/***********************************************************************/ /* */ /* Objective Caml */ /* */ /* Damien Doligez, projet Para, INRIA Rocquencourt */ /* */ /* Copyright 1996 Institut National de Recherche en Informatique et */ /* Automatique. Distributed only by permission. */ /* */ /***********************************************************************/ /* $Id$ */ #include #include "config.h" #include "freelist.h" #include "gc.h" #include "gc_ctrl.h" #include "major_gc.h" #include "memory.h" #include "mlvalues.h" #include "roots.h" #include "weak.h" extern unsigned long percent_free; /* major_gc.c */ extern void shrink_heap (char *); /* memory.c */ /* Encoded headers: the color is stored in the 2 least significant bits. (For pointer inversion, we need to distinguish headers from pointers.) s is a Wosize, t is a tag, and c is a color (a two-bit number) For the purpose of compaction, "colors" are: 0: pointers (direct or inverted) 1: integer or (unencoded) infix header 2: inverted pointer for infix header 3: integer or encoded (noninfix) header */ #define Make_ehd(s,t,c) (((s) << 10) | (t) << 2 | (c)) #define Whsize_ehd(h) Whsize_hd (h) #define Wosize_ehd(h) Wosize_hd (h) #define Tag_ehd(h) (((h) >> 2) & 0xFF) #define Ecolor(w) ((w) & 3) typedef unsigned long word; static void invert_pointer_at (word *p) { word q = *p; /* Use Ecolor (q) == 0 instead of Is_block (q) because q could be an inverted pointer for an infix header (with Ecolor == 2). */ if (Ecolor (q) == 0 && Is_in_heap (q)){ switch (Ecolor (Hd_val (q))){ case 0: case 3: /* Pointer or header: insert in inverted list. */ *p = Hd_val (q); Hd_val (q) = (header_t) p; break; case 1: /* Infix header: make inverted infix list. */ /* Double inversion: the last of the inverted infix list points to the next infix header in this block. The last of the last list contains the original block header. */ { /* This block as a value. */ value val = (value) q - Infix_offset_val (q); /* Get the block header. */ word *hp = (word *) Hp_val (val); while (Ecolor (*hp) == 0) hp = (word *) *hp; Assert (Ecolor (*hp) == 3); if (Tag_ehd (*hp) == Closure_tag){ /* This is the first infix found in this block. */ /* Save original header. */ *p = *hp; /* Link inverted infix list. */ Hd_val (q) = (header_t) ((word) p | 2); /* Change block header's tag to Infix_tag, and change its size to point to the infix list. */ *hp = Make_ehd (Wosize_bhsize (q - val), Infix_tag, 3); }else{ Assert (Tag_ehd (*hp) == Infix_tag); /* Point the last of this infix list to the current first infix list of the block. */ *p = (word) &Field (val, Wosize_ehd (*hp)) | 1; /* Point the head of this infix list to the above. */ Hd_val (q) = (header_t) ((word) p | 2); /* Change block header's size to point to this infix list. */ *hp = Make_ehd (Wosize_bhsize (q - val), Infix_tag, 3); } } break; case 2: /* Inverted infix list: insert. */ *p = Hd_val (q); Hd_val (q) = (header_t) ((word) p | 2); break; } } } static void invert_root (value v, value *p) { invert_pointer_at ((word *) p); } static char *compact_fl; static void init_compact_allocate (void) { char *ch = heap_start; while (ch != NULL){ Chunk_alloc (ch) = 0; ch = Chunk_next (ch); } compact_fl = heap_start; } static char *compact_allocate (mlsize_t size) /* in bytes, including header */ { char *chunk, *adr; while (Chunk_size (compact_fl) - Chunk_alloc (compact_fl) <= Bhsize_wosize (3) && Chunk_size (Chunk_next (compact_fl)) - Chunk_alloc (Chunk_next (compact_fl)) <= Bhsize_wosize (3)){ compact_fl = Chunk_next (compact_fl); } chunk = compact_fl; while (Chunk_size (chunk) - Chunk_alloc (chunk) < size){ chunk = Chunk_next (chunk); Assert (chunk != NULL); } adr = chunk + Chunk_alloc (chunk); Chunk_alloc (chunk) += size; return adr; } void compact_heap (void) { char *ch, *chend; Assert (gc_phase == Phase_idle); gc_message ("Compacting heap...\n", 0); /* First pass: encode all noninfix headers. */ { ch = heap_start; while (ch != NULL){ header_t *p = (header_t *) ch; chend = ch + Chunk_size (ch); while ((char *) p < chend){ header_t hd = Hd_hp (p); mlsize_t sz = Wosize_hd (hd); if (Is_blue_hd (hd)){ /* Free object. Give it a string tag. */ Hd_hp (p) = Make_ehd (sz, String_tag, 3); }else{ Assert (Is_white_hd (hd)); /* Live object. Keep its tag. */ Hd_hp (p) = Make_ehd (sz, Tag_hd (hd), 3); } p += Whsize_wosize (sz); } ch = Chunk_next (ch); } } /* Second pass: invert pointers. Link infix headers in each block in an inverted list of inverted lists. Don't forget roots and weak pointers. */ { ch = heap_start; while (ch != NULL){ word *p = (word *) ch; chend = ch + Chunk_size (ch); while ((char *) p < chend){ word q = *p; size_t sz, i; tag_t t; word *infixes; while (Ecolor (q) == 0) q = * (word *) q; sz = Whsize_ehd (q); t = Tag_ehd (q); if (t == Infix_tag){ /* Get the original header of this block. */ infixes = p + sz; q = *infixes; while (Ecolor (q) != 3) q = * (word *) (q & ~(unsigned long)3); sz = Whsize_ehd (q); t = Tag_ehd (q); } if (t < No_scan_tag){ for (i = 1; i < sz; i++) invert_pointer_at (&(p[i])); } p += sz; } ch = Chunk_next (ch); } /* Invert weak pointers. */ { value *pp = &weak_list_head; value p; word q; size_t sz, i; while (1){ p = *pp; if (p == (value) NULL) break; q = Hd_val (p); while (Ecolor (q) == 0) q = * (word *) q; sz = Wosize_ehd (q); for (i = 1; i < sz; i++){ if (Field (p,i) != 0) invert_pointer_at ((word *) &(Field (p,i))); } invert_pointer_at ((word *) pp); pp = &Field (p, 0); } } /* Invert roots */ do_roots (invert_root); } /* Third pass: reallocate virtually; revert pointers; decode headers. Rebuild infix headers. */ { init_compact_allocate (); ch = heap_start; while (ch != NULL){ word *p = (word *) ch; chend = ch + Chunk_size (ch); while ((char *) p < chend){ word q = *p; if (Ecolor (q) == 0 || Tag_ehd (q) == Infix_tag){ /* There were (normal or infix) pointers to this block. */ size_t sz; tag_t t; char *newadr; word *infixes = NULL; while (Ecolor (q) == 0) q = * (word *) q; sz = Whsize_ehd (q); t = Tag_ehd (q); if (t == Infix_tag){ /* Get the original header of this block. */ infixes = p + sz; q = *infixes; Assert (Ecolor (q) == 2); while (Ecolor (q) != 3) q = * (word *) (q & ~(unsigned long)3); sz = Whsize_ehd (q); t = Tag_ehd (q); } newadr = compact_allocate (Bsize_wsize (sz)); q = *p; while (Ecolor (q) == 0){ word next = * (word *) q; * (word *) q = (word) Val_hp (newadr); q = next; } *p = Make_header (Wosize_whsize (sz), t, White); if (infixes != NULL){ /* Rebuild the infix headers and revert the infix pointers. */ while (Ecolor ((word) infixes) != 3){ infixes = (word *) ((word) infixes & ~(unsigned long) 3); q = *infixes; while (Ecolor (q) == 2){ word next; q = (word) q & ~(unsigned long) 3; next = * (word *) q; * (word *) q = (word) Val_hp ((word *) newadr + (infixes - p)); q = next; } Assert (Ecolor (q) == 1 || Ecolor (q) == 3); *infixes = Make_header (infixes - p, Infix_tag, White); infixes = (word *) q; } } p += sz; }else{ Assert (Ecolor (q) == 3); /* This is guaranteed only if compact_heap was called after a nonincremental major GC: Assert (Tag_ehd (q) == String_tag); */ /* No pointers to the header and no infix header: the object was free. */ *p = Make_header (Wosize_ehd (q), Tag_ehd (q), Blue); p += Whsize_ehd (q); } } ch = Chunk_next (ch); } } /* Fourth pass: reallocate and move objects. Use the exact same allocation algorithm as pass 3. */ { init_compact_allocate (); ch = heap_start; while (ch != NULL){ word *p = (word *) ch; chend = ch + Chunk_size (ch); while ((char *) p < chend){ word q = *p; if (Color_hd (q) == White){ size_t sz = Bhsize_hd (q); char *newadr = compact_allocate (sz); Assert (newadr <= (char *)p); /* bcopy (source, destination, length) */ bcopy (p, newadr, sz); p += Wsize_bsize (sz); }else{ Assert (Color_hd (q) == Blue); p += Whsize_hd (q); } } ch = Chunk_next (ch); } } /* Shrink the heap if needed. */ { /* Find the amount of live data and the unshrinkable free space. */ asize_t live = 0; asize_t free = 0; asize_t wanted; ch = heap_start; while (ch != NULL){ if (Chunk_alloc (ch) != 0){ live += Wsize_bsize (Chunk_alloc (ch)); free += Wsize_bsize (Chunk_size (ch) - Chunk_alloc (ch)); } ch = Chunk_next (ch); } /* Add up the empty chunks until there are enough, then remove the other empty chunks. */ wanted = percent_free * (live / 100 + 1); ch = heap_start; while (ch != NULL){ char *next_chunk = Chunk_next (ch); /* Chunk_next (ch) will be erased */ if (Chunk_alloc (ch) == 0){ if (free < wanted){ free += Wsize_bsize (Chunk_size (ch)); }else{ shrink_heap (ch); } } ch = next_chunk; } } /* Rebuild the free list. */ { ch = heap_start; fl_reset (); while (ch != NULL){ if (Chunk_size (ch) > Chunk_alloc (ch)){ header_t *p = (header_t *) (ch + Chunk_alloc (ch)); *p = Make_header (Wosize_bhsize (Chunk_size (ch) - Chunk_alloc (ch)), 0, White); fl_merge_block (Bp_hp (p)); } ch = Chunk_next (ch); } } ++ stat_compactions; gc_message ("done.\n", 0); } unsigned long percent_max; void compact_heap_maybe (void) { /* Estimated free words in the heap: FW = 1.5 * fl_cur_size Estimated live words: LW = stat_heap_size - FW We compact the heap if FW > percent_max / 100 * LW */ float fw; Assert (gc_phase == Phase_idle); if (percent_max >= 1000000) return; switch (percent_max){ case 0: finish_major_cycle (); compact_heap (); break; default: fw = 1.5 * fl_cur_size; if (fw > 0.01 * percent_max * (Wsize_bsize (stat_heap_size) - fw)){ finish_major_cycle (); compact_heap (); } break; } }