(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* Automatique. Distributed only by permission. *) (* *) (***********************************************************************) (* $Id$ *) (* Description of the Motorola 68020 processor *) open Misc open Arch open Format open Cmm open Reg open Mach (* Registers available for register allocation *) (* Register map: A0 - A6 0-6 address registers (A2-A6 callee-save) A7 stack pointer D0 - D4 7-11 data registers (D2 - D7 callee-save) D5 temporary D6 allocation pointer D7 trap pointer FP0 - FP7 12-19 floating-point registers (FP2 - FP7 callee-save) *) let register_names = [| "a0"; "a1"; "a2"; "a3"; "a4"; "a5"; "a6"; "d0"; "d1"; "d2"; "d3"; "d4"; "fp0"; "fp1"; "fp2"; "fp3"; "fp4"; "fp5"; "fp6"; "fp7" |] let num_register_classes = 3 let register_class r = match r.typ with Addr -> 0 | Int -> 1 | Float -> 2 let num_available_registers = [| 7; 5; 8 |] let first_available_register = [| 0; 7; 12 |] let register_name r = register_names.(r) (* There is no scheduling, so just pack registers. *) let rotate_registers = false (* Representation of hard registers by pseudo-registers *) let all_phys_regs = let v = Array.create 20 Reg.dummy in for i = 0 to 6 do v.(i) <- Reg.at_location Addr (Reg i) done; for i = 7 to 11 do v.(i) <- Reg.at_location Int (Reg i) done; for i = 12 to 19 do v.(i) <- Reg.at_location Float (Reg i) done; v let phys_reg n = all_phys_regs.(n) let stack_slot slot ty = Reg.at_location ty (Stack slot) let reg_A0 = phys_reg 0 let reg_FP0 = phys_reg 12 (* Exceptions raised to signal cases not handled here *) exception Use_default (* Instruction selection *) (* Auxiliary for recognizing addressing modes *) type addressing_expr = Asymbol of string | Alinear of expression | Aadd of expression * expression | Ascale of expression * int | Ascaledadd of expression * expression * int let rec select_addr exp = match exp with Cconst_symbol s -> (Asymbol s, 0) | Cop((Caddi | Cadda), [arg; Cconst_int m]) -> let (a, n) = select_addr arg in (a, n + m) | Cop((Csubi | Csuba), [arg; Cconst_int m]) -> let (a, n) = select_addr arg in (a, n - m) | Cop((Caddi | Cadda), [Cconst_int m; arg]) -> let (a, n) = select_addr arg in (a, n + m) | Cop(Clsl, [arg; Cconst_int(1|2|3 as shift)]) -> begin match select_addr arg with (Alinear e, n) -> (Ascale(e, 1 lsl shift), n lsl shift) | _ -> (Alinear exp, 0) end | Cop(Cmuli, [arg; Cconst_int(2|4|8 as mult)]) -> begin match select_addr arg with (Alinear e, n) -> (Ascale(e, mult), n * mult) | _ -> (Alinear exp, 0) end | Cop(Cmuli, [Cconst_int(2|4|8 as mult); arg]) -> begin match select_addr arg with (Alinear e, n) -> (Ascale(e, mult), n * mult) | _ -> (Alinear exp, 0) end | Cop((Caddi | Cadda), [arg1; arg2]) -> begin match (select_addr arg1, select_addr arg2) with ((Alinear e1, n1), (Alinear e2, n2)) -> (Aadd(e1, e2), n1 + n2) | ((Alinear e1, n1), (Ascale(e2, scale), n2)) -> (Ascaledadd(e1, e2, scale), n1 + n2) | ((Ascale(e1, scale), n1), (Alinear e2, n2)) -> (Ascaledadd(e2, e1, scale), n1 + n2) | (_, (Ascale(e2, scale), n2)) -> (Ascaledadd(arg1, e2, scale), n2) | ((Ascale(e1, scale), n1), _) -> (Ascaledadd(arg2, e1, scale), n1) | _ -> (Aadd(arg1, arg2), 0) end | arg -> (Alinear arg, 0) let select_addressing exp = match select_addr exp with (Asymbol s, d) -> (Ibased(s, d), Ctuple []) | (Alinear e, d) -> (Iindexed d, e) | (Aadd(e1, e2), d) -> (Iindexed2 d, Ctuple[e1; e2]) | (Ascale(e, scale), d) -> (Iscaled(scale, d), e) | (Ascaledadd(e1, e2, scale), d) -> (Iindexed2scaled(scale, d), Ctuple[e1; e2]) (* Selection of immediate shifts *) let select_shift op args = match args with [arg1; Cconst_int n] when n >= 1 && n <= 8 -> (Iintop_imm(op, n), [arg1]) | _ -> (Iintop op, args) (* Main instruction selection functions *) let select_oper op args = match op with (* Recognize the LEA instruction *) Cadda | Csuba -> begin match select_addressing (Cop(op, args)) with (Iindexed d, _) -> raise Use_default | (addr, arg) -> (Ispecific(Ilea addr), [arg]) end (* Recognize immediate shifts only if 1 <= count <= 8 *) | Clsl -> select_shift Ilsl args | Clsr -> select_shift Ilsr args | Casr -> select_shift Iasr args (* Recognize store instructions *) | Cstore -> begin match args with [loc; Cconst_int n] -> let (addr, arg) = select_addressing loc in (Ispecific(Istore_int(n, addr)), [arg]) | [loc; Cconst_pointer n] -> let (addr, arg) = select_addressing loc in (Ispecific(Istore_int(n, addr)), [arg]) | [loc; Cconst_symbol s] -> let (addr, arg) = select_addressing loc in (Ispecific(Istore_symbol(s, addr)), [arg]) | _ -> raise Use_default end | _ -> raise Use_default let select_store addr exp = match exp with Cconst_int n -> (Ispecific(Istore_int(n, addr)), Ctuple []) | Cconst_pointer n -> (Ispecific(Istore_int(n, addr)), Ctuple []) | Cconst_symbol s -> (Ispecific(Istore_symbol(s, addr)), Ctuple []) | _ -> raise Use_default let select_push exp = match exp with Cconst_int n -> (Ispecific(Ipush_int n), Ctuple []) | Cconst_pointer n -> (Ispecific(Ipush_int n), Ctuple []) | Cconst_symbol s -> (Ispecific(Ipush_symbol s), Ctuple []) | Cop(Cload ty, [loc]) when ty = typ_float -> let (addr, arg) = select_addressing loc in (Ispecific(Ipush_load_float addr), arg) | Cop(Cload ty, [loc]) when ty = typ_addr or ty = typ_int -> let (addr, arg) = select_addressing loc in (Ispecific(Ipush_load addr), arg) | _ -> (Ispecific(Ipush), exp) let pseudoregs_for_operation op arg res = match op with (* Two-address binary operations *) Iintop(Iadd | Isub | Imul | Idiv | Imod | Ilsl | Ilsr | Iasr) | Iaddf | Isubf | Imulf | Idivf -> ([|res.(0); arg.(1)|], res, false) (* Two-address binary operations, forcing the second argument to be in a data register *) | Iintop(Iand | Ior | Ixor) -> let newarg1 = Reg.create Int in ([|res.(0); newarg1|], res, false) (* Two-address unary operations *) | Iintop_imm((Iadd | Isub | Imul | Idiv | Imod | Iand | Ior | Ixor | Ilsl | Ilsr | Iasr), _) -> (res, res, false) (* Other instructions are regular *) | _ -> raise Use_default let is_immediate (n: int) = true let word_addressed = false (* Calling conventions *) let calling_conventions first_addr last_addr first_float last_float make_stack arg = let loc = Array.create (Array.length arg) Reg.dummy in let addr = ref first_addr in let float = ref first_float in let ofs = ref 0 in for i = 0 to Array.length arg - 1 do match arg.(i).typ with (Addr | Int) as ty -> if !addr <= last_addr then begin loc.