(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0. *) (* *) (***********************************************************************) (* $Id$ *) (* bytegen.ml : translation of lambda terms to lists of instructions. *) open Misc open Asttypes open Primitive open Types open Lambda open Switch open Instruct (**** Label generation ****) let label_counter = ref 0 let new_label () = incr label_counter; !label_counter (**** Operations on compilation environments. ****) let empty_env = { ce_stack = Ident.empty; ce_heap = Ident.empty; ce_rec = Ident.empty } (* Add a stack-allocated variable *) let add_var id pos env = { ce_stack = Ident.add id pos env.ce_stack; ce_heap = env.ce_heap; ce_rec = env.ce_rec } let rec add_vars idlist pos env = match idlist with [] -> env | id :: rem -> add_vars rem (pos + 1) (add_var id pos env) (**** Examination of the continuation ****) (* Return a label to the beginning of the given continuation. If the sequence starts with a branch, use the target of that branch as the label, thus avoiding a jump to a jump. *) let label_code = function Kbranch lbl :: _ as cont -> (lbl, cont) | Klabel lbl :: _ as cont -> (lbl, cont) | cont -> let lbl = new_label() in (lbl, Klabel lbl :: cont) (* Return a branch to the continuation. That is, an instruction that, when executed, branches to the continuation or performs what the continuation performs. We avoid generating branches to branches and branches to returns. *) let rec make_branch_2 lbl n cont = function Kreturn m :: _ -> (Kreturn (n + m), cont) | Klabel _ :: c -> make_branch_2 lbl n cont c | Kpop m :: c -> make_branch_2 lbl (n + m) cont c | _ -> match lbl with Some lbl -> (Kbranch lbl, cont) | None -> let lbl = new_label() in (Kbranch lbl, Klabel lbl :: cont) let make_branch cont = match cont with (Kbranch _ as branch) :: _ -> (branch, cont) | (Kreturn _ as return) :: _ -> (return, cont) | Kraise :: _ -> (Kraise, cont) | Klabel lbl :: _ -> make_branch_2 (Some lbl) 0 cont cont | _ -> make_branch_2 (None) 0 cont cont (* Avoid a branch to a label that follows immediately *) let branch_to label cont = match cont with | Klabel label0::_ when label = label0 -> cont | _ -> Kbranch label::cont (* Discard all instructions up to the next label. This function is to be applied to the continuation before adding a non-terminating instruction (branch, raise, return) in front of it. *) let rec discard_dead_code = function [] -> [] | (Klabel _ | Krestart | Ksetglobal _) :: _ as cont -> cont | _ :: cont -> discard_dead_code cont (* Check if we're in tailcall position *) let rec is_tailcall = function Kreturn _ :: _ -> true | Klabel _ :: c -> is_tailcall c | Kpop _ :: c -> is_tailcall c | _ -> false (* Add a Kpop N instruction in front of a continuation *) let rec add_pop n cont = if n = 0 then cont else match cont with Kpop m :: cont -> add_pop (n + m) cont | Kreturn m :: cont -> Kreturn(n + m) :: cont | Kraise :: _ -> cont | _ -> Kpop n :: cont (* Add the constant "unit" in front of a continuation *) let add_const_unit = function (Kacc _ | Kconst _ | Kgetglobal _ | Kpush_retaddr _) :: _ as cont -> cont | cont -> Kconst const_unit :: cont let rec push_dummies n k = match n with | 0 -> k | _ -> Kconst const_unit::Kpush::push_dummies (n-1) k (**** Auxiliary for compiling "let rec" ****) type rhs_kind = | RHS_block of int | RHS_floatblock of int | RHS_nonrec ;; let rec check_recordwith_updates id e = match e with | Lsequence (Lprim ((Psetfield _ | Psetfloatfield _), [Lvar id2; _]), cont) -> id2 = id && check_recordwith_updates id cont | Lvar id2 -> id2 = id | _ -> false ;; let rec size_of_lambda = function | Lfunction(kind, params, body) as funct -> RHS_block (1 + IdentSet.cardinal(free_variables funct)) | Llet (Strict, id, Lprim (Pduprecord (kind, size), _), body) when check_recordwith_updates id body -> begin match kind with | Record_regular -> RHS_block size | Record_float -> RHS_floatblock size end | Llet(str, id, arg, body) -> size_of_lambda body | Lletrec(bindings, body) -> size_of_lambda body | Lprim(Pmakeblock(tag, mut), args) -> RHS_block (List.length args) | Lprim (Pmakearray (Paddrarray|Pintarray), args) -> RHS_block (List.length args) | Lprim (Pmakearray Pfloatarray, args) -> RHS_floatblock (List.length args) | Lprim (Pmakearray Pgenarray, args) -> assert false | Lprim (Pduprecord (Record_regular, size), args) -> RHS_block size | Lprim (Pduprecord (Record_float, size), args) -> RHS_floatblock size | Levent (lam, _) -> size_of_lambda lam | Lsequence (lam, lam') -> size_of_lambda lam' | _ -> RHS_nonrec (**** Merging consecutive events ****) let copy_event ev kind info repr = { ev_pos = 0; (* patched in emitcode *) ev_module = ev.ev_module; ev_loc = ev.ev_loc; ev_kind = kind; ev_info = info; ev_typenv = ev.ev_typenv; ev_compenv = ev.ev_compenv; ev_stacksize = ev.ev_stacksize; ev_repr = repr } let merge_infos ev ev' = match ev.ev_info, ev'.ev_info with Event_other, info -> info | info, Event_other -> info | _ -> fatal_error "Bytegen.merge_infos" let merge_repr ev ev' = match ev.ev_repr, ev'.ev_repr with Event_none, x -> x | x, Event_none -> x | Event_parent r, Event_child r' when r == r' && !r = 1 -> Event_none | Event_child r, Event_parent r' when r == r' -> Event_parent r | _, _ -> fatal_error "Bytegen.merge_repr" let merge_events ev ev' = let (maj, min) = match ev.ev_kind, ev'.ev_kind with (* Discard pseudo-events *) Event_pseudo, _ -> ev', ev | _, Event_pseudo -> ev, ev' (* Keep following event, supposedly more informative *) | Event_before, (Event_after _ | Event_before) -> ev', ev (* Discard following events, supposedly less informative *) | Event_after _, (Event_after _ | Event_before) -> ev, ev' in copy_event maj maj.ev_kind (merge_infos maj min) (merge_repr maj min) let weaken_event ev cont = match ev.ev_kind with Event_after _ -> begin match cont with Kpush :: Kevent ({ev_repr = Event_none} as ev') :: c -> begin match ev.ev_info with Event_return _ -> (* Weaken event *) let repr = ref 1 in let ev = copy_event ev Event_pseudo ev.ev_info (Event_parent repr) and ev' = copy_event ev' ev'.ev_kind ev'.ev_info (Event_child repr) in Kevent ev :: Kpush :: Kevent ev' :: c | _ -> (* Only keep following event, equivalent *) cont end | _ -> Kevent ev :: cont end | _ -> Kevent ev :: cont let add_event ev = function Kevent ev' :: cont -> weaken_event (merge_events ev ev') cont | cont -> weaken_event ev cont (**** Compilation of a lambda expression ****) (* association staticraise numbers -> (lbl,size of stack *) let sz_static_raises = ref [] let find_raise_label i = try List.assoc i !sz_static_raises with | Not_found -> Misc.fatal_error ("exit("^string_of_int i^") outside appropriated catch") (* Will the translation of l lead to a jump to label ? *) let code_as_jump l sz = match l with | Lstaticraise (i,[]) -> let label,size = find_raise_label i in if sz = size then Some label else None | _ -> None (* Function