(* More tests for pattern matching *) let test msg f arg r = if f arg <> r then begin prerr_endline msg ; failwith "Malaise" end ;; type t = A | B | C | D | E | F ;; let f x = match x with | A | B | C -> 1 | D | E -> 2 | F -> 3;; test "un" f C 1 ; test "un" f D 2 ; test "un" f F 3 ; () ;; let g x = match x with 1 -> 1 | 2 -> 2 | 3 -> 3 | 4 | 5 -> 4 | 6 -> 5 | 7 | 8 -> 6 | 9 -> 7 ;; test "deux" g 5 4 ; test "deux" g 6 5 ; test "deux" g 9 7 ; () ;; let g x = match x with 1 -> 1 | 2 -> 2 | 3 -> 3 | 4 | 5 -> 4 | 6 -> 5 | 7 | 8 -> 6 | 9 -> 7 | _ -> 8;; test "trois" g 10 8 ;; let g x= match x with 1 -> 1 | 2 -> 2 | 3 -> 3 | 4 | 5 -> 4 | 6 -> 5 | 4|5|7 -> 100 | 7 | 8 -> 6 | 9 -> 7 | _ -> 8;; test "quatre" g 4 4 ; test "quatre" g 7 100 ; () ;; let h x = match x with (1,1) -> 1 | (2|3), 1 -> 2 | 2,(2|3) -> 3 | (4,4) -> 5 | _ -> 100 ;; test "cinq" h (2,2) 3 ; test "cinq" h (2,1) 2 ; test "cinq" h (2,4) 100 ; () ;; (* idem hh (2,5) *) let hh x = match x with | 1,1 -> 1 | 2,1 -> 2 | (2|3),(1|2|3|4) -> 3 | 2,5 -> 4 | (4,4) -> 5 | _ -> 100 ;; let hhh x = match x with | 1,1 -> 1 | (2|3),1 -> 2 | 2,2 -> 3 | _ -> 100 ;; let h x = match x with (1,1) -> 1 | 3,1 -> 2 | 2,(2|3) -> 3 | (4,4) -> 5 | _ -> 100 ;; let h x = match x with 1 -> 1 | 2|3 -> 2 | 4 -> 4 | 5 -> 5 | 6|7 -> 6 | 8 -> 8 | _ -> 100 ;; let f x = match x with | ((1|2),(3|4))|((3|4),(1|2)) -> 1 | (3,(5|6)) -> 2 | _ -> 3 ;; test "six" f (1,3) 1 ; test "six" f (3,2) 1 ; test "six" f (3,5) 2 ; test "six" f (3,7) 3 ; () ;; type tt = {a : bool list ; b : bool} let f = function | {a=([]|[true])} -> 1 | {a=false::_}|{b=(true|false)} -> 2 ;; test "sept" f {a=[] ; b = true} 1 ; test "sept" f {a=[true] ; b = false} 1 ; test "sept" f {a=[false ; true] ; b = true} 2 ; test "sept" f {a=[false] ; b = false} 2 ; () ;; let f = function | (([]|[true]),_) -> 1 | (false::_,_)|(_,(true|false)) -> 2 ;; test "huit" f ([],true) 1 ; test "huit" f ([true],false) 1 ; test "huit" f ([false ; true], true) 2 ; test "huit" f ([false], false) 2 ; () ;; let split_cases = function | `Nil | `Cons _ as x -> `A x | `Snoc _ as x -> `B x ;; test "oubli" split_cases `Nil (`A `Nil); test "oubli" split_cases (`Cons 1) (`A (`Cons 1)); test "oubli" split_cases (`Snoc 1) (`B (`Snoc 1)) ; () ;; type t1 = A of int | B of int let f1 = function | (A x | B x) -> x ;; test "neuf" f1 (A 1) 1 ; test "neuf" f1 (B 1) 1 ; ;; type coucou = A of int | B of int * int | C ;; let g = function | (A x | B (_,x)) -> x | C -> 0 ;; test "dix" g (A 1) 1 ; test "dix" g (B (1,2)) 2 ; ;; let h = function | ([x]|[1 ; x ]|[1 ; 2 ; x]) -> x | _ -> 0 ;; test "encore" h [1] 1 ; test "encore" h [1;2] 2 ; test "encore" h [1;2;3] 3 ; test "encore" h [0 ; 0] 0 ; () ;; let f = function | (x,(0 as y)) | (y,x) -> y-x ;; test "foo" f (1,0) (-1); test "foo" f (1,2) (-1) ;; let f = function (([]|[_]) as x)|(_::([] as x))|(_::_::x) -> x ;; test "zob" f [] [] ; test "zob" f [1] [1] ; test "zob" f [1;2;3] [3] ;; type zob = A | B | C | D of zob * int | E of zob * zob let rec f = function | (A | B | C) -> A | D (x,i) -> D (f x,i) | E (x,_) -> D (f x,0) ;; test "fin" f B A ; test "fin" f (D (C,1)) (D (A,1)) ; test "fin" f (E (C,A)) (D (A,0)) ; () ;; type length = Char of int | Pixel of int | Percent of int | No of string | Default let length = function | Char n -> n | Pixel n -> n | _ -> 0 ;; test "length" length (Char 10) 10 ; test "length" length (Pixel 20) 20 ; test "length" length Default 0 ; test "length" length (Percent 100) 0 ; () ;; let length2 = function | Char n -> n | Percent n -> n | _ -> 0 ;; test "length2" length2 (Char 10) 10 ; test "length2" length2 (Pixel 20) 0 ; test "length2" length2 Default 0 ; test "length2" length2(Percent 100) 100 ; () ;; let length3 = function | Char _ | No _ -> true | _ -> false ;; test "length3" length3 (Char 10) true ; test "length3" length3 (No "") true ; test "length3" length3 (Pixel 20) false ; test "length3" length3 Default false ; test "length3" length3(Percent 100) false ; () ;; type hevea = A | B | C let h x = match x with | A -> 1 | B|C -> 2 ;; test "hevea" h A 1 ; test "hevea" h B 2 ; test "hevea" h B 2 ; () ;; type lambda = Lvar of int | Lconst of int | Lapply of lambda * lambda list | Lfunction of bool * int list * lambda | Llet of bool * int * lambda * lambda | Lletrec of (int * lambda) list * lambda | Lprim of string * lambda list | Lswitch of lambda * lambda_switch | Lstaticfail | Lcatch of lambda * lambda | Lstaticraise of int * lambda list | Lstaticcatch of lambda * (int * int list) * lambda | Ltrywith of lambda * int * lambda | Lifthenelse of lambda * lambda * lambda | Lsequence of lambda * lambda | Lwhile of lambda * lambda | Lfor of int * lambda * lambda * bool * lambda | Lassign of int * lambda | Lsend of lambda * lambda * lambda list | Levent of lambda * lambda_event | Lifused of int * lambda and lambda_switch = { sw_numconsts: int; (* Number of integer cases *) sw_consts: (int * lambda) list; (* Integer cases *) sw_numblocks: int; (* Number of tag block cases *) sw_blocks: (int * lambda) list; (* Tag block cases *) sw_checked: bool ; (* True if bound checks needed *) sw_nofail: bool} (* True if should not fail *) and lambda_event = { lev_loc: int; lev_kind: bool ; lev_repr: int ref option; lev_env: int list } let rec approx_present v l = true let rec lower_bind v arg lam = match lam with | Lifthenelse (cond, ifso, ifnot) -> 1 | Lswitch (ls,({sw_consts=[i,act] ; sw_blocks = []} as sw)) when not (approx_present v ls) -> 2 | Lswitch (ls,({sw_consts=[] ; sw_blocks = [i,act]} as sw)) when not (approx_present v ls) -> 3 | Llet (true , vv, lv, l) -> 4 | _ -> 5 ;; test "lower_bind" (lower_bind 0 0) (Llet (true,0, Lvar 1, Lvar 2)) 4 ; test "lower_bind" (lower_bind 0 0) (Lvar 0) 5 ; test "lower_bind" (lower_bind 0 0) (Lifthenelse (Lvar 0, Lvar 1, Lvar 2)) 1 ;; type field_kind = Fvar of field_kind option ref | Fpresent | Fabsent let unify_kind (k1, k2) = match k1, k2 with (Fvar r, (Fvar _ | Fpresent)) -> 1 | (Fpresent, Fvar r) -> 2 | (Fpresent, Fpresent) -> 3 | _ -> 4 let r = ref (Some Fpresent) ;; test "unify" unify_kind (Fvar r, Fpresent) 1 ; test "unify" unify_kind (Fvar r, Fvar r) 1 ; test "unify" unify_kind (Fvar r, Fabsent) 4 ; test "unify" unify_kind (Fpresent, Fvar r) 2 ; test "unify" unify_kind (Fpresent, Fpresent) 3 ; test "unify" unify_kind (Fabsent, Fpresent) 4 ; () ;; type youyou = A | B | C | D of youyou let foo (k1, k2) = match k1,k2 with | D _, (A|D _) -> 1 | (A|B),D _ -> 2 | C,_ -> 3 | _, (A|B|C) -> 4 ;; test "foo" foo (D A,A) 1 ; test "foo" foo (D A,B) 4 ; test "foo" foo (A,A) 4 ; () ;; type yaya = A | B ;; let yaya = function | A,_,_ -> 1 | _,A,_ -> 2 | B,B,_ -> 3 | A,_,(100|103) -> 5 ;; test "yaya" yaya (A,A,0) 1 ; test "yaya" yaya (B,A,0) 2 ; test "yaya" yaya (B,B,100) 3 ; () ;; let yoyo = function | [],_,_ -> 1 | _,[],_ -> 2 | _::_,_::_,_ -> 3 | [],_,(100|103|104) -> 5 | [],_,(100|103) -> 6 | [],_,(1000|1001|1002|20000) -> 7 ;; test "yoyo" yoyo ([],[],0) 1 ; test "yoyo" yoyo ([1],[],0) 2 ; test "yoyo" yoyo ([1],[1],100) 3 ; () ;; let youyou = function | (100|103|104) -> 1 | (100|103|101) -> 2 | (1000|1001|1002|20000) -> 3 | _ -> -1 ;; test "youyou" youyou 100 1 ; test "youyou" youyou 101 2 ; test "youyou" youyou 1000 3 ;; type autre = | C | D | E of autre | F of autre * autre | H of autre | I | J | K of string let rec autre = function | C,_,_ -> 1 | _,C,_ -> 2 | D,D,_ -> 3 | (D|F (_,_)|H _|K _),_,_ -> 4 | (_, (D|I|E _|F (_, _)|H _|K _), _) -> 8 | (J,J,((C|D) as x |E x|F (_,x))) | (J,_,((C|J) as x)) -> autre (x,x,x) | (J, J, (I|H _|K _)) -> 9 | I,_,_ -> 6 | E _,_,_ -> 7 ;; test "autre" autre (J,J,F (D,D)) 3 ; test "autre" autre (J,J,D) 3 ; test "autre" autre (J,J,I) 9 ; test "autre" autre (H I,I,I) 4 ; test "autre" autre (J,J,H I) 9 ; () ;; type youpi = YA | YB | YC and hola = X | Y | Z | T of hola | U of hola | V of hola let xyz = function | YA,_,_ -> 1 | _,YA,_ -> 2 | YB,YB,_ -> 3 | ((YB|YC), (YB|YC), (X|Y|Z|V _|T _)) -> 6 | _,_,(X|U _) -> 8 | _,_,Y -> 5 ;; test "xyz" xyz (YC,YC,X) 6 ; test "xyz" xyz (YC,YB,U X) 8 ; test "xyz" xyz (YB,YC,X) 6 ; () ;; (* Ce test est pour le compilo lui-meme *) let eq (x,y) = x=y ;; test "eq" eq ("coucou", "coucou") true ; () ;; (* Test des gardes, non trivial *) let is_none = function | None -> true | _ -> false let garde x = match x with | (Some _, _) when is_none (snd x) -> 1 | (Some (pc, _), Some pc') when pc = pc' -> 2 | _ -> 3 ;; test "garde" garde (Some (1,1),None) 1 ; test "garde" garde (Some (1,1),Some 1) 2 ; test "garde" garde (Some (2,1),Some 1) 3 ; () ;; let orstring = function | ("A"|"B"|"C") -> 2 | "D" -> 3 | _ -> 4 ;; test "orstring" orstring "A" 2 ; test "orstring" orstring "B" 2 ; test "orstring" orstring "C" 2 ; test "orstring" orstring "D" 3 ; test "orstring" orstring "E" 4 ; () ;; type var_t = [`Variant of [ `Some of string | `None | `Foo] ] let crash (pat:var_t) = match pat with | `Variant (`Some tag) -> tag | `Variant (`None) -> "none" | _ -> "foo" ;; test "crash" crash (`Variant `None) "none" ; test "crash" crash (`Variant (`Some "coucou")) "coucou" ; test "crash" crash (`Variant (`Foo)) "foo" ; () ;; let flatgarde c = let x,y = c in match x,y with | (1,2)|(2,3) when y=2 -> 1 | (1,_)|(_,3) -> 2 | _ -> 3 ;; test "flatgarde" flatgarde (1,2) 1 ; test "flatgarde" flatgarde (1,3) 2 ; test "flatgarde" flatgarde (2,3) 2 ; test "flatgarde" flatgarde (2,4) 3 ; () ;;