop((Caddi | Cadda), [Cconst_int m; arg]) -> let (a, n) = select_addr arg in (a, n + m) | Cop((Caddi | Cadda), [arg1; arg2]) -> begin match (select_addr arg1, select_addr arg2) with ((Alinear e1, n1), (Alinear e2, n2)) -> (Aadd(e1, e2), n1 + n2) | _ -> (Aadd(arg1, arg2), 0) end | exp -> (Alinear exp, 0) let select_addressing exp = match select_addr exp with (Asymbol s, d) -> (Ibased(s, d), Ctuple []) | (Alinear e, d) -> (Iindexed d, e) | (Aadd(e1, e2), d) -> (Iindexed2 d, Ctuple[e1; e2]) (* Instruction selection *) let is_immediate n = (n <= 4095) & (n >= -4096) let select_oper op args = match (op, args) with (* Multiplication, division and modulus are turned into calls to C library routines, except if the dividend is a power of 2. *) (Cmuli, [arg; Cconst_int n]) when n = 1 lsl (Misc.log2 n) -> (Iintop_imm(Ilsl, Misc.log2 n), [arg]) | (Cmuli, [Cconst_int n; arg]) when n = 1 lsl (Misc.log2 n) -> (Iintop_imm(Ilsl, Misc.log2 n), [arg]) | (Cmuli, _) -> (Iextcall(".umul", false), args) | (Cdivi, [arg; Cconst_int n]) when is_immediate n & n = 1 lsl (Misc.log2 n) -> (Iintop_imm(Idiv, n), [arg]) | (Cdivi, _) -> (Iextcall(".div", false), args) | (Cmodi, [arg; Cconst_int n]) when is_immediate n & n = 1 lsl (Misc.log2 n) -> (Iintop_imm(Imod, n), [arg]) | (Cmodi, _) -> (Iextcall(".rem", false), args) | _ -> raise Use_default let select_store addr exp = raise Use_default let select_push exp = fatal_error "Proc: select_push" let pseudoregs_for_operation op arg res = raise Use_default let word_addressed = false (* Registers available for register allocation *) (* Register map: %l0 - %l7 0 - 7 general purpose, preserved by C %o0 - %o5 8 - 13 function results, C functions args / res %i0 - %i5 14 - 19 function arguments, preserved by C %g2 - %g3 20 - 21 more function arguments, general purpose %g1, %g4 temporary %g5 exception pointer %g6 allocation pointer %g7 allocation limit %g0 always zero %f0 - %f10 100 - 105 function arguments and results %f12 - %f28 106 - 114 general purpose %f30 temporary *) let int_reg_name = [| (* 0-7 *) "%l0"; "%l1"; "%l2"; "%l3"; "%l4"; "%l5"; "%l6"; "%l7"; (* 8-13 *) "%o0"; "%o1"; "%o2"; "%o3"; "%o4"; "%o5"; (* 14-19 *) "%i0"; "%i1"; "%i2"; "%i3"; "%i4"; "%i5"; (* 20-21 *) "%g2"; "%g3" |] let float_reg_name = [| (* 100-105 *) "%f0"; "%f2"; "%f4"; "%f6"; "%f8"; "%f10"; (* 106-109 *) "%f12"; "%f14"; "%f16"; "%f18"; (* 110-114 *) "%f20"; "%f22"; "%f24"; "%f26"; "%f28"; (* Odd parts of register pairs *) (* 115-120 *) "%f1"; "%f3"; "%f5"; "%f7"; "%f9"; "%f11"; (* 121-124 *) "%f13"; "%f15"; "%f17"; "%f19"; (* 125-129 *) "%f21"; "%f23"; "%f25"; "%f27"; "%f29" |] let num_register_classes = 2 let register_class r = match r.typ with Int -> 0 | Addr -> 0 | Float -> 1 let num_available_registers = [| 22; 15 |] let first_available_register = [| 0; 100 |] let register_name r = if r < 100 then int_reg_name.(r) else float_reg_name.(r - 100) let rotate_registers = true (* Representation of hard registers by pseudo-registers *) let hard_int_reg = let v = Array.create 22 Reg.dummy in for i = 0 to 21 do v.(i) <- Reg.at_location Int (Reg i) done; v let hard_float_reg = let v = Array.create 30 Reg.dummy in for i = 0 to 29 do v.(i) <- Reg.at_location Float (Reg(100 + i)) done; v let all_phys_regs = Array.append hard_int_reg (Array.sub hard_float_reg 0 15) (* No need to include the odd parts of float register pairs *) let phys_reg n = if n < 100 then hard_int_reg.(n) else hard_float_reg.