(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* $Id$ *) (* bytegen.ml : translation of lambda terms to lists of instructions. *) open Misc open Asttypes open Primitive open Types open Lambda open Instruct (**** Label generation ****) let label_counter = ref 0 let new_label () = incr label_counter; !label_counter (**** Operations on compilation environments. ****) let empty_env = { ce_stack = Ident.empty; ce_heap = Ident.empty; ce_rec = Ident.empty } (* Add a stack-allocated variable *) let add_var id pos env = { ce_stack = Ident.add id pos env.ce_stack; ce_heap = env.ce_heap; ce_rec = env.ce_rec } let rec add_vars idlist pos env = match idlist with [] -> env | id :: rem -> add_vars rem (pos + 1) (add_var id pos env) (**** Examination of the continuation ****) (* Return a label to the beginning of the given continuation. If the sequence starts with a branch, use the target of that branch as the label, thus avoiding a jump to a jump. *) let label_code = function Kbranch lbl :: _ as cont -> (lbl, cont) | Klabel lbl :: _ as cont -> (lbl, cont) | cont -> let lbl = new_label() in (lbl, Klabel lbl :: cont) (* Return a branch to the continuation. That is, an instruction that, when executed, branches to the continuation or performs what the continuation performs. We avoid generating branches to branches and branches to returns. *) let rec make_branch_2 lbl n cont = function Kreturn m :: _ -> (Kreturn (n + m), cont) | Klabel _ :: c -> make_branch_2 lbl n cont c | Kpop m :: c -> make_branch_2 lbl (n + m) cont c | _ -> match lbl with Some lbl -> (Kbranch lbl, cont) | None -> let lbl = new_label() in (Kbranch lbl, Klabel lbl :: cont) let make_branch cont = match cont with (Kbranch _ as branch) :: _ -> (branch, cont) | (Kreturn _ as return) :: _ -> (return, cont) | Kraise :: _ -> (Kraise, cont) | Klabel lbl :: _ -> make_branch_2 (Some lbl) 0 cont cont | _ -> make_branch_2 (None) 0 cont cont (* Discard all instructions up to the next label. This function is to be applied to the continuation before adding a non-terminating instruction (branch, raise, return) in front of it. *) let rec discard_dead_code = function [] -> [] | (Klabel _ | Krestart | Ksetglobal _) :: _ as cont -> cont | _ :: cont -> discard_dead_code cont (* Check if we're in tailcall position *) let rec is_tailcall = function Kreturn _ :: _ -> true | Klabel _ :: c -> is_tailcall c | Kpop _ :: c -> is_tailcall c | _ -> false (* Add a Kpop N instruction in front of a continuation *) let rec add_pop n cont = if n = 0 then cont else match cont with Kpop m :: cont -> add_pop (n + m) cont | Kreturn m :: cont -> Kreturn(n + m) :: cont | Kraise :: _ -> cont | _ -> Kpop n :: cont (* Add the constant "unit" in front of a continuation *) let add_const_unit = function (Kacc _ | Kconst _ | Kgetglobal _ | Kpush_retaddr _) :: _ as cont -> cont | cont -> Kconst const_unit :: cont (**** Auxiliary for compiling "let rec" ****) let rec size_of_lambda = function | Lfunction(kind, params, body) as funct -> 1 + IdentSet.cardinal(free_variables funct) | Lprim(Pmakeblock(tag, mut), args) -> List.length args | Lprim(Pmakearray kind, args) -> List.length args | Llet(str, id, arg, body) -> size_of_lambda body | Lletrec(bindings, body) -> size_of_lambda body | Levent (lam, _) -> size_of_lambda lam | Lsequence (lam, lam') -> size_of_lambda lam' | _ -> fatal_error "Bytegen.size_of_lambda" (**** Merging consecutive events ****) let copy_event ev kind info repr = { ev_pos = 0; (* patched in