(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU Library General Public License, with *) (* the special exception on linking described in file ../LICENSE. *) (* *) (***********************************************************************) (* $Id$ *) (** 32-bit integers. This module provides operations on the type [int32] of signed 32-bit integers. Unlike the built-in [int] type, the type [int32] is guaranteed to be exactly 32-bit wide on all platforms. All arithmetic operations over [int32] are taken modulo 2{^32}. Performance notice: values of type [int32] occupy more memory space than values of type [int], and arithmetic operations on [int32] are generally slower than those on [int]. Use [int32] only when the application requires exact 32-bit arithmetic. *) val zero : int32 (** The 32-bit integer 0. *) val one : int32 (** The 32-bit integer 1. *) val minus_one : int32 (** The 32-bit integer -1. *) external neg : int32 -> int32 = "%int32_neg" (** Unary negation. *) external add : int32 -> int32 -> int32 = "%int32_add" (** Addition. *) external sub : int32 -> int32 -> int32 = "%int32_sub" (** Subtraction. *) external mul : int32 -> int32 -> int32 = "%int32_mul" (** Multiplication. *) external div : int32 -> int32 -> int32 = "%int32_div" (** Integer division. Raise [Division_by_zero] if the second argument is zero. This division rounds the real quotient of its arguments towards zero, as specified for {!Pervasives.(/)}. *) external rem : int32 -> int32 -> int32 = "%int32_mod" (** Integer remainder. If [y] is not zero, the result of [Int32.rem x y] satisfies the following property: [x = Int32.add (Int32.mul (Int32.div x y) y) (Int32.rem x y)]. If [y = 0], [Int32.rem x y] raises [Division_by_zero]. *) val succ : int32 -> int32 (** Successor. [Int32.succ x] is [Int32.add x Int32.one]. *) val pred : int32 -> int32 (** Predecessor. [Int32.pred x] is [Int32.sub x Int32.one]. *) val abs : int32 -> int32 (** Return the absolute value of its argument. *) val max_int : int32 (** The greatest representable 32-bit integer, 2{^31} - 1. *) val min_int : int32 (** The smallest representable 32-bit integer, -2{^31}. *) external logand : int32 -> int32 -> int32 = "%int32_and" (** Bitwise logical and. *) external logor : int32 -> int32 -> int32 = "%int32_or" (** Bitwise logical or. *) external logxor : int32 -> int32 -> int32 = "%int32_xor" (** Bitwise logical exclusive or. *) val lognot : int32 -> int32 (** Bitwise logical negation *) external shift_left : int32 -> int -> int32 = "%int32_lsl" (** [Int32.shift_left x y] shifts [x] to the left by [y] bits. The result is unspecified if [y < 0] or [y >= 32]. *) external shift_right : int32 -> int -> int32 = "%int32_asr" (** [Int32.shift_right x y] shifts [x] to the right by [y] bits. This is an arithmetic shift: the sign bit of [x] is replicated and inserted in the vacated bits. The result is unspecified if [y < 0] or [y >= 32]. *) external shift_right_logical : int32 -> int -> int32 = "%int32_lsr" (** [Int32.shift_right_logical x y] shifts [x] to the right by [y] bits. This is a logical shift: zeroes are inserted in the vacated bits regardless of the sign of [x]. The result is unspecified if [y < 0] or [y >= 32]. *) external of_int : int -> int32 = "%int32_of_int" (** Convert the given integer (type [int]) to a 32-bit integer (type [int32]). *) external to_int : int32 -> int = "%int32_to_int" (** Convert the given 32-bit integer (type [int32]) to an integer (type [int]). On 32-bit platforms, the 32-bit integer is taken modulo 2{^31}, i.e. the high-order bit is lost during the conversion. On 64-bit platforms, the conversion is exact. *) external of_float : float -> int32 = "caml_int32_of_float" (** Convert the given floating-point number to a 32-bit integer, discarding the fractional part (truncate towards 0). The result of the conversion is undefined if, after truncation, the number is outside the range \[{!Int32.min_int}, {!Int32.max_int}\]. *) external to_float : int32 -> float = "caml_int32_to_float" (** Convert the given 32-bit integer to a floating-point number. *) external of_string : string -> int32 = "caml_int32_of_string" (** Convert the given string to a 32-bit integer. The string is read in decimal (by default) or in hexadecimal, octal or binary if the string begins with [0x], [0o] or [0b] respectively. Raise [Failure "int_of_string"] if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type [int32]. *) val to_string : int32 -> string (** Return the string representation of its argument, in signed decimal. *) external bits_of_float : float -> int32 = "caml_int32_bits_of_float" (** Return the internal representation of the given float according to the IEEE 754 floating-point ``single format'' bit layout. Bit 31 of the result represents the sign of the float; bits 30 to 23 represent the (biased) exponent; bits 22 to 0 represent the mantissa. *) external float_of_bits : int32 -> float = "caml_int32_float_of_bits" (** Return the floating-point number whose internal representation, according to the IEEE 754 floating-point ``single format'' bit layout, is the given [int32]. *) type t = int32 (** An alias for the type of 32-bit integers. *) val compare: t -> t -> int (** The comparison function for 32-bit integers, with the same specification as {!Pervasives.compare}. Along with the type [t], this function [compare] allows the module [Int32] to be passed as argument to the functors {!Set.Make} and {!Map.Make}. *) (**/**) (** {6 Deprecated functions} *) external format : string -> int32 -> string = "caml_int32_format" (** Do not use this deprecated function. Instead, used {!Printf.sprintf} with a [%l...] format. *)