(***********************************************************************) (* *) (* Caml Special Light *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1995 Institut National de Recherche en Informatique et *) (* Automatique. Distributed only by permission. *) (* *) (***********************************************************************) (* $Id$ *) (* Description of the Alpha processor *) open Misc open Cmm open Reg open Arch open Mach (* Exceptions raised to signal cases not handled here *) exception Use_default (* Instruction selection *) let select_addressing = function Cconst_symbol s -> (Ibased(s, 0), Ctuple []) | Cop(Cadda, [Cconst_symbol s; Cconst_int n]) -> (Ibased(s, n), Ctuple []) | Cop(Cadda, [arg; Cconst_int n]) -> (Iindexed n, arg) | Cop(Cadda, [arg1; Cop(Caddi, [arg2; Cconst_int n])]) -> (Iindexed n, Cop(Cadda, [arg1; arg2])) | arg -> (Iindexed 0, arg) let select_oper op args = match (op, args) with ((Caddi|Cadda), [arg2; Cop(Clsl, [arg1; Cconst_int(2|3 as shift)])]) -> (Ispecific(if shift = 2 then Iadd4 else Iadd8), [arg1; arg2]) | ((Caddi|Cadda), [arg2; Cop(Cmuli, [arg1; Cconst_int(4|8 as mult)])]) -> (Ispecific(if mult = 4 then Iadd4 else Iadd8), [arg1; arg2]) | ((Caddi|Cadda), [arg2; Cop(Cmuli, [Cconst_int(4|8 as mult); arg1])]) -> (Ispecific(if mult = 4 then Iadd4 else Iadd8), [arg1; arg2]) | (Caddi, [Cop(Clsl, [arg1; Cconst_int(2|3 as shift)]); arg2]) -> (Ispecific(if shift = 2 then Iadd4 else Iadd8), [arg1; arg2]) | (Caddi, [Cop(Cmuli, [arg1; Cconst_int(4|8 as mult)]); arg2]) -> (Ispecific(if mult = 4 then Iadd4 else Iadd8), [arg1; arg2]) | (Caddi, [Cop(Cmuli, [Cconst_int(4|8 as mult); arg1]); arg2]) -> (Ispecific(if mult = 4 then Iadd4 else Iadd8), [arg1; arg2]) | (Csubi, [Cop(Clsl, [arg1; Cconst_int(2|3 as shift)]); arg2]) -> (Ispecific(if shift = 2 then Isub4 else Isub8), [arg1; arg2]) | _ -> raise Use_default let select_store addr exp = raise Use_default let pseudoregs_for_operation op arg res = raise Use_default let is_immediate (n:int) = true let word_addressed = true (* Registers available for register allocation *) (* Register map: $0 - $7 0 - 7 function results $8 - $12 8 - 12 general purpose ($9 - $15 are preserved by C) $13 allocation pointer $14 allocation limit $15 trap pointer $16 - $22 13 - 19 function arguments $23 - $25 temporaries (for the code gen and for the asm) $26 - $30 stack ptr, global ptr, etc $31 always zero $f0 - $f7 100 - 107 function results $f8 - $f15 108 - 115 general purpose ($f2 - $f9 preserved by C) $f16 - $f23 116 - 123 function arguments $f24 - $f29 124 - 129 general purpose $f30 temporary $f31 always zero *) let int_reg_name = [| (* 0-7 *) "$0"; "$1"; "$2"; "$3"; "$4"; "$5"; "$6"; "$7"; (* 8-12 *) "$8"; "$9"; "$10"; "$11"; "$12"; (* 13-19 *) "$16"; "$17"; "$18"; "$19"; "$20"; "$21"; "$22" |] let float_reg_name = [| (* 100-107 *) "$f0"; "$f1"; "$f2"; "$f3"; "$f4"; "$f5"; "$f6"; "$f7"; (* 108-115 *) "$f8"; "$f9"; "$f10"; "$f11"; "$f12"; "$f13"; "$f14"; "$f15"; (* 116-123 *) "$f16"; "$f17"; "$f18"; "$f19"; "$f20"; "$f21"; "$f22"; "$f23"; (* 124-129 *) "$f24"; "$f25"; "$f26"; "$f27"; "$f28"; "$f29" |] let num_register_classes = 2 let register_class r = match r.typ with Int -> 0 | Addr -> 0 | Float -> 1 let num_available_registers = [| 20; 30 |] let first_available_register = [| 0; 100 |] let register_name r = if r < 100 then int_reg_name.(r) else float_reg_name.(r - 100) (* Representation of hard registers by pseudo-registers *) let hard_int_reg = let v = Array.new 20 Reg.dummy in for i = 0 to 19 do v.(i) <- Reg.at_location Int (Reg i) done; v let hard_float_reg = let v = Array.new 30 Reg.dummy in for i = 0 to 29 do v.