emitcode *) ev_module = ev.ev_module; ev_char = ev.ev_char; ev_kind = kind; ev_info = info; ev_typenv = ev.ev_typenv; ev_compenv = ev.ev_compenv; ev_stacksize = ev.ev_stacksize; ev_repr = repr } let merge_infos ev ev' = match ev.ev_info, ev'.ev_info with Event_other, info -> info | info, Event_other -> info | _ -> fatal_error "Bytegen.merge_infos" let merge_repr ev ev' = match ev.ev_repr, ev'.ev_repr with Event_none, x -> x | x, Event_none -> x | Event_parent r, Event_child r' when r == r' && !r = 1 -> Event_none | Event_child r, Event_parent r' when r == r' -> Event_parent r | _, _ -> fatal_error "Bytegen.merge_repr" let merge_events ev ev' = let (maj, min) = match ev.ev_kind, ev'.ev_kind with (* Discard pseudo-events *) Event_pseudo, _ -> ev', ev | _, Event_pseudo -> ev, ev' (* Keep following event, supposedly more informative *) | Event_before, (Event_after _ | Event_before) -> ev', ev (* Discard following events, supposedly less informative *) | Event_after _, (Event_after _ | Event_before) -> ev, ev' in copy_event maj maj.ev_kind (merge_infos maj min) (merge_repr maj min) let weaken_event ev cont = match ev.ev_kind with Event_after _ -> begin match cont with Kpush :: Kevent ({ev_repr = Event_none} as ev') :: c -> begin match ev.ev_info with Event_return _ -> (* Weaken event *) let repr = ref 1 in let ev = copy_event ev Event_pseudo ev.ev_info (Event_parent repr) and ev' = copy_event ev' ev'.ev_kind ev'.ev_info (Event_child repr) in Kevent ev :: Kpush :: Kevent ev' :: c | _ -> (* Only keep following event, equivalent *) cont end | _ -> Kevent ev :: cont end | _ -> Kevent ev :: cont let add_event ev = function Kevent ev' :: cont -> weaken_event (merge_events ev ev') cont | cont -> weaken_event ev cont (**** Compilation of a lambda expression ****) (* The label to which Lstaticfail branches, and the stack size at that point.*) let lbl_staticfail = ref None and sz_staticfail = ref 0 (* Function bodies that remain to be compiled *) type function_to_compile = { params: Ident.t list; (* function parameters *) body: lambda; (* the function body *) label: label; (* the label of the function entry *) free_vars: Ident.t list; (* free variables of the function *) num_defs: int; (* number of mutually recursive definitions *) rec_vars: Ident.t list; (* mutually recursive fn names *) rec_pos: int } (* rank in recursive definition *) let functions_to_compile = (Stack.create () : function_to_compile Stack.t) (* Name of current compilation unit (for debugging events) *) let compunit_name = ref "" (* Compile an expression. The value of the expression is left in the accumulator. env = compilation environment exp = the lambda expression to compile sz = current size of the stack frame cont = list of instructions to execute afterwards Result = list of instructions that evaluate exp, then perform cont. *) let rec comp_expr env exp sz cont = match exp with Lvar id -> begin try let pos = Ident.find_same id env.ce_stack in Kacc(sz - pos) :: cont with Not_found -> try let pos = Ident.find_same id env.ce_heap in Kenvacc(pos) :: cont with Not_found -> try let ofs = Ident.find_same id env.ce_rec in Koffsetclosure(ofs) :: cont with Not_found -> Ident.print id; print_newline(); fatal_error ("Bytegen.comp_expr: var " ^ Ident.unique_name id) end | Lconst cst -> Kconst cst :: cont | Lapply(func, args) -> let nargs = List.length args in if is_tailcall cont then comp_args env args sz (Kpush :: comp_expr env func (sz + nargs) (Kappterm(nargs, sz + nargs) :: discard_dead_code cont)) else if nargs < 4 then comp_args env args sz (Kpush :: comp_expr env func (sz + nargs) (Kapply nargs :: cont)) else begin let (lbl, cont1) = label_code cont in Kpush_retaddr lbl :: comp_args env args (sz + 3) (Kpush :: comp_expr env func (sz + 3 + nargs) (Kapply nargs :: cont1)) end | Lsend(met, obj, args) -> let nargs = List.length args + 1 in if is_tailcall cont then comp_args env (met::obj::args) sz (Kgetmethod :: Kappterm(nargs, sz + nargs) :: discard_dead_code cont) else if nargs < 4 then comp_args env (met::obj::args) sz (Kgetmethod :: Kapply nargs :: cont) else begin let (lbl, cont1) = label_code cont in Kpush_retaddr lbl :: comp_args env (met::obj::args) (sz + 3) (Kgetmethod :: Kapply nargs :: cont1) end | Lfunction(kind, params, body) -> (* assume kind = Curried *) let lbl = new_label() in let fv = IdentSet.elements(free_variables exp) in let to_compile = { params = params; body = body; label = lbl; free_vars = fv; num_defs = 1; rec_vars = []; rec_pos = 0 } in Stack.push to_compile functions_to_compile; comp_args env (List.map (fun n -> Lvar n) fv) sz (Kclosure(lbl, List.length fv) :: cont) | Llet(str, id, arg, body) -> comp_expr env arg sz (Kpush :: comp_expr (add_var id (sz+1) env) body (sz+1) (add_pop 1 cont)) | Lletrec(decl, body) -> let ndecl = List.length decl in if List.for_all (function (_, Lfunction(_,_,_)) -> true | _ -> false) decl then begin (* let rec of functions *) let fv = IdentSet.elements (free_variables (Lletrec(decl, lambda_unit))) in let rec_idents = List.map (fun (id, lam) -> id) decl in let rec comp_fun pos = function [] -> [] | (id, Lfunction(kind, params, body)) :: rem -> let lbl = new_label() in let to_compile = { params = params; body = body; label = lbl; free_vars = fv; num_defs = ndecl; rec_vars = rec_idents; rec_pos = pos} in Stack.push to_compile functions_to_compile; lbl :: comp_fun (pos + 1) rem | _ -> assert false in let lbls = comp_fun 0 decl in let num_funcs = List.length lbls in comp_args env (List.map (fun n -> Lvar n) fv) sz (Kclosurerec(lbls, List.length fv) :: (comp_expr (add_vars rec_idents (sz+1) env) body (sz + ndecl) (add_pop ndecl cont))) end else begin let decl_size = List.map (fun (id, exp) -> (id, exp, size_of_lambda exp)) decl in let rec comp_decl new_env sz i = function [] -> comp_expr new_env body sz (add_pop ndecl cont) | (id, exp, blocksize) :: rem -> comp_expr new_env exp sz (Kpush :: Kacc i :: Kccall("update_dummy", 2) :: comp_decl new_env sz (i-1) rem) in let rec comp_init new_env sz = function [] -> comp_decl new_env sz ndecl decl_size | (id, exp, blocksize) :: rem -> Kconst(Const_base(Const_int blocksize)) :: Kccall("alloc_dummy", 1) :: Kpush :: comp_init (add_var id (sz+1) new_env) (sz+1) rem in comp_init env sz decl_size end | Lprim(Pidentity, [arg]) -> comp_expr env arg sz cont | Lprim(Pignore, [arg]) -> comp_expr env arg sz (add_const_unit cont) | Lprim(Pnot, [arg]) -> let newcont = match cont with Kbranchif lbl :: cont1 -> Kbranchifnot lbl :: cont1 | Kbranchifnot lbl :: cont1 -> Kbranchif lbl :: cont1 | _ -> Kboolnot :: cont in comp_expr env arg sz newcont | Lprim(Psequand, [exp1; exp2]) -> begin match cont with Kbranchifnot lbl :: _ -> comp_expr env exp1 sz (Kbranchifnot lbl :: comp_expr env exp2 sz cont) | Kbranchif lbl :: cont1 -> let (lbl2, cont2) = label_code cont1 in comp_expr env exp1 sz (Kbranchifnot lbl2 :: comp_expr env exp2 sz (Kbranchif lbl :: cont2)) | _ -> let (lbl, cont1) = label_code cont in comp_expr