(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Selection of pseudo-instructions, assignment of pseudo-registers, sequentialization. *) open Cmm open Reg open Mach module Int = Numbers.Int module V = Backend_var module VP = Backend_var.With_provenance type environment = { vars : (Reg.t array * Backend_var.Provenance.t option * Asttypes.mutable_flag) V.Map.t; static_exceptions : Reg.t array list Int.Map.t; (** Which registers must be populated when jumping to the given handler. *) } let env_add ?(mut=Asttypes.Immutable) var regs env = let provenance = VP.provenance var in let var = VP.var var in { env with vars = V.Map.add var (regs, provenance, mut) env.vars } let env_add_static_exception id v env = { env with static_exceptions = Int.Map.add id v env.static_exceptions } let env_find id env = let regs, _provenance, _mut = V.Map.find id env.vars in regs let env_find_mut id env = let regs, _provenance, mut = V.Map.find id env.vars in begin match mut with | Asttypes.Mutable -> () | Asttypes.Immutable -> Misc.fatal_error "Selectgen.env_find_mut: not mutable" end; regs let env_find_static_exception id env = Int.Map.find id env.static_exceptions let env_empty = { vars = V.Map.empty; static_exceptions = Int.Map.empty; } (* Infer the type of the result of an operation *) let oper_result_type = function Capply ty -> ty | Cextcall(_s, ty_res, _ty_args, _alloc) -> ty_res | Cload (c, _) -> begin match c with | Word_val -> typ_val | Single | Double | Double_u -> typ_float | _ -> typ_int end | Calloc -> typ_val | Cstore (_c, _) -> typ_void | Caddi | Csubi | Cmuli | Cmulhi | Cdivi | Cmodi | Cand | Cor | Cxor | Clsl | Clsr | Casr | Ccmpi _ | Ccmpa _ | Ccmpf _ -> typ_int | Caddv -> typ_val | Cadda -> typ_addr | Cnegf | Cabsf | Caddf | Csubf | Cmulf | Cdivf -> typ_float | Cfloatofint -> typ_float | Cintoffloat -> typ_int | Craise _ -> typ_void | Ccheckbound -> typ_void (* Infer the size in bytes of the result of an expression whose evaluation may be deferred (cf. [emit_parts]). *) let size_component = function | Val | Addr -> Arch.size_addr | Int -> Arch.size_int | Float -> Arch.size_float let size_machtype mty = let size = ref 0 in for i = 0 to Array.length mty - 1 do size := !size + size_component mty.(i) done; !size let size_expr (env:environment) exp = let rec size localenv = function Cconst_int _ | Cconst_natint _ -> Arch.size_int | Cconst_symbol _ -> Arch.size_addr | Cconst_float _ -> Arch.size_float | Cvar id -> begin try V.Map.find id localenv with Not_found -> try let regs = env_find id env in size_machtype (Array.map (fun r -> r.typ) regs) with Not_found -> Misc.fatal_error("Selection.size_expr: unbound var " ^ V.unique_name id) end | Ctuple el -> List.fold_right (fun e sz -> size localenv e + sz) el 0 | Cop(op, _, _) -> size_machtype(oper_result_type op) | Clet(id, arg, body) -> size (V.Map.add (VP.var id) (size localenv arg) localenv) body | Csequence(_e1, e2) -> size localenv e2 | _ -> Misc.fatal_error "Selection.size_expr" in size V.Map.empty exp (* Swap the two arguments of an integer comparison *) let swap_intcomp = function Isigned cmp -> Isigned(swap_integer_comparison cmp) | Iunsigned cmp -> Iunsigned(swap_integer_comparison cmp) (* Naming of registers *) let all_regs_anonymous rv = try for i = 0 to Array.length rv - 1 do if not (Reg.anonymous rv.(i)) then raise Exit done; true with Exit -> false let name_regs id rv = let id = VP.var id in if Array.length rv = 1 then rv.