(n - 100) let stack_slot slot ty = Reg.at_location ty (Stack slot) (* Calling conventions *) let calling_conventions first_int last_int first_float last_float make_stack arg = let loc = Array.create (Array.length arg) Reg.dummy in let int = ref first_int in let float = ref first_float in let ofs = ref 0 in for i = 0 to Array.length arg - 1 do match arg.(i).typ with Int | Addr as ty -> if !int <= last_int then begin loc.(i) <- phys_reg !int; incr int end else begin loc.(i) <- stack_slot (make_stack !ofs) ty; ofs := !ofs + size_int end | Float -> if !float <= last_float then begin loc.(i) <- phys_reg !float; incr float end else begin loc.(i) <- stack_slot (make_stack !ofs) Float; ofs := !ofs + size_float end done; (loc, Misc.align !ofs 8) (* Keep stack 8-aligned *) let incoming ofs = Incoming ofs let outgoing ofs = Outgoing ofs let not_supported ofs = fatal_error "Proc.loc_results: cannot call" let loc_arguments arg = calling_conventions 14 21 100 105 outgoing arg let loc_parameters arg = let (loc, ofs) = calling_conventions 14 21 100 105 incoming arg in loc let loc_results res = let (loc, ofs) = calling_conventions 8 13 100 105 not_supported res in loc (* On the Sparc, all arguments to C functions, even floating-point arguments, are passed in %o0..%o5, then on the stack *) let loc_external_arguments arg = let loc = Array.create (Array.length arg) Reg.dummy in let reg = ref 8 (* %o0 *) in let ofs = ref (-4) in (* start at sp + 92 = sp + 96 - 4 *) for i = 0 to Array.length arg - 1 do if !reg <= 13 (* %o5 *) then begin loc.(i) <- phys_reg !reg; match arg.(i).typ with Int | Addr -> incr reg | Float -> reg := !reg + 2 end else begin loc.(i) <- stack_slot (outgoing !ofs) arg.(i).typ; ofs := !ofs + size_component arg.(i).typ end done; (loc, Misc.align (!ofs + 4) 8) (* Keep stack 8-aligned *) let extcall_use_push = false let loc_external_results res = let (loc, ofs) = calling_conventions 8 8 100 100 not_supported res in loc let loc_exn_bucket = phys_reg 8 (* $o0 *) (* Registers destroyed by operations *) let destroyed_at_c_call = (* %l0-%l7, %i0-%i5 preserved *) Array.of_list(List.map phys_reg [8; 9; 10; 11; 12; 13; 20; 21; 100; 101; 102; 103; 104; 105; 106; 107; 108; 109; 110; 111; 112; 113; 114]) let destroyed_at_oper = function Iop(Icall_ind | Icall_imm _ | Iextcall(_, true)) -> all_phys_regs | Iop(Iextcall(_, false)) -> destroyed_at_c_call | _ -> [||] let destroyed_at_raise = all_phys_regs (* Maximal register pressure *) let safe_register_pressure = function Iextcall(_, _) -> 0 | _ -> 15 let max_register_pressure = function Iextcall(_, _) -> [| 14; 0 |] | _ -> [| 22; 15 |] (* Reloading *) let reload_test makereg round tst args = raise Use_default let reload_operation makereg round op args res = raise Use_default (* Latencies (in cycles). Wild guesses. *) let need_scheduling = true let oper_latency = function Ireload -> 3 | Iload(_, _) -> 3 | Iconst_float _ -> 3 (* turned into a load *) | Iaddf | Isubf -> 3 | Imulf -> 5 | Idivf -> 15 | _ -> 1 (* Layout of the stack *) let num_stack_slots = [| 0; 0 |] let contains_calls = ref false (* Calling the assembler and the archiver *) let assemble_file infile outfile = Sys.command ("as -o " ^ outfile ^ " " ^ infile) let create_archive archive file_list = Misc.remove_file archive; if Config.system = "solaris" then Sys.command ("ar rc " ^ archive ^ " " ^ String.concat " " file_list) else Sys.command ("ar rc " ^ archive ^ " " ^ String.concat " " file_list ^ " && ranlib " ^ archive)