env exp1 sz (Kstrictbranchifnot lbl :: comp_expr env exp2 sz cont1) end | Lprim(Psequor, [exp1; exp2]) -> begin match cont with Kbranchif lbl :: _ -> comp_expr env exp1 sz (Kbranchif lbl :: comp_expr env exp2 sz cont) | Kbranchifnot lbl :: cont1 -> let (lbl2, cont2) = label_code cont1 in comp_expr env exp1 sz (Kbranchif lbl2 :: comp_expr env exp2 sz (Kbranchifnot lbl :: cont2)) | _ -> let (lbl, cont1) = label_code cont in comp_expr env exp1 sz (Kstrictbranchif lbl :: comp_expr env exp2 sz cont1) end | Lprim(Praise, [arg]) -> comp_expr env arg sz (Kraise :: discard_dead_code cont) | Lprim((Paddint | Psubint as prim), [arg; Lconst(Const_base(Const_int n))]) when n >= immed_min & n <= immed_max -> let ofs = if prim == Paddint then n else -n in comp_expr env arg sz (Koffsetint ofs :: cont) | Lprim(Pmakearray kind, args) -> begin match kind with Pintarray | Paddrarray -> comp_args env args sz (Kmakeblock(List.length args, 0) :: cont) | Pfloatarray -> comp_args env args sz (Kmakefloatblock(List.length args) :: cont) | Pgenarray -> if args = [] then Kmakeblock(0, 0) :: cont else comp_args env args sz (Kmakeblock(List.length args, 0) :: Kccall("make_array", 1) :: cont) end | Lprim(p, args) -> let instr = match p with Pgetglobal id -> Kgetglobal id | Psetglobal id -> Ksetglobal id | Pintcomp cmp -> Kintcomp cmp | Pmakeblock(tag, mut) -> Kmakeblock(List.length args, tag) | Pfield n -> Kgetfield n | Psetfield(n, ptr) -> Ksetfield n | Pfloatfield n -> Kgetfloatfield n | Psetfloatfield n -> Ksetfloatfield n | Pccall p -> Kccall(p.prim_name, p.prim_arity) | Pnegint -> Knegint | Paddint -> Kaddint | Psubint -> Ksubint | Pmulint -> Kmulint | Pdivint -> Kdivint | Pmodint -> Kmodint | Pandint -> Kandint | Porint -> Korint | Pxorint -> Kxorint | Plslint -> Klslint | Plsrint -> Klsrint | Pasrint -> Kasrint | Poffsetint n -> Koffsetint n | Poffsetref n -> Koffsetref n | Pintoffloat -> Kccall("int_of_float", 1) | Pfloatofint -> Kccall("float_of_int", 1) | Pnegfloat -> Kccall("neg_float", 1) | Pabsfloat -> Kccall("abs_float", 1) | Paddfloat -> Kccall("add_float", 2) | Psubfloat -> Kccall("sub_float", 2) | Pmulfloat -> Kccall("mul_float", 2) | Pdivfloat -> Kccall("div_float", 2) | Pfloatcomp Ceq -> Kccall("eq_float", 2) | Pfloatcomp Cneq -> Kccall("neq_float", 2) | Pfloatcomp Clt -> Kccall("lt_float", 2) | Pfloatcomp Cgt -> Kccall("gt_float", 2) | Pfloatcomp Cle -> Kccall("le_float", 2) | Pfloatcomp Cge -> Kccall("ge_float", 2) | Pstringlength -> Kccall("ml_string_length", 1) | Pstringrefs -> Kccall("string_get", 2) | Pstringsets -> Kccall("string_set", 3) | Pstringrefu -> Kgetstringchar | Pstringsetu -> Ksetstringchar | Parraylength kind -> Kvectlength | Parrayrefs Pgenarray -> Kccall("array_get", 2) | Parrayrefs Pfloatarray -> Kccall("array_get_float", 2) | Parrayrefs _ -> Kccall("array_get_addr", 2) | Parraysets Pgenarray -> Kccall("array_set", 3) | Parraysets Pfloatarray -> Kccall("array_set_float", 3) | Parraysets _ -> Kccall("array_set_addr", 3) | Parrayrefu Pgenarray -> Kccall("array_unsafe_get", 2) | Parrayrefu Pfloatarray -> Kccall("array_unsafe_get_float", 2) | Parrayrefu _ -> Kgetvectitem | Parraysetu Pgenarray -> Kccall("array_unsafe_set", 3) | Parraysetu Pfloatarray -> Kccall("array_unsafe_set_float", 3) | Parraysetu _ -> Ksetvectitem | Pisint -> Kisint | Pbittest -> Kccall("bitvect_test", 2) | _ -> fatal_error "Bytegen.comp_expr: prim" in comp_args env args sz (instr :: cont) | Lcatch(body, Lstaticfail) -> comp_expr env body