(0).raw_name <- Raw_name.create_from_var id else for i = 0 to Array.length rv - 1 do rv.(i).raw_name <- Raw_name.create_from_var id; rv.(i).part <- Some i done (* "Join" two instruction sequences, making sure they return their results in the same registers. *) let join env opt_r1 seq1 opt_r2 seq2 = match (opt_r1, opt_r2) with (None, _) -> opt_r2 | (_, None) -> opt_r1 | (Some r1, Some r2) -> let l1 = Array.length r1 in assert (l1 = Array.length r2); let r = Array.make l1 Reg.dummy in for i = 0 to l1-1 do if Reg.anonymous r1.(i) && Cmm.ge_component r1.(i).typ r2.(i).typ then begin r.(i) <- r1.(i); seq2#insert_move env r2.(i) r1.(i) end else if Reg.anonymous r2.(i) && Cmm.ge_component r2.(i).typ r1.(i).typ then begin r.(i) <- r2.(i); seq1#insert_move env r1.(i) r2.(i) end else begin let typ = Cmm.lub_component r1.(i).typ r2.(i).typ in r.(i) <- Reg.create typ; seq1#insert_move env r1.(i) r.(i); seq2#insert_move env r2.(i) r.(i) end done; Some r (* Same, for N branches *) let join_array env rs = let some_res = ref None in for i = 0 to Array.length rs - 1 do let (r, _) = rs.(i) in match r with | None -> () | Some r -> match !some_res with | None -> some_res := Some (r, Array.map (fun r -> r.typ) r) | Some (r', types) -> let types = Array.map2 (fun r typ -> Cmm.lub_component r.typ typ) r types in some_res := Some (r', types) done; match !some_res with None -> None | Some (template, types) -> let size_res = Array.length template in let res = Array.make size_res Reg.dummy in for i = 0 to size_res - 1 do res.(i) <- Reg.create types.(i) done; for i = 0 to Array.length rs - 1 do let (r, s) = rs.(i) in match r with None -> () | Some r -> s#insert_moves env r res done; Some res (* Name of function being compiled *) let current_function_name = ref "" module Effect = struct type t = | None | Raise | Arbitrary let join t1 t2 = match t1, t2 with | None, t2 -> t2 | t1, None -> t1 | Raise, Raise -> Raise | Arbitrary, _ | _, Arbitrary -> Arbitrary let pure = function | None -> true | Raise | Arbitrary -> false end module Coeffect = struct type t = | None | Read_mutable | Arbitrary let join t1 t2 = match t1, t2 with | None, t2 -> t2 | t1, None -> t1 | Read_mutable, Read_mutable -> Read_mutable | Arbitrary, _ | _, Arbitrary -> Arbitrary let copure = function | None -> true | Read_mutable | Arbitrary -> false end module Effect_and_coeffect : sig type t val none : t val arbitrary : t val effect : t -> Effect.t val coeffect : t -> Coeffect.t val pure_and_copure : t -> bool val effect_only : Effect.t -> t val coeffect_only : Coeffect.t -> t val join : t -> t -> t val join_list_map : 'a list -> ('a -> t) -> t end = struct type t = Effect.t * Coeffect.t let none = Effect.None, Coeffect.None let arbitrary = Effect.Arbitrary, Coeffect.Arbitrary let effect (e, _ce) = e let coeffect (_e, ce) = ce let pure_and_copure (e, ce) = Effect.pure e && Coeffect.copure ce let effect_only e = e, Coeffect.None let coeffect_only ce = Effect.None, ce let join (e1, ce1) (e2, ce2) = Effect.join e1 e2, Coeffect.join ce1 ce2 let join_list_map xs f = match xs with | [] -> none | x::xs -> List.fold_left (fun acc x -> join acc (f x)) (f x) xs end (* The default instruction selection class *) class virtual selector_generic = object (self) (* A syntactic criterion used in addition to judgements about (co)effects as to whether the evaluation