bodies that remain to be compiled *) type function_to_compile = { params: Ident.t list; (* function parameters *) body: lambda; (* the function body *) label: label; (* the label of the function entry *) free_vars: Ident.t list; (* free variables of the function *) num_defs: int; (* number of mutually recursive definitions *) rec_vars: Ident.t list; (* mutually recursive fn names *) rec_pos: int } (* rank in recursive definition *) let functions_to_compile = (Stack.create () : function_to_compile Stack.t) (* Name of current compilation unit (for debugging events) *) let compunit_name = ref "" (* Maximal stack size reached during the current function body *) let max_stack_used = ref 0 (* Translate a primitive to a bytecode instruction (possibly a call to a C function) *) let comp_bint_primitive bi suff args = let pref = match bi with Pnativeint -> "caml_nativeint_" | Pint32 -> "caml_int32_" | Pint64 -> "caml_int64_" in Kccall(pref ^ suff, List.length args) let comp_primitive p args = match p with Pgetglobal id -> Kgetglobal id | Psetglobal id -> Ksetglobal id | Pintcomp cmp -> Kintcomp cmp | Pmakeblock(tag, mut) -> Kmakeblock(List.length args, tag) | Pfield n -> Kgetfield n | Psetfield(n, ptr) -> Ksetfield n | Pfloatfield n -> Kgetfloatfield n | Psetfloatfield n -> Ksetfloatfield n | Pduprecord _ -> Kccall("caml_obj_dup", 1) | Pccall p -> Kccall(p.prim_name, p.prim_arity) | Pnegint -> Knegint | Paddint -> Kaddint | Psubint -> Ksubint | Pmulint -> Kmulint | Pdivint -> Kdivint | Pmodint -> Kmodint | Pandint -> Kandint | Porint -> Korint | Pxorint -> Kxorint | Plslint -> Klslint | Plsrint -> Klsrint | Pasrint -> Kasrint | Poffsetint n -> Koffsetint n | Poffsetref n -> Koffsetref n | Pintoffloat -> Kccall("caml_int_of_float", 1) | Pfloatofint -> Kccall("caml_float_of_int", 1) | Pnegfloat -> Kccall("caml_neg_float", 1) | Pabsfloat -> Kccall("caml_abs_float", 1) | Paddfloat -> Kccall("caml_add_float", 2) | Psubfloat -> Kccall("caml_sub_float", 2) | Pmulfloat -> Kccall("caml_mul_float", 2) | Pdivfloat -> Kccall("caml_div_float", 2) | Pfloatcomp Ceq -> Kccall("caml_eq_float", 2) | Pfloatcomp Cneq -> Kccall("caml_neq_float", 2) | Pfloatcomp Clt -> Kccall("caml_lt_float", 2) | Pfloatcomp Cgt -> Kccall("caml_gt_float", 2) | Pfloatcomp Cle -> Kccall("caml_le_float", 2) | Pfloatcomp Cge -> Kccall("caml_ge_float", 2) | Pstringlength -> Kccall("caml_ml_string_length", 1) | Pstringrefs -> Kccall("caml_string_get", 2) | Pstringsets -> Kccall("caml_string_set", 3) | Pstringrefu -> Kgetstringchar | Pstringsetu -> Ksetstringchar | Parraylength kind -> Kvectlength | Parrayrefs Pgenarray -> Kccall("caml_array_get", 2) | Parrayrefs Pfloatarray -> Kccall("caml_array_get_float", 2) | Parrayrefs _ -> Kccall("caml_array_get_addr", 2) | Parraysets Pgenarray -> Kccall("caml_array_set", 3) | Parraysets Pfloatarray -> Kccall("caml_array_set_float", 3) | Parraysets _ -> Kccall("caml_array_set_addr", 3) | Parrayrefu Pgenarray -> Kccall("caml_array_unsafe_get", 2) | Parrayrefu Pfloatarray -> Kccall("caml_array_unsafe_get_float", 2) | Parrayrefu _ -> Kgetvectitem | Parraysetu Pgenarray -> Kccall("caml_array_unsafe_set", 3) | Parraysetu Pfloatarray -> Kccall("caml_array_unsafe_set_float", 3) | Parraysetu _ -> Ksetvectitem | Pisint -> Kisint | Pisout -> Kisout | Pbittest -> Kccall("caml_bitvect_test", 2) | Pbintofint bi -> comp_bint_primitive bi "of_int" args | Pintofbint bi -> comp_bint_primitive bi "to_int" args | Pcvtbint(Pint32, Pnativeint) -> Kccall("caml_nativeint_of_int32", 1) | Pcvtbint(Pnativeint, Pint32) -> Kccall("caml_nativeint_to_int32", 1) | Pcvtbint(Pint32, Pint64) -> Kccall("caml_int64_of_int32", 1) | Pcvtbint(Pint64, Pint32) -> Kccall("caml_int64_to_int32", 1) | Pcvtbint(Pnativeint, Pint64) -> Kccall("caml_int64_of_nativeint", 1) | Pcvtbint(Pint64, Pnativeint) -> Kccall("caml_int64_to_nativeint", 1) | Pnegbint bi -> comp_bint_primitive bi "neg" args | Paddbint bi -> comp_bint_primitive bi "add" args | Psubbint bi -> comp_bint_primitive bi "sub" args | Pmulbint bi -> comp_bint_primitive bi "mul" args | Pdivbint bi -> comp_bint_primitive bi "div" args | Pmodbint bi -> comp_bint_primitive bi "mod" args | Pandbint bi -> comp_bint_primitive bi "and" args | Porbint bi -> comp_bint_primitive bi "or" args | Pxorbint bi -> comp_bint_primitive bi "xor" args | Plslbint bi -> comp_bint_primitive bi "shift_left" args | Plsrbint bi -> comp_bint_primitive bi "shift_right_unsigned" args | Pasrbint bi -> comp_bint_primitive bi "shift_right" args | Pbintcomp(bi, Ceq) -> Kccall("caml_equal", 2) | Pbintcomp(bi, Cneq) -> Kccall("caml_notequal", 2) | Pbintcomp(bi, Clt) -> Kccall("caml_lessthan", 2) | Pbintcomp(bi, Cgt) -> Kccall("caml_greaterthan", 2) | Pbintcomp(bi, Cle) -> Kccall("caml_lessequal", 2) | Pbintcomp(bi, Cge) -> Kccall("caml_greaterequal", 2) | Pbigarrayref(n, _, _) -> Kccall("caml_ba_get_" ^ string_of_int n, n + 1) | Pbigarrayset(n, _, _) -> Kccall("caml_ba_set_" ^ string_of_int n, n + 2) | _ -> fatal_error "Bytegen.comp_primitive" let is_immed n = immed_min <= n && n <= immed_max let explode_isout arg l h = Lprim (Psequor, [Lprim (Pintcomp Clt,[arg ; Lconst (Const_base (Const_int 0))]) ; Lprim (Pintcomp Cgt,[arg ; Lconst (Const_base (Const_int h))])]) (* Compile an expression. The value of the expression is left in the accumulator. env = compilation environment exp = the lambda expression to compile sz = current size of the stack frame cont = list of instructions to execute afterwards Result = list of instructions that evaluate exp, then perform cont. *) let rec comp_expr env exp sz cont = if sz > !max_stack_used then max_stack_used := sz; match exp with Lvar id -> begin try let pos = Ident.find_same id env.ce_stack in Kacc(sz - pos) :: cont with Not_found -> try let pos = Ident.find_same id env.ce_heap in Kenvacc(pos) :: cont with Not_found -> try let ofs = Ident.find_same id env.ce_rec in Koffsetclosure(ofs) :: cont with Not_found -> Format.eprintf "%a@." Ident.print id; fatal_error ("Bytegen.comp_expr: var " ^ Ident.unique_name id) end | Lconst cst -> Kconst cst :: cont | Lapply(func, args, loc) -> let nargs = List.length args in if is_tailcall cont then begin Stypes.record (Stypes.An_call (loc, Annot.Tail)); comp_args env args sz (Kpush :: comp_expr env func (sz + nargs) (Kappterm(nargs, sz + nargs) :: discard_dead_code cont)) end else begin Stypes.record (Stypes.An_call (loc, Annot.Stack)); if nargs < 4 then comp_args env args sz (Kpush :: comp_expr env func (sz + nargs) (Kapply nargs :: cont)) else begin let (lbl, cont1) = label_code cont in Kpush_retaddr lbl :: comp_args env args (sz + 3) (Kpush :: comp_expr env func (sz + 3 + nargs) (Kapply nargs :: cont1)) end end | Lsend(kind, met, obj, args) -> let args = if kind = Cached then List.tl args else args in let nargs = List.length args + 1 in let getmethod, args' = if kind = Self then (Kgetmethod, met::obj::args) else match met with