(i) <- Reg.at_location Float (Reg(100 + i)) done; v let all_phys_regs = Array.append hard_int_reg hard_float_reg let phys_reg n = if n < 100 then hard_int_reg.(n) else hard_float_reg.(n - 100) let stack_slot slot ty = Reg.at_location ty (Stack slot) (* Calling conventions *) let calling_conventions first_int last_int first_float last_float make_stack arg = let loc = Array.new (Array.length arg) Reg.dummy in let int = ref first_int in let float = ref first_float in let ofs = ref 0 in for i = 0 to Array.length arg - 1 do match arg.(i).typ with Int | Addr as ty -> if !int <= last_int then begin loc.(i) <- phys_reg !int; incr int end else begin loc.(i) <- stack_slot (make_stack !ofs) ty; ofs := !ofs + size_int end | Float -> if !float <= last_float then begin loc.(i) <- phys_reg !float; incr float end else begin loc.(i) <- stack_slot (make_stack !ofs) Float; ofs := !ofs + size_float end done; (loc, Misc.align !ofs 16) (* Keep stack 16-aligned *) let incoming ofs = Incoming ofs let outgoing ofs = Outgoing ofs let not_supported ofs = fatal_error "Proc.loc_results: cannot call" let loc_arguments arg = calling_conventions 13 18 116 123 outgoing arg let loc_parameters arg = let (loc, ofs) = calling_conventions 13 18 116 123 incoming arg in loc let loc_results res = let (loc, ofs) = calling_conventions 0 7 100 107 not_supported res in loc (* On the Alpha, C functions have calling conventions similar to those for Caml functions, except that integer and floating-point registers for arguments are allocated "in sequence". E.g. a function taking a float f1 and two ints i2 and i3 will put f1 in the first float reg, i2 in the second int reg and i3 in the third int reg. *) let ext_calling_conventions first_int last_int first_float last_float arg = let loc = Array.new (Array.length arg) Reg.dummy in let int = ref first_int in let float = ref first_float in for i = 0 to Array.length arg - 1 do match arg.(i).typ with Int | Addr -> if !int <= last_int then begin loc.(i) <- phys_reg !int; incr int; incr float end else fatal_error "Proc.ext_calling_conventions: cannot call" | Float -> if !float <= last_float then begin loc.(i) <- phys_reg !float; incr int; incr float end else fatal_error "Proc.ext_calling_conventions: cannot call" done; loc let loc_external_arguments arg = (ext_calling_conventions 13 18 116 121 arg, 0) let loc_external_results res = ext_calling_conventions 0 0 100 100 res let loc_exn_bucket = phys_reg 0 (* $0 *) (* Registers destroyed by operations *) let destroyed_at_c_call = (* $9 - $12, $f2 - $f9 preserved *) Array.of_list(List.map phys_reg [0;1;2;3;4;5;6;7;8;13;14;15;16;17;18;19; 100;101;110;111;112;113;114;115;116;117;118;119;120;121;122;123;124; 125;126;127;128;129]) let destroyed_at_oper = function Iop(Icall_ind | Icall_imm _ | Iextcall(_, true)) -> all_phys_regs | Iop(Iextcall(_, false)) -> destroyed_at_c_call | _ -> [||] let destroyed_at_raise = all_phys_regs (* Maximal register pressure *) let safe_register_pressure = function Iextcall(_, _) -> 4 | _ -> 19 let max_register_pressure = function Iextcall(_, _) -> [| 4; 8 |] | _ -> [| 19; 29 |] (* Reloading *) let reload_test makereg tst args = raise Use_default let reload_operation makereg op args res = raise Use_default (* No scheduling is needed, the assembler does it better than us. *) let need_scheduling = false let oper_latency _ = 1 (* Layout of the stack *) let num_stack_slots = [| 0; 0 |] let contains_calls = ref false (* Calling the assembler *) let assemble_file infile outfile = Sys.command ("as -O2 -o " ^ outfile ^ " " ^ infile) (* Calling the archiver *) let create_archive archive file_list = Misc.remove_file archive; Sys.command ("ar rcs " ^ archive ^ " " ^ String.concat " " file_list)