of a given expression may be deferred by [emit_parts]. This criterion is a property of the instruction selection algorithm in this file rather than a property of the Cmm language. *) method is_simple_expr = function Cconst_int _ -> true | Cconst_natint _ -> true | Cconst_float _ -> true | Cconst_symbol _ -> true | Cvar _ -> true | Ctuple el -> List.for_all self#is_simple_expr el | Clet(_id, arg, body) | Clet_mut(_id, _, arg, body) -> self#is_simple_expr arg && self#is_simple_expr body | Cphantom_let(_var, _defining_expr, body) -> self#is_simple_expr body | Csequence(e1, e2) -> self#is_simple_expr e1 && self#is_simple_expr e2 | Cop(op, args, _) -> begin match op with (* The following may have side effects *) | Capply _ | Cextcall _ | Calloc | Cstore _ | Craise _ -> false (* The remaining operations are simple if their args are *) | Cload _ | Caddi | Csubi | Cmuli | Cmulhi | Cdivi | Cmodi | Cand | Cor | Cxor | Clsl | Clsr | Casr | Ccmpi _ | Caddv | Cadda | Ccmpa _ | Cnegf | Cabsf | Caddf | Csubf | Cmulf | Cdivf | Cfloatofint | Cintoffloat | Ccmpf _ | Ccheckbound -> List.for_all self#is_simple_expr args end | Cassign _ | Cifthenelse _ | Cswitch _ | Ccatch _ | Cexit _ | Ctrywith _ -> false (* Analyses the effects and coeffects of an expression. This is used across a whole list of expressions with a view to determining which expressions may have their evaluation deferred. The result of this function, modulo target-specific judgements if the [effects_of] method is overridden, is a property of the Cmm language rather than anything particular about the instruction selection algorithm in this file. In the case of e.g. an OCaml function call, the arguments whose evaluation cannot be deferred (cf. [emit_parts], below) are computed in right-to-left order first with their results going into temporaries, then the block is allocated, then the remaining arguments are evaluated before being combined with the temporaries. *) method effects_of exp = let module EC = Effect_and_coeffect in match exp with | Cconst_int _ | Cconst_natint _ | Cconst_float _ | Cconst_symbol _ | Cvar _ -> EC.none | Ctuple el -> EC.join_list_map el self#effects_of | Clet (_id, arg, body) | Clet_mut (_id, _, arg, body) -> EC.join (self#effects_of arg) (self#effects_of body) | Cphantom_let (_var, _defining_expr, body) -> self#effects_of body | Csequence (e1, e2) -> EC.join (self#effects_of e1) (self#effects_of e2) | Cifthenelse (cond, _ifso_dbg, ifso, _ifnot_dbg, ifnot, _dbg) -> EC.join (self#effects_of cond) (EC.join (self#effects_of ifso) (self#effects_of ifnot)) | Cop (op, args, _) -> let from_op = match op with | Capply _ | Cextcall _ -> EC.arbitrary | Calloc -> EC.none | Cstore _ -> EC.effect_only Effect.Arbitrary | Craise _ | Ccheckbound -> EC.effect_only Effect.Raise | Cload (_, Asttypes.Immutable) -> EC.none | Cload (_, Asttypes.Mutable) -> EC.coeffect_only Coeffect.Read_mutable | Caddi | Csubi | Cmuli | Cmulhi | Cdivi | Cmodi | Cand | Cor | Cxor | Clsl | Clsr | Casr | Ccmpi _ | Caddv | Cadda | Ccmpa _ | Cnegf | Cabsf | Caddf | Csubf | Cmulf | Cdivf | Cfloatofint | Cintoffloat | Ccmpf _ -> EC.none in EC.join from_op (EC.join_list_map args self#effects_of) | Cassign _ | Cswitch _ | Ccatch _ | Cexit _ | Ctrywith _ -> EC.arbitrary (* Says whether an integer constant is a suitable immediate argument for the given integer operation *) method is_immediate op n = match op with | Ilsl | Ilsr | Iasr -> n >= 0 && n < Arch.size_int * 8 | _ -> false (* Says whether an integer constant is a suitable immediate argument for the given integer test *) method virtual is_immediate_test : integer_comparison -> int -> bool (* Selection of addressing modes *) method virtual select_addressing : Cmm.memory_chunk -> Cmm.expression -> Arch.addressing_mode * Cmm.expression (* Default instruction selection for stores (of words) *) method select_store is_assign addr arg = (Istore(Word_val, addr, is_assign), arg) (* call marking methods, documented in selectgen.mli *) val contains_calls = ref false method mark_call = contains_calls := true method mark_tailcall = () method mark_c_tailcall = () method mark_instr = function | Iop (Icall_ind | Icall_imm _ | Iextcall _) -> self#mark_call | Iop (Itailcall_ind | Itailcall_imm _) -> self#mark_tailcall | Iop (Ialloc _) -> self#mark_call (* caml_alloc*, caml_garbage_collection *) | Iop (Iintop(Icheckbound) | Iintop_imm(Icheckbound, _)) -> self#mark_c_tailcall (* caml_ml_array_bound_error *) | Iraise raise_kind -> begin match raise_kind with | Lambda.Raise_notrace -> () | Lambda.Raise_regular | Lambda.Raise_reraise -> (* PR#6239 *) (* caml_stash_backtrace; we #mark_call rather than #mark_c_tailcall to get a good stack backtrace *) self#mark_call end | Itrywith _ -> self#mark_call | _ -> () (* Default instruction selection for operators *) method select_operation op args _dbg = match (op, args) with | (Capply _, Cconst_symbol (func, _dbg) :: rem) -> (Icall_imm { func; }, rem) | (Capply _, _) -> (Icall_ind, args) | (Cextcall(func, ty_res, ty_args, alloc), _) -> Iextcall { func; ty_res; ty_args; alloc; }, args | (Cload (chunk, _mut), [arg]) -> let (addr, eloc) = self#select_addressing chunk arg in (Iload(chunk, addr), [eloc]) | (Cstore (chunk, init), [arg1; arg2]) -> let (addr, eloc) = self#select_addressing chunk arg1 in let is_assign = match init with | Lambda.Root_initialization -> false | Lambda.Heap_initialization -> false | Lambda.Assignment -> true in if chunk = Word_int || chunk = Word_val then begin let (op, newarg2) = self#select_store is_assign addr arg2 in (op, [newarg2; eloc]) end else begin (Istore(chunk, addr, is_assign), [arg2; eloc]) (* Inversion addr/datum in Istore *) end | (Calloc, _) -> (Ialloc {bytes = 0; dbginfo = []}), args | (Caddi, _) -> self#select_arith_comm Iadd args | (Csubi, _) -> self#select_arith Isub args | (Cmuli, _) -> self#select_arith_comm Imul args | (Cmulhi, _) -> self#select_arith_comm Imulh args | (Cdivi, _) -> (Iintop Idiv, args) | (Cmodi, _) -> (Iintop Imod, args) | (Cand, _) -> self#select_arith_comm Iand args | (Cor, _) -> self#select_arith_comm Ior args | (Cxor, _) -> self#select_arith_comm Ixor args | (Clsl, _) -> self#select_arith Ilsl args | (Clsr, _) -> self#select_arith Ilsr args | (Casr, _) -> self#select_arith Iasr args | (Ccmpi comp, _) -> self#select_arith_comp (Isigned comp) args | (Caddv, _) -> self#select_arith_comm Iadd args | (Cadda, _) -> self#select_arith_comm Iadd args | (Ccmpa comp, _) -> self#select_arith_comp (Iunsigned comp) args | (Cnegf, _) -> (Inegf, args) | (Cabsf, _) -> (Iabsf, args) | (Caddf, _) -> (Iaddf, args) | (Csubf, _) -> (Isubf, args) | (Cmulf, _) -> (Imulf, args) | (Cdivf, _) -> (Idivf, args) | (Cfloatofint, _) -> (Ifloatofint, args) | (Cintoffloat, _) -> (Iintoffloat, args) | (Ccheckbound, _) -> self#select_arith