(i) <- phys_reg !addr; incr addr end else begin loc.(i) <- stack_slot (make_stack !ofs) ty; ofs := !ofs + size_addr end | Float -> if !float <= last_float then begin loc.(i) <- phys_reg !float; incr float end else begin loc.(i) <- stack_slot (make_stack !ofs) Float; ofs := !ofs + size_float end done; (loc, !ofs) let incoming ofs = Incoming ofs let outgoing ofs = Outgoing ofs let not_supported ofs = fatal_error "Proc.loc_results: cannot call" let loc_arguments arg = calling_conventions 0 5 12 18 outgoing arg let loc_parameters arg = let (loc, ofs) = calling_conventions 0 5 12 18 incoming arg in loc let loc_results res = let (loc, ofs) = calling_conventions 0 5 12 18 not_supported res in loc let extcall_use_push = true let loc_external_arguments arg = fatal_error "Proc.loc_external_arguments" let loc_external_results res = let (loc, ofs) = calling_conventions 7 7 12 12 not_supported res in loc let loc_exn_bucket = reg_A0 (* Registers destroyed by operations *) let destroyed_at_c_call = Array.of_list(List.map phys_reg [0; 1; 7; 8; 12; 13]) let destroyed_at_oper = function Iop(Icall_ind | Icall_imm _ | Iextcall(_, true)) -> all_phys_regs | Iop(Iextcall(_, false)) -> destroyed_at_c_call | Iop(Iintoffloat) -> [| reg_FP0 |] | _ -> [||] let destroyed_at_raise = all_phys_regs (* Maximal register pressure *) let safe_register_pressure op = 5 let max_register_pressure = function Iextcall(_, _) -> [| 5; 3; 6 |] | Iintoffloat -> [| 7; 5; 7 |] | _ -> num_available_registers (* Reloading of instruction arguments, storing of instruction results. *) let stackp r = match r.loc with Stack _ -> true | _ -> false let reload_test makereg round tst arg = match tst with Iinttest _ | Ifloattest _ -> (* The second argument can be on stack *) [| makereg arg.(0); arg.(1) |] | _ -> (* The argument can be on stack *) arg let reload_operation makereg round op arg res = match op with Imove | Ireload | Ispill | Iintop_imm((Iadd | Isub | Iand | Ior | Ixor | Icomp _ | Ilsl | Ilsr | Iasr), _) | Ifloatofint | Iintoffloat | Ispecific(Ipush) -> (* The argument(s) can be either in register or on stack *) (arg, res) | Iintop(Iadd | Isub | Iand | Ior | Ixor | Icomp _) -> (* One of the two arguments can reside in the stack *) if stackp arg.(0) && stackp arg.(1) then ([|arg.(0); makereg arg.(1)|], res) else (arg, res) | Iintop(Ilsl | Ilsr | Iasr) -> (* The first argument and result can reside in the stack *) ([|arg.(0); makereg arg.(1)|], res) | Iintop(Imul | Idiv | Imod) | Iaddf | Isubf | Imulf | Idivf -> (* The second argument can reside in the stack *) let r = makereg arg.(0) in ([|r; arg.(1)|], [|r|]) | _ -> (* Other operations: all args and results in registers *) raise Use_default (* Scheduling is turned off. *) let need_scheduling = false let oper_latency _ = 0 (* Layout of the stack frame *) let num_stack_slots = [| 0; 0; 0 |] let contains_calls = ref false (* Calling the assembler *) let assemble_file infile outfile = Sys.command ("as -o " ^ outfile ^ " " ^ infile) (* Calling the archiver *) let create_archive archive file_list = Misc.remove_file archive; Sys.command ("ar rc " ^ archive ^ " " ^ String.concat " " file_list ^ " && ranlib " ^ archive)