(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Insertion of moves to suggest possible spilling / reloading points before register allocation. *) open Reg open Mach (* We say that a register is "destroyed" if it is live across a construct that potentially destroys all physical registers: function calls or try...with constructs. The "destroyed" registers must therefore reside in the stack during these instructions.. We will insert spills (stores) just after they are defined, and reloads just before their first use following a "destroying" construct. Instructions with more live registers than actual registers also "destroy" registers: we mark as "destroyed" the registers live across the instruction that haven't been used for the longest time. These registers will be spilled and reloaded as described above. *) (* Association of spill registers to registers *) let spill_env = ref (Reg.Map.empty : Reg.t Reg.Map.t) let spill_reg r = try Reg.Map.find r !spill_env with Not_found -> let spill_r = Reg.create r.typ in spill_r.spill <- true; if not (Reg.anonymous r) then spill_r.raw_name <- r.raw_name; spill_env := Reg.Map.add r spill_r !spill_env; spill_r (* Record the position of last use of registers *) let use_date = ref (Reg.Map.empty : int Reg.Map.t) let current_date = ref 0 let record_use regv = for i = 0 to Array.length regv - 1 do let r = regv.(i) in let prev_date = try Reg.Map.find r !use_date with Not_found -> 0 in if !current_date > prev_date then use_date := Reg.Map.add r !current_date !use_date done (* Check if the register pressure overflows the maximum pressure allowed at that point. If so, spill enough registers to lower the pressure. *) let add_superpressure_regs op live_regs res_regs spilled = let max_pressure = Proc.max_register_pressure op in let regs = Reg.add_set_array live_regs res_regs in (* Compute the pressure in each register class *) let pressure = Array.make Proc.num_register_classes 0 in Reg.Set.iter (fun r -> if Reg.Set.mem r spilled then () else begin match r.loc with Stack _ -> () | _ -> let c = Proc.register_class r in pressure.(c) <- pressure.(c) + 1 end) regs; (* Check if pressure is exceeded for each class. *) let rec check_pressure cl spilled = if cl >= Proc.num_register_classes then spilled else if pressure.(cl) <= max_pressure.(cl) then check_pressure (cl+1) spilled else begin (* Find the least recently used, unspilled, unallocated, live register in the class *) let lru_date = ref 1000000 and lru_reg = ref Reg.dummy in Reg.Set.iter (fun r -> if Proc.register_class r = cl && not (Reg.Set.mem r spilled) && r.loc = Unknown then begin try let d = Reg.Map.find r !use_date in if d < !lru_date then begin lru_date := d; lru_reg := r end with Not_found -> (* Should not happen *) () end) live_regs; if !lru_reg != Reg.dummy then begin pressure.(cl) <- pressure.(cl) - 1; check_pressure cl (Reg.Set.add !lru_reg spilled) end else (* Couldn't find any spillable register, give up for this class *) check_pressure (cl+1) spilled end in check_pressure 0 spilled (* A-list recording what is destroyed at if-then-else points. *) let destroyed_at_fork = ref ([] : (instruction * Reg.Set.t) list) (* First pass: insert reload instructions based on an approximation of what is destroyed at pressure points. *) let add_reloads regset i = Reg.Set.fold (fun r i -> instr_cons (Iop Ireload) [|spill_reg r|] [|r|] i) regset i let reload_at_exit = ref [] let find_reload_at_exit k = try List.assoc k !reload_at_exit with | Not_found -> Misc.fatal_error "Spill.find_reload_at_exit" let rec reload i before = incr current_date; record_use i.arg; record_use i.res; match i.desc with Iend -> (i, before) | Ireturn | Iop(Itailcall_ind) | Iop(Itailcall_imm _) -> (add_reloads (Reg.inter_set_array before i.arg) i, Reg.Set.empty) | Iop(Icall_ind | Icall_imm _ | Iextcall { alloc = true; }) -> (* All regs live across must be spilled *) let (new_next, finally) = reload i.next i.live in (add_reloads (Reg.inter_set_array before i.arg) (instr_cons_debug i.desc i.arg i.res i.dbg new_next), finally) | Iop op -> let new_before = (* Quick check to see if the register pressure is below the maximum *) if !Clflags.use_linscan || (Reg.Set.cardinal i.live + Array.length i.res <= Proc.safe_register_pressure op) then before else add_superpressure_regs op i.live i.res before in let after = Reg.diff_set_array (Reg.diff_set_array new_before i.arg) i.res in let (new_next, finally) = reload