Icheckbound args | _ -> Misc.fatal_error "Selection.select_oper" method private select_arith_comm op = function | [arg; Cconst_int (n, _)] when self#is_immediate op n -> (Iintop_imm(op, n), [arg]) | [Cconst_int (n, _); arg] when self#is_immediate op n -> (Iintop_imm(op, n), [arg]) | args -> (Iintop op, args) method private select_arith op = function | [arg; Cconst_int (n, _)] when self#is_immediate op n -> (Iintop_imm(op, n), [arg]) | args -> (Iintop op, args) method private select_arith_comp cmp = function | [arg; Cconst_int (n, _)] when self#is_immediate (Icomp cmp) n -> (Iintop_imm(Icomp cmp, n), [arg]) | [Cconst_int (n, _); arg] when self#is_immediate (Icomp(swap_intcomp cmp)) n -> (Iintop_imm(Icomp(swap_intcomp cmp), n), [arg]) | args -> (Iintop(Icomp cmp), args) (* Instruction selection for conditionals *) method select_condition = function | Cop(Ccmpi cmp, [arg1; Cconst_int (n, _)], _) when self#is_immediate_test (Isigned cmp) n -> (Iinttest_imm(Isigned cmp, n), arg1) | Cop(Ccmpi cmp, [Cconst_int (n, _); arg2], _) when self#is_immediate_test (Isigned (swap_integer_comparison cmp)) n -> (Iinttest_imm(Isigned(swap_integer_comparison cmp), n), arg2) | Cop(Ccmpi cmp, args, _) -> (Iinttest(Isigned cmp), Ctuple args) | Cop(Ccmpa cmp, [arg1; Cconst_int (n, _)], _) when self#is_immediate_test (Iunsigned cmp) n -> (Iinttest_imm(Iunsigned cmp, n), arg1) | Cop(Ccmpa cmp, [Cconst_int (n, _); arg2], _) when self#is_immediate_test (Iunsigned (swap_integer_comparison cmp)) n -> (Iinttest_imm(Iunsigned(swap_integer_comparison cmp), n), arg2) | Cop(Ccmpa cmp, args, _) -> (Iinttest(Iunsigned cmp), Ctuple args) | Cop(Ccmpf cmp, args, _) -> (Ifloattest cmp, Ctuple args) | Cop(Cand, [arg; Cconst_int (1, _)], _) -> (Ioddtest, arg) | arg -> (Itruetest, arg) (* Return an array of fresh registers of the given type. Normally implemented as Reg.createv, but some ports (e.g. Arm) can override this definition to store float values in pairs of integer registers. *) method regs_for tys = Reg.createv tys (* Buffering of instruction sequences *) val mutable instr_seq = dummy_instr method insert_debug _env desc dbg arg res = instr_seq <- instr_cons_debug desc arg res dbg instr_seq method insert _env desc arg res = instr_seq <- instr_cons desc arg res instr_seq method extract = let rec extract res i = if i == dummy_instr then res else extract {i with next = res} i.next in extract (end_instr ()) instr_seq (* Insert a sequence of moves from one pseudoreg set to another. *) method insert_move env src dst = if src.stamp <> dst.stamp then self#insert env (Iop Imove) [|src|] [|dst|] method insert_moves env src dst = for i = 0 to min (Array.length src) (Array.length dst) - 1 do self#insert_move env src.(i) dst.(i) done (* Insert moves and stack offsets for function arguments and results *) method insert_move_args env arg loc stacksize = if stacksize <> 0 then begin self#insert env (Iop(Istackoffset stacksize)) [||] [||] end; self#insert_moves env arg loc method insert_move_results env loc res stacksize = if stacksize <> 0 then begin self#insert env (Iop(Istackoffset(-stacksize))) [||] [||] end; self#insert_moves env loc res (* Add an Iop opcode. Can be overridden by processor description to insert moves before and after the operation, i.e. for two-address instructions, or instructions using dedicated registers. *) method insert_op_debug env op dbg rs rd = self#insert_debug env (Iop op) dbg rs rd; rd method insert_op env op rs rd = self#insert_op_debug env op Debuginfo.none rs rd (* Add the instructions for the given expression at the end of the self sequence *) method emit_expr (env:environment) exp = match exp with Cconst_int (n, _dbg) -> let r = self#regs_for typ_int in Some(self#insert_op env (Iconst_int(Nativeint.of_int n)) [||] r) | Cconst_natint (n, _dbg) -> let r = self#regs_for typ_int in Some(self#insert_op env (Iconst_int n) [||] r) | Cconst_float (n, _dbg) -> let r = self#regs_for typ_float in Some(self#insert_op env (Iconst_float (Int64.bits_of_float n)) [||] r) | Cconst_symbol (n, _dbg) -> (* Cconst_symbol _ evaluates to a statically-allocated address, so its value fits in a typ_int register and is never changed by the GC. Some Cconst_symbols point to statically-allocated blocks, some of which may point to heap values. However, any such blocks will be registered in the compilation unit's global roots structure, so adding this register to the frame table would be redundant *) let r = self#regs_for typ_int in Some(self#insert_op env (Iconst_symbol n) [||] r) | Cvar v -> begin try Some(env_find v env) with Not_found -> Misc.fatal_error("Selection.emit_expr: unbound var " ^ V.unique_name v) end | Clet(v, e1, e2) -> begin match self#emit_expr env e1 with None -> None | Some r1 -> self#emit_expr (self#bind_let env v r1) e2 end | Clet_mut(v, k, e1, e2) -> begin match self#emit_expr env e1 with None -> None | Some r1 -> self#emit_expr (self#bind_let_mut env v k r1) e2 end | Cphantom_let (_var, _defining_expr, body) -> self#emit_expr env body | Cassign(v, e1) -> let rv = try env_find_mut v env with Not_found -> Misc.fatal_error ("Selection.emit_expr: unbound var " ^ V.name v) in begin match self#emit_expr env e1 with None -> None | Some r1 -> self#insert_moves env r1 rv; Some [||] end | Ctuple [] -> Some [||] | Ctuple exp_list -> begin match self#emit_parts_list env exp_list with None -> None | Some(simple_list, ext_env) -> Some(self#emit_tuple ext_env simple_list) end | Cop(Craise k, [arg], dbg) -> begin match self#emit_expr env arg with None -> None | Some r1 -> let rd = [|Proc.loc_exn_bucket|] in self#insert env (Iop Imove) r1 rd; self#insert_debug env (Iraise k) dbg rd [||]; None end | Cop(Ccmpf _, _, dbg) -> self#emit_expr env (Cifthenelse (exp, dbg, Cconst_int (1, dbg), dbg, Cconst_int (0, dbg), dbg)) | Cop(op, args, dbg) -> begin match self#emit_parts_list env args with None -> None | Some(simple_args, env) -> let ty = oper_result_type op in let (new_op, new_args) = self#select_operation op simple_args dbg in match new_op with Icall_ind -> let r1 = self#emit_tuple env new_args in let rarg = Array.sub r1 1 (Array.length r1 - 1) in let rd = self#regs_for ty in let (loc_arg, stack_ofs) = Proc.loc_arguments (Reg.typv rarg) in let loc_res = Proc.loc_results (Reg.typv rd) in self#insert_move_args env rarg loc_arg stack_ofs; self#insert_debug env (Iop new_op) dbg (Array.append [|r1.