Lconst(Const_base(Const_int n)) -> (Kgetpubmet n, obj::args) | _ -> (Kgetdynmet, met::obj::args) in if is_tailcall cont then comp_args env args' sz (getmethod :: Kappterm(nargs, sz + nargs) :: discard_dead_code cont) else if nargs < 4 then comp_args env args' sz (getmethod :: Kapply nargs :: cont) else begin let (lbl, cont1) = label_code cont in Kpush_retaddr lbl :: comp_args env args' (sz + 3) (getmethod :: Kapply nargs :: cont1) end | Lfunction(kind, params, body) -> (* assume kind = Curried *) let lbl = new_label() in let fv = IdentSet.elements(free_variables exp) in let to_compile = { params = params; body = body; label = lbl; free_vars = fv; num_defs = 1; rec_vars = []; rec_pos = 0 } in Stack.push to_compile functions_to_compile; comp_args env (List.map (fun n -> Lvar n) fv) sz (Kclosure(lbl, List.length fv) :: cont) | Llet(str, id, arg, body) -> comp_expr env arg sz (Kpush :: comp_expr (add_var id (sz+1) env) body (sz+1) (add_pop 1 cont)) | Lletrec(decl, body) -> let ndecl = List.length decl in if List.for_all (function (_, Lfunction(_,_,_)) -> true | _ -> false) decl then begin (* let rec of functions *) let fv = IdentSet.elements (free_variables (Lletrec(decl, lambda_unit))) in let rec_idents = List.map (fun (id, lam) -> id) decl in let rec comp_fun pos = function [] -> [] | (id, Lfunction(kind, params, body)) :: rem -> let lbl = new_label() in let to_compile = { params = params; body = body; label = lbl; free_vars = fv; num_defs = ndecl; rec_vars = rec_idents; rec_pos = pos} in Stack.push to_compile functions_to_compile; lbl :: comp_fun (pos + 1) rem | _ -> assert false in let lbls = comp_fun 0 decl in comp_args env (List.map (fun n -> Lvar n) fv) sz (Kclosurerec(lbls, List.length fv) :: (comp_expr (add_vars rec_idents (sz+1) env) body (sz + ndecl) (add_pop ndecl cont))) end else begin let decl_size = List.map (fun (id, exp) -> (id, exp, size_of_lambda exp)) decl in let rec comp_init new_env sz = function | [] -> comp_nonrec new_env sz ndecl decl_size | (id, exp, RHS_floatblock blocksize) :: rem -> Kconst(Const_base(Const_int blocksize)) :: Kccall("caml_alloc_dummy_float", 1) :: Kpush :: comp_init (add_var id (sz+1) new_env) (sz+1) rem | (id, exp, RHS_block blocksize) :: rem -> Kconst(Const_base(Const_int blocksize)) :: Kccall("caml_alloc_dummy", 1) :: Kpush :: comp_init (add_var id (sz+1) new_env) (sz+1) rem | (id, exp, RHS_nonrec) :: rem -> Kconst(Const_base(Const_int 0)) :: Kpush :: comp_init (add_var id (sz+1) new_env) (sz+1) rem and comp_nonrec new_env sz i = function | [] -> comp_rec new_env sz ndecl decl_size | (id, exp, (RHS_block _ | RHS_floatblock _)) :: rem -> comp_nonrec new_env sz (i-1) rem | (id, exp, RHS_nonrec) :: rem -> comp_expr new_env exp sz (Kassign (i-1) :: comp_nonrec new_env sz (i-1) rem) and comp_rec new_env sz i = function | [] -> comp_expr new_env body sz (add_pop ndecl cont) | (id, exp, (RHS_block _ | RHS_floatblock _)) :: rem -> comp_expr new_env exp sz (Kpush :: Kacc i :: Kccall("caml_update_dummy", 2) :: comp_rec new_env sz (i-1) rem) | (id, exp, RHS_nonrec) :: rem -> comp_rec new_env sz (i-1) rem in comp_init env sz decl_size end | Lprim(Pidentity, [arg]) -> comp_expr env arg sz cont | Lprim(Pignore, [arg]) -> comp_expr env arg sz (add_const_unit cont) | Lprim(Pnot, [arg]) -> let newcont = match cont with Kbranchif lbl :: cont1 -> Kbranchifnot lbl :: cont1 | Kbranchifnot lbl :: cont1 -> Kbranchif lbl :: cont1 | _ -> Kboolnot :: cont in comp_expr