i.next after in (add_reloads (Reg.inter_set_array new_before i.arg) (instr_cons_debug i.desc i.arg i.res i.dbg new_next), finally) | Iifthenelse(test, ifso, ifnot) -> let at_fork = Reg.diff_set_array before i.arg in let date_fork = !current_date in let (new_ifso, after_ifso) = reload ifso at_fork in let date_ifso = !current_date in current_date := date_fork; let (new_ifnot, after_ifnot) = reload ifnot at_fork in current_date := max date_ifso !current_date; let (new_next, finally) = reload i.next (Reg.Set.union after_ifso after_ifnot) in let new_i = instr_cons (Iifthenelse(test, new_ifso, new_ifnot)) i.arg i.res new_next in destroyed_at_fork := (new_i, at_fork) :: !destroyed_at_fork; (add_reloads (Reg.inter_set_array before i.arg) new_i, finally) | Iswitch(index, cases) -> let at_fork = Reg.diff_set_array before i.arg in let date_fork = !current_date in let date_join = ref 0 in let after_cases = ref Reg.Set.empty in let new_cases = Array.map (fun c -> current_date := date_fork; let (new_c, after_c) = reload c at_fork in after_cases := Reg.Set.union !after_cases after_c; date_join := max !date_join !current_date; new_c) cases in current_date := !date_join; let (new_next, finally) = reload i.next !after_cases in (add_reloads (Reg.inter_set_array before i.arg) (instr_cons (Iswitch(index, new_cases)) i.arg i.res new_next), finally) | Icatch(rec_flag, handlers, body) -> let new_sets = List.map (fun (nfail, _) -> nfail, ref Reg.Set.empty) handlers in let previous_reload_at_exit = !reload_at_exit in reload_at_exit := new_sets @ !reload_at_exit ; let (new_body, after_body) = reload body before in let rec fixpoint () = let at_exits = List.map (fun (nfail, set) -> (nfail, !set)) new_sets in let res = List.map2 (fun (nfail', handler) (nfail, at_exit) -> assert(nfail = nfail'); reload handler at_exit) handlers at_exits in match rec_flag with | Cmm.Nonrecursive -> res | Cmm.Recursive -> let equal = List.for_all2 (fun (nfail', at_exit) (nfail, new_set) -> assert(nfail = nfail'); Reg.Set.equal at_exit !new_set) at_exits new_sets in if equal then res else fixpoint () in let res = fixpoint () in reload_at_exit := previous_reload_at_exit; let union = List.fold_left (fun acc (_, after_handler) -> Reg.Set.union acc after_handler) after_body res in let (new_next, finally) = reload i.next union in let new_handlers = List.map2 (fun (nfail, _) (new_handler, _) -> nfail, new_handler) handlers res in (instr_cons (Icatch(rec_flag, new_handlers, new_body)) i.arg i.res new_next, finally) | Iexit nfail -> let set = find_reload_at_exit nfail in set := Reg.Set.union !set before; (i, Reg.Set.empty) | Itrywith(body, handler) -> let (new_body, after_body) = reload body before in (* All registers live at the beginning of the handler are destroyed, except the exception bucket *) let before_handler = Reg.Set.remove Proc.loc_exn_bucket (Reg.add_set_array handler.live handler.arg) in let (new_handler, after_handler) = reload handler before_handler in let (new_next, finally) = reload i.next (Reg.Set.union after_body after_handler) in (instr_cons (Itrywith(new_body, new_handler)) i.arg i.res new_next, finally) | Iraise _ -> (add_reloads (Reg.inter_set_array before i.arg) i, Reg.Set.empty) (* Second pass: add spill instructions based on what we've decided to reload. That is, any register that may be reloaded in the future must be spilled just after its definition. *) (* As an optimization, if a register needs to be spilled in one branch of a conditional but not in the other, then we spill it late on entrance in the branch that needs it spilled. NB: This strategy is turned off in loops, as it may prevent a spill from being lifted up all the way out of the loop. NB again: This strategy is also off in switch arms as it generates many useless spills inside switch arms NB ter: is it the same thing for catch bodies ? *) (* CR mshinwell for pchambart: Try to test the new algorithms for dealing with Icatch. *) let spill_at_exit = ref [] let find_spill_at_exit k = try let used, set = List.assoc k !spill_at_exit in used := true; set with | Not_found -> Misc.fatal_error "Spill.find_spill_at_exit" let spill_at_raise = ref Reg.Set.empty let inside_loop = ref false and inside_arm = ref false and inside_catch = ref false let add_spills regset i = Reg.Set.fold (fun r i -> instr_cons (Iop Ispill) [|r|] [|spill_reg r|] i) regset i let rec spill i finally = match i.desc with Iend -> (i, finally) | Ireturn | Iop(Itailcall_ind) | Iop(Itailcall_imm _) -> (i, Reg.Set.empty) | Iop Ireload -> let (new_next, after) = spill i.next finally in let before1 = Reg.diff_set_array after i.res in (instr_cons i.desc i.arg i.res new_next, Reg.add_set_array before1 i.res) | Iop _ -> let (new_next, after) = spill i.next finally in let before1 = Reg.diff_set_array after i.res in let before = match i.desc with Iop(Icall_ind) | Iop(Icall_imm _) | Iop(Iextcall _) | Iop(Ialloc _) | Iop(Iintop (Icheckbound)) | Iop(Iintop_imm(Icheckbound, _)) -> Reg.Set.union before1 !spill_at_raise | _ -> before1 in (instr_cons_debug i.desc i.arg i.res i.dbg (add_spills (Reg.inter_set_array after i.res) new_next), before) | Iifthenelse(test, ifso, ifnot) -> let (new_next, at_join) = spill i.next finally in let (new_ifso, before_ifso) = spill ifso at_join in let (new_ifnot, before_ifnot) = spill ifnot at_join in if !inside_loop || !inside_arm || !inside_catch then (instr_cons (Iifthenelse(test, new_ifso, new_ifnot)) i.arg i.res new_next, Reg.Set.union before_ifso before_ifnot) else begin let destroyed = List.assq i !destroyed_at_fork in let spill_ifso_branch = Reg.Set.diff (Reg.Set.diff before_ifso before_ifnot) destroyed and spill_ifnot_branch = Reg.Set.diff (Reg.Set.diff before_ifnot before_ifso) destroyed in (instr_cons (Iifthenelse(test, add_spills spill_ifso_branch new_ifso, add_spills spill_ifnot_branch new_ifnot)) i.arg i.res new_next, Reg.Set.diff (Reg.Set.diff (Reg.Set.union before_ifso before_ifnot) spill_ifso_branch) spill_ifnot_branch) end | Iswitch(index, cases) -> let (new_next, at_join) = spill i.next finally in let saved_inside_arm = !inside_arm in inside_arm := true ; let before = ref Reg.Set.empty in let new_cases = Array.map (fun c -> let (new_c, before_c) = spill c at_join in before := Reg.Set.union !before before_c; new_c) cases in inside_arm := saved_inside_arm ; (instr_cons (Iswitch(index, new_cases)) i.arg i.res new_next, !before) | Icatch(rec_flag, handlers, body) -> let (new_next, at_join) = spill i.next finally in let saved_inside_catch = !inside_catch in inside_catch := true ; let previous_spill_at_exit = !spill_at_exit in let spill_at_exit_add at_exits = List.map2 (fun (nfail,_) at_exit -> nfail, (ref false, at_exit)) handlers at_exits in let rec fixpoint at_exits = let spill_at_exit_add = spill_at_exit_add at_exits in spill_at_exit := spill_at_exit_add @ !spill_at_exit; let res = List.map (fun (_, handler) -> spill handler at_join) handlers in spill_at_exit := previous_spill_at_exit; match rec_flag with | Cmm.Nonrecursive -> res | Cmm.Recursive -> let equal = List.for_all2 (fun (_new_handler, new_at_exit) (_, (used, at_exit)) -> Reg.Set.equal at_exit new_at_exit || not !used) res spill_at_exit_add in if equal then res else fixpoint (List.map snd res) in let res = fixpoint (List.map (fun _ -> Reg.Set.empty) handlers) in inside_catch := saved_inside_catch ; let spill_at_exit_add = spill_at_exit_add (List.map snd res) in spill_at_exit := spill_at_exit_add @ !spill_at_exit; let (new_body, before) = spill body at_join in spill_at_exit := previous_spill_at_exit; let new_handlers = List.map2 (fun (nfail, _) (handler, _) -> nfail, handler) handlers res in (instr_cons (Icatch(rec_flag, new_handlers, new_body)) i.arg i.res new_next, before) | Iexit nfail -> (i, find_spill_at_exit nfail) | Itrywith(body, handler) -> let (new_next, at_join) = spill i.next finally in let (new_handler, before_handler) = spill handler at_join in let saved_spill_at_raise = !spill_at_raise in spill_at_raise := before_handler; let (new_body, before_body) = spill body at_join in spill_at_raise := saved_spill_at_raise; (instr_cons (Itrywith(new_body, new_handler)) i.arg i.res new_next, before_body) | Iraise _ -> (i, !spill_at_raise) (* Entry point *) let reset () = spill_env := Reg.Map.empty; use_date := Reg.Map.empty; current_date := 0; destroyed_at_fork := [] let fundecl f = reset (); let (body1, _) = reload f.fun_body Reg.Set.empty in let (body2, tospill_at_entry) = spill body1 Reg.Set.empty in let new_body = add_spills (Reg.inter_set_array tospill_at_entry f.fun_args) body2 in spill_env := Reg.Map.empty; use_date := Reg.Map.empty; destroyed_at_fork := []; { fun_name = f.fun_name; fun_args = f.fun_args; fun_body = new_body; fun_codegen_options = f.fun_codegen_options; fun_dbg = f.fun_dbg; fun_num_stack_slots = f.fun_num_stack_slots; fun_contains_calls = f.fun_contains_calls; }