(0)|] loc_arg) loc_res; self#insert_move_results env loc_res rd stack_ofs; Some rd | Icall_imm _ -> let r1 = self#emit_tuple env new_args in let rd = self#regs_for ty in let (loc_arg, stack_ofs) = Proc.loc_arguments (Reg.typv r1) in let loc_res = Proc.loc_results (Reg.typv rd) in self#insert_move_args env r1 loc_arg stack_ofs; self#insert_debug env (Iop new_op) dbg loc_arg loc_res; self#insert_move_results env loc_res rd stack_ofs; Some rd | Iextcall { ty_args; _} -> let (loc_arg, stack_ofs) = self#emit_extcall_args env ty_args new_args in let rd = self#regs_for ty in let loc_res = self#insert_op_debug env new_op dbg loc_arg (Proc.loc_external_results (Reg.typv rd)) in self#insert_move_results env loc_res rd stack_ofs; Some rd | Ialloc { bytes = _; } -> let rd = self#regs_for typ_val in let bytes = size_expr env (Ctuple new_args) in assert (bytes mod Arch.size_addr = 0); let alloc_words = bytes / Arch.size_addr in let op = Ialloc { bytes; dbginfo = [{alloc_words; alloc_dbg = dbg}] } in self#insert_debug env (Iop op) dbg [||] rd; self#emit_stores env new_args rd; Some rd | op -> let r1 = self#emit_tuple env new_args in let rd = self#regs_for ty in Some (self#insert_op_debug env op dbg r1 rd) end | Csequence(e1, e2) -> begin match self#emit_expr env e1 with None -> None | Some _ -> self#emit_expr env e2 end | Cifthenelse(econd, _ifso_dbg, eif, _ifnot_dbg, eelse, _dbg) -> let (cond, earg) = self#select_condition econd in begin match self#emit_expr env earg with None -> None | Some rarg -> let (rif, sif) = self#emit_sequence env eif in let (relse, selse) = self#emit_sequence env eelse in let r = join env rif sif relse selse in self#insert env (Iifthenelse(cond, sif#extract, selse#extract)) rarg [||]; r end | Cswitch(esel, index, ecases, _dbg) -> begin match self#emit_expr env esel with None -> None | Some rsel -> let rscases = Array.map (fun (case, _dbg) -> self#emit_sequence env case) ecases in let r = join_array env rscases in self#insert env (Iswitch(index, Array.map (fun (_, s) -> s#extract) rscases)) rsel [||]; r end | Ccatch(_, [], e1) -> self#emit_expr env e1 | Ccatch(rec_flag, handlers, body) -> let handlers = List.map (fun (nfail, ids, e2, dbg) -> let rs = List.map (fun (id, typ) -> let r = self#regs_for typ in name_regs id r; r) ids in (nfail, ids, rs, e2, dbg)) handlers in let env = (* Since the handlers may be recursive, and called from the body, the same environment is used for translating both the handlers and the body. *) List.fold_left (fun env (nfail, _ids, rs, _e2, _dbg) -> env_add_static_exception nfail rs env) env handlers in let (r_body, s_body) = self#emit_sequence env body in let translate_one_handler (nfail, ids, rs, e2, _dbg) = assert(List.length ids = List.length rs); let new_env = List.fold_left (fun env ((id, _typ), r) -> env_add id r env) env (List.combine ids rs) in let (r, s) = self#emit_sequence new_env e2 in (nfail, (r, s)) in let l = List.map translate_one_handler handlers in let a = Array.of_list ((r_body, s_body) :: List.map snd l) in let r = join_array env a in let aux (nfail, (_r, s)) = (nfail, s#extract) in self#insert env (Icatch (rec_flag, List.map aux l, s_body#extract)) [||] [||]; r | Cexit (nfail,args) -> begin match self#emit_parts_list env args with None -> None | Some (simple_list, ext_env) -> let src = self#emit_tuple ext_env simple_list in let dest_args = try env_find_static_exception nfail env with Not_found -> Misc.fatal_error ("Selection.emit_expr: unbound label "^ Stdlib.Int.to_string nfail) in (* Intermediate registers to handle cases where some registers from src are present in dest *) let tmp_regs = Reg.createv_like src in (* Ccatch registers must not contain out of heap pointers *) Array.iter (fun reg -> assert(reg.typ <> Addr)) src; self#insert_moves env src tmp_regs ; self#insert_moves