env arg sz newcont | Lprim(Psequand, [exp1; exp2]) -> begin match cont with Kbranchifnot lbl :: _ -> comp_expr env exp1 sz (Kbranchifnot lbl :: comp_expr env exp2 sz cont) | Kbranchif lbl :: cont1 -> let (lbl2, cont2) = label_code cont1 in comp_expr env exp1 sz (Kbranchifnot lbl2 :: comp_expr env exp2 sz (Kbranchif lbl :: cont2)) | _ -> let (lbl, cont1) = label_code cont in comp_expr env exp1 sz (Kstrictbranchifnot lbl :: comp_expr env exp2 sz cont1) end | Lprim(Psequor, [exp1; exp2]) -> begin match cont with Kbranchif lbl :: _ -> comp_expr env exp1 sz (Kbranchif lbl :: comp_expr env exp2 sz cont) | Kbranchifnot lbl :: cont1 -> let (lbl2, cont2) = label_code cont1 in comp_expr env exp1 sz (Kbranchif lbl2 :: comp_expr env exp2 sz (Kbranchifnot lbl :: cont2)) | _ -> let (lbl, cont1) = label_code cont in comp_expr env exp1 sz (Kstrictbranchif lbl :: comp_expr env exp2 sz cont1) end | Lprim(Praise, [arg]) -> comp_expr env arg sz (Kraise :: discard_dead_code cont) | Lprim(Paddint, [arg; Lconst(Const_base(Const_int n))]) when is_immed n -> comp_expr env arg sz (Koffsetint n :: cont) | Lprim(Psubint, [arg; Lconst(Const_base(Const_int n))]) when is_immed (-n) -> comp_expr env arg sz (Koffsetint (-n) :: cont) | Lprim (Poffsetint n, [arg]) when not (is_immed n) -> comp_expr env arg sz (Kpush:: Kconst (Const_base (Const_int n)):: Kaddint::cont) | Lprim(Pmakearray kind, args) -> begin match kind with Pintarray | Paddrarray -> comp_args env args sz (Kmakeblock(List.length args, 0) :: cont) | Pfloatarray -> comp_args env args sz (Kmakefloatblock(List.length args) :: cont) | Pgenarray -> if args = [] then Kmakeblock(0, 0) :: cont else comp_args env args sz (Kmakeblock(List.length args, 0) :: Kccall("caml_make_array", 1) :: cont) end (* Integer first for enabling futher optimization (cf. emitcode.ml) *) | Lprim (Pintcomp c, [arg ; (Lconst _ as k)]) -> let p = Pintcomp (commute_comparison c) and args = [k ; arg] in comp_args env args sz (comp_primitive p args :: cont) | Lprim(p, args) -> comp_args env args sz (comp_primitive p args :: cont) | Lstaticcatch (body, (i, vars) , handler) -> let nvars = List.length vars in let branch1, cont1 = make_branch cont in let r = if nvars <> 1 then begin (* general case *) let lbl_handler, cont2 = label_code (comp_expr (add_vars vars (sz+1) env) handler (sz+nvars) (add_pop nvars cont1)) in sz_static_raises := (i, (lbl_handler, sz+nvars)) :: !sz_static_raises ; push_dummies nvars (comp_expr env body (sz+nvars) (add_pop nvars (branch1 :: cont2))) end else begin (* small optimization for nvars = 1 *) let var = match vars with [var] -> var | _ -> assert false in let lbl_handler, cont2 = label_code (Kpush::comp_expr (add_var var (sz+1) env) handler (sz+1) (add_pop 1 cont1)) in sz_static_raises := (i, (lbl_handler, sz)) :: !sz_static_raises ; comp_expr env body sz (branch1 :: cont2) end in sz_static_raises := List.tl !sz_static_raises ; r | Lstaticraise (i, args) -> let cont = discard_dead_code cont in let label,size = find_raise_label i in begin match args with | [arg] -> (* optim, argument passed in accumulator *) comp_expr env arg sz (add_pop (sz-size) (branch_to label cont)) | _ -> comp_exit_args env args sz size (add_pop (sz-size) (branch_to label cont)) end | Ltrywith(body, id, handler) -> let (branch1, cont1) = make_branch cont in let lbl_handler = new_label() in Kpushtrap lbl_handler :: comp_expr env body (sz+4) (Kpoptrap :: branch1 :: Klabel lbl_handler :: Kpush :: comp_expr (add_var id (sz+1) env) handler (sz+1) (add_pop 1 cont1)) | Lifthenelse(cond, ifso, ifnot) -> comp_binary_test env cond ifso ifnot sz cont | Lsequence(exp1, exp2) -> comp_expr env exp1 sz (comp_expr env exp2 sz cont) | Lwhile(cond, body) -> let lbl_loop = new_label() in let lbl_test = new_label() in Kbranch lbl_test :: Klabel lbl_loop :: Kcheck_signals :: comp_expr env body sz (Klabel lbl_test :: comp_expr env cond sz (Kbranchif lbl_loop :: add_const_unit cont)) | Lfor(param, start, stop, dir, body) -> let lbl_loop = new_label() in let lbl_exit = new_label() in let offset = match dir with Upto -> 1 | Downto -> -1 in let comp = match dir with Upto -> Cgt | Downto -> Clt in comp_expr env start sz (Kpush :: comp_expr env stop (sz+1) (Kpush :: Kpush :: Kacc 2 :: Kintcomp comp :: Kbranchif lbl_exit :: Klabel lbl_loop :: Kcheck_signals :: comp_expr (add_var param (sz+1) env) body (sz+2) (Kacc 1 :: Kpush :: Koffsetint offset :: Kassign 2 :: Kacc 1 :: Kintcomp Cneq :: Kbranchif lbl_loop :: Klabel lbl_exit :: add_const_unit (add_pop 2 cont)))) | Lswitch(arg, sw) -> let (branch, cont1) = make_branch cont in let c = ref (discard_dead_code cont1) in (* Build indirection vectors *) let store = mk_store Lambda.same in let act_consts = Array.create sw.sw_numconsts 0 and act_blocks = Array.create sw.sw_numblocks 0 in begin match sw.sw_failaction with (* default is index 0 *) | Some fail -> ignore (store.act_store fail) | None -> () end ; List.iter (fun (n, act) -> act_consts.(n) <- store.act_store act) sw.sw_consts; List.iter (fun (n, act) -> act_blocks.(n) <- store.act_store act) sw.sw_blocks; (* Compile and label actions *) let acts = store.act_get () in let lbls = Array.create (Array.length acts) 0 in for i = Array.length acts-1 downto 0 do let lbl,c1 = label_code (comp_expr env acts.(i) sz (branch :: !c)) in lbls.(i) <- lbl ; c := discard_dead_code c1 done ; (* Build label vectors *) let lbl_blocks = Array.create sw.sw_numblocks 0 in for i = sw.sw_numblocks - 1 downto 0 do lbl_blocks.(i) <- lbls.(act_blocks.(i)) done; let lbl_consts = Array.create sw.sw_numconsts 0 in for i = sw.sw_numconsts - 1 downto 0 do lbl_consts.(i) <- lbls.(act_consts.(i)) done; comp_expr env arg sz (Kswitch(lbl_consts, lbl_blocks) :: !c) | Lassign(id, expr) -> begin try let pos = Ident.find_same id env.ce_stack in comp_expr env expr sz (Kassign(sz - pos) :: cont) with Not_found -> fatal_error "Bytegen.comp_expr: assign" end | Levent(lam, lev) -> let event kind info = { ev_pos = 0; (* patched in emitcode *) ev_module = !compunit_name; ev_loc = lev.lev_loc; ev_kind = kind; ev_info = info; ev_typenv = lev.lev_env; ev_compenv = env; ev_stacksize = sz; ev_repr = begin match lev.lev_repr with None -> Event_none | Some ({contents = 1} as repr) when lev.lev_kind = Lev_function -> Event_child repr | Some ({contents = 1} as repr) -> Event_parent repr | Some repr when lev.lev_kind = Lev_function -> Event_parent repr | Some repr -> Event_child repr end } in begin match lev.lev_kind with Lev_before -> let c = comp_expr env lam sz cont in let ev = event Event_before Event_other in add_event ev c | Lev_function -> let c = comp_expr env lam sz cont in let ev = event Event_pseudo Event_function in add_event ev c | Lev_after _ when is_tailcall cont -> (* don't destroy tail call opt *) comp_expr env lam sz cont | Lev_after ty -> let info = match lam with Lapply(_, args, _) -> Event_return (List.length