sz cont | Lcatch(body, handler) -> let (branch1, cont1) = make_branch cont in let (lbl_handler, cont2) = label_code (comp_expr env handler sz cont1) in let saved_lbl_staticfail = !lbl_staticfail and saved_sz_staticfail = !sz_staticfail in lbl_staticfail := Some lbl_handler; sz_staticfail := sz; let cont3 = comp_expr env body sz (branch1 :: cont2) in lbl_staticfail := saved_lbl_staticfail; sz_staticfail := saved_sz_staticfail; cont3 | Lstaticfail -> let cont = discard_dead_code cont in begin match !lbl_staticfail with None -> cont | Some label -> add_pop (sz - !sz_staticfail) (Kbranch label :: cont) end | Ltrywith(body, id, handler) -> let (branch1, cont1) = make_branch cont in let lbl_handler = new_label() in Kpushtrap lbl_handler :: comp_expr env body (sz+4) (Kpoptrap :: branch1 :: Klabel lbl_handler :: Kpush :: comp_expr (add_var id (sz+1) env) handler (sz+1) (add_pop 1 cont1)) | Lifthenelse(cond, ifso, ifnot) -> comp_binary_test env cond ifso ifnot sz cont | Lsequence(exp1, exp2) -> comp_expr env exp1 sz (comp_expr env exp2 sz cont) | Lwhile(cond, body) -> let lbl_loop = new_label() in let lbl_test = new_label() in Kbranch lbl_test :: Klabel lbl_loop :: Kcheck_signals :: comp_expr env body sz (Klabel lbl_test :: comp_expr env cond sz (Kbranchif lbl_loop :: add_const_unit cont)) | Lfor(param, start, stop, dir, body) -> let lbl_loop = new_label() in let lbl_test = new_label() in let offset = match dir with Upto -> 1 | Downto -> -1 in let comp = match dir with Upto -> Cle | Downto -> Cge in comp_expr env start sz (Kpush :: comp_expr env stop (sz+1) (Kpush :: Kbranch lbl_test :: Klabel lbl_loop :: Kcheck_signals :: comp_expr (add_var param (sz+1) env) body (sz+2) (Kacc 1 :: Koffsetint offset :: Kassign 1 :: Klabel lbl_test :: Kacc 0 :: Kpush :: Kacc 2 :: Kintcomp comp :: Kbranchif lbl_loop :: add_const_unit (add_pop 2 cont)))) | Lswitch(arg, sw) -> let (branch, cont1) = make_branch cont in let c = ref (discard_dead_code cont1) in let act_consts = Array.create sw.sw_numconsts Lstaticfail in List.iter (fun (n, act) -> act_consts.(n) <- act) sw.sw_consts; let act_blocks = Array.create sw.sw_numblocks Lstaticfail in List.iter (fun (n, act) -> act_blocks.(n) <- act) sw.sw_blocks; let lbl_consts = Array.create sw.sw_numconsts 0 in let lbl_blocks = Array.create sw.sw_numblocks 0 in for i = sw.sw_numblocks - 1 downto 0 do let (lbl, c1) = label_code(comp_expr env act_blocks.(i) sz (branch :: !c)) in lbl_blocks.(i) <- lbl; c := discard_dead_code c1 done; for i = sw.sw_numconsts - 1 downto 0 do let (lbl, c1) = label_code(comp_expr env act_consts.(i) sz (branch :: !c)) in lbl_consts.(i) <- lbl; c := discard_dead_code c1 done; if sw.sw_checked then c := comp_expr env Lstaticfail sz !c; comp_expr env arg sz (Kswitch(lbl_consts, lbl_blocks) :: !c) | Lassign(id, expr) -> begin try let pos = Ident.find_same id env.ce_stack in comp_expr env expr sz (Kassign(sz - pos) :: cont) with Not_found -> fatal_error "Bytegen.comp_expr: assign" end | Levent(lam, lev) -> let event kind info = { ev_pos = 0; (* patched in emitcode *) ev_module = !compunit_name; ev_char = lev.lev_loc; ev_kind = kind; ev_info = info; ev_typenv = lev.lev_env; ev_compenv = env; ev_stacksize = sz; ev_repr = begin match lev.lev_repr with None -> Event_none | Some ({contents = 1} as repr) when lev.lev_kind = Lev_function -> Event_child repr | Some ({contents = 1} as repr) -> Event_parent repr | Some repr when lev.lev_kind = Lev_function -> Event_parent repr | Some repr -> Event_child repr end } in begin match lev.lev_kind with Lev_before -> let c = comp_expr env lam sz cont in let ev = event Event_before Event_other in add_event ev c | Lev_function -> let c = comp_expr env lam sz cont in let ev = event Event_pseudo Event_function in add_event ev c | Lev_after _ when is_tailcall cont -> (* don't destroy tail call opt *) comp_expr env lam sz cont | Lev_after ty -> let info = match lam with Lapply(_, args) -> Event_return (List.length args) | Lsend(_, _, args) -> Event_return (List.length args + 1) | _ -> Event_other in let ev = event (Event_after ty) info in let cont1 = add_event ev cont in comp_expr env lam sz cont1 end | Lifused (_, exp) -> comp_expr env exp sz cont (* Compile a list of arguments [e1; ...; eN] to a primitive operation. The values of eN ... e2 are pushed on the stack, e2 at top of stack, then e3, then ... The value of e1 is left in the accumulator. *) and comp_args env argl sz cont = comp_expr_list env (List.rev argl) sz cont and comp_expr_list env exprl sz cont = match exprl with [] -> cont | [exp] -> comp_expr env exp sz cont | exp :: rem -> comp_expr env exp sz (Kpush :: comp_expr_list env rem (sz+1) cont) (* Compile an if-then-else test. *) and comp_binary_test env cond ifso ifnot sz cont = let cont_cond = if ifnot = Lconst const_unit then begin let (lbl_end, cont1) = label_code cont in Kstrictbranchifnot lbl_end :: comp_expr env ifso sz cont1 end else if ifso = Lstaticfail && (sz = !sz_staticfail || !lbl_staticfail = None) then let cont = comp_expr env ifnot sz cont in match !lbl_staticfail with None -> cont | Some label -> Kbranchif label :: cont else if ifnot = Lstaticfail && (sz = !sz_staticfail || !lbl_staticfail = None) then let cont = comp_expr env ifso sz cont in match !lbl_staticfail with None -> cont | Some label -> Kbranchifnot label :: cont else begin let (branch_end, cont1) = make_branch cont in let (lbl_not, cont2) = label_code(comp_expr env ifnot sz cont1) in Kbranchifnot lbl_not :: comp_expr env ifso sz (branch_end :: cont2) end in comp_expr env cond sz cont_cond (**** Compilation of functions ****) let comp_function tc cont = let arity = List.length tc.params in let rec positions pos delta = function [] -> Ident.empty | id :: rem -> Ident.add id pos (positions (pos + delta) delta rem) in let env = { ce_stack = positions arity (-1) tc.params; ce_heap = positions (2 * (tc.num_defs - tc.rec_pos) - 1) 1 tc.free_vars; ce_rec = positions (-2 * tc.rec_pos) 2 tc.rec_vars } in let cont1 = comp_expr env tc.body arity (Kreturn arity :: cont) in if arity > 1 then Krestart :: Klabel tc.label :: Kgrab(arity - 1) :: cont1 else Klabel tc.label :: cont1 let comp_remainder cont = let c = ref cont in begin try while true do c := comp_function (Stack.pop functions_to_compile) !c done with Stack.Empty -> () end; !c (**** Compilation of a lambda phrase ****) let compile_implementation modulename expr = Stack.clear functions_to_compile; label_counter := 0; lbl_staticfail := None; sz_staticfail := 0; compunit_name := modulename; let init_code = comp_expr empty_env expr 0 [] in if Stack.length functions_to_compile > 0 then begin let lbl_init = new_label() in Kbranch lbl_init :: comp_remainder (Klabel lbl_init :: init_code) end else init_code let compile_phrase expr = Stack.clear functions_to_compile; label_counter := 0; lbl_staticfail := None; sz_staticfail := 0; let init_code = comp_expr empty_env expr 1 [Kreturn 1] in let fun_code = comp_remainder [] in (init_code, fun_code)