env tmp_regs (Array.concat dest_args) ; self#insert env (Iexit nfail) [||] [||]; None end | Ctrywith(e1, v, e2, _dbg) -> let (r1, s1) = self#emit_sequence env e1 in let rv = self#regs_for typ_val in let (r2, s2) = self#emit_sequence (env_add v rv env) e2 in let r = join env r1 s1 r2 s2 in self#insert env (Itrywith(s1#extract, instr_cons (Iop Imove) [|Proc.loc_exn_bucket|] rv (s2#extract))) [||] [||]; r method private emit_sequence (env:environment) exp = let s = {< instr_seq = dummy_instr >} in let r = s#emit_expr env exp in (r, s) method private bind_let (env:environment) v r1 = if all_regs_anonymous r1 then begin name_regs v r1; env_add v r1 env end else begin let rv = Reg.createv_like r1 in name_regs v rv; self#insert_moves env r1 rv; env_add v rv env end method private bind_let_mut (env:environment) v k r1 = let rv = self#regs_for k in name_regs v rv; self#insert_moves env r1 rv; env_add ~mut:Mutable v rv env (* The following two functions, [emit_parts] and [emit_parts_list], force right-to-left evaluation order as required by the Flambda [Un_anf] pass (and to be consistent with the bytecode compiler). *) method private emit_parts (env:environment) ~effects_after exp = let module EC = Effect_and_coeffect in let may_defer_evaluation = let ec = self#effects_of exp in match EC.effect ec with | Effect.Arbitrary | Effect.Raise -> (* Preserve the ordering of effectful expressions by evaluating them early (in the correct order) and assigning their results to temporaries. We can avoid this in just one case: if we know that every [exp'] in the original expression list (cf. [emit_parts_list]) to be evaluated after [exp] cannot possibly affect the result of [exp] or depend on the result of [exp], then [exp] may be deferred. (Checking purity here is not enough: we need to check copurity too to avoid e.g. moving mutable reads earlier than the raising of an exception.) *) EC.pure_and_copure effects_after | Effect.None -> match EC.coeffect ec with | Coeffect.None -> (* Pure expressions may be moved. *) true | Coeffect.Read_mutable -> begin (* Read-mutable expressions may only be deferred if evaluation of every [exp'] (for [exp'] as in the comment above) has no effects "worse" (in the sense of the ordering in [Effect.t]) than raising an exception. *) match EC.effect effects_after with | Effect.None | Effect.Raise -> true | Effect.Arbitrary -> false end | Coeffect.Arbitrary -> begin (* Arbitrary expressions may only be deferred if evaluation of every [exp'] (for [exp'] as in the comment above) has no effects. *) match EC.effect effects_after with | Effect.None -> true | Effect.Arbitrary | Effect.Raise -> false end in (* Even though some expressions may look like they can be deferred from the (co)effect analysis, it may be forbidden to move them. *) if may_defer_evaluation && self#is_simple_expr exp then Some (exp, env) else begin match self#emit_expr env exp with None -> None | Some r -> if Array.length r = 0 then Some (Ctuple [], env) else begin (* The normal case *) let id = V.create_local "bind" in if all_regs_anonymous r then (* r is an anonymous, unshared register; use it directly *) Some (Cvar id, env_add (VP.create id) r env) else begin (* Introduce a fresh temp to hold the result *) let tmp = Reg.createv_like r in self#insert_moves env r tmp; Some (Cvar id, env_add (VP.create id) tmp env) end end end method private emit_parts_list