args) | Lsend(_, _, _, args) -> Event_return (List.length args + 1) | _ -> Event_other in let ev = event (Event_after ty) info in let cont1 = add_event ev cont in comp_expr env lam sz cont1 end | Lifused (_, exp) -> comp_expr env exp sz cont (* Compile a list of arguments [e1; ...; eN] to a primitive operation. The values of eN ... e2 are pushed on the stack, e2 at top of stack, then e3, then ... The value of e1 is left in the accumulator. *) and comp_args env argl sz cont = comp_expr_list env (List.rev argl) sz cont and comp_expr_list env exprl sz cont = match exprl with [] -> cont | [exp] -> comp_expr env exp sz cont | exp :: rem -> comp_expr env exp sz (Kpush :: comp_expr_list env rem (sz+1) cont) and comp_exit_args env argl sz pos cont = comp_expr_list_assign env (List.rev argl) sz pos cont and comp_expr_list_assign env exprl sz pos cont = match exprl with | [] -> cont | exp :: rem -> comp_expr env exp sz (Kassign (sz-pos)::comp_expr_list_assign env rem sz (pos-1) cont) (* Compile an if-then-else test. *) and comp_binary_test env cond ifso ifnot sz cont = let cont_cond = if ifnot = Lconst const_unit then begin let (lbl_end, cont1) = label_code cont in Kstrictbranchifnot lbl_end :: comp_expr env ifso sz cont1 end else match code_as_jump ifso sz with | Some label -> let cont = comp_expr env ifnot sz cont in Kbranchif label :: cont | _ -> match code_as_jump ifnot sz with | Some label -> let cont = comp_expr env ifso sz cont in Kbranchifnot label :: cont | _ -> let (branch_end, cont1) = make_branch cont in let (lbl_not, cont2) = label_code(comp_expr env ifnot sz cont1) in Kbranchifnot lbl_not :: comp_expr env ifso sz (branch_end :: cont2) in comp_expr env cond sz cont_cond (**** Compilation of a code block (with tracking of stack usage) ****) let comp_block env exp sz cont = max_stack_used := 0; let code = comp_expr env exp sz cont in (* +1 because comp_expr may have pushed one more word *) if !max_stack_used + 1 > Config.stack_threshold then Kconst(Const_base(Const_int(!max_stack_used + 1))) :: Kccall("caml_ensure_stack_capacity", 1) :: code else code (**** Compilation of functions ****) let comp_function tc cont = let arity = List.length tc.params in let rec positions pos delta = function [] -> Ident.empty | id :: rem -> Ident.add id pos (positions (pos + delta) delta rem) in let env = { ce_stack = positions arity (-1) tc.params; ce_heap = positions (2 * (tc.num_defs - tc.rec_pos) - 1) 1 tc.free_vars; ce_rec = positions (-2 * tc.rec_pos) 2 tc.rec_vars } in let cont = comp_block env tc.body arity (Kreturn arity :: cont) in if arity > 1 then Krestart :: Klabel tc.label :: Kgrab(arity - 1) :: cont else Klabel tc.label :: cont let comp_remainder cont = let c = ref cont in begin try while true do c := comp_function (Stack.pop functions_to_compile) !c done with Stack.Empty -> () end; !c (**** Compilation of a lambda phrase ****) let compile_implementation modulename expr = Stack.clear functions_to_compile; label_counter := 0; sz_static_raises := [] ; compunit_name := modulename; let init_code = comp_block empty_env expr 0 [] in if Stack.length functions_to_compile > 0 then begin let lbl_init = new_label() in Kbranch lbl_init :: comp_remainder (Klabel lbl_init :: init_code) end else init_code let compile_phrase expr = Stack.clear functions_to_compile; label_counter := 0; sz_static_raises := [] ; let init_code = comp_block empty_env expr 1 [Kreturn 1] in let fun_code = comp_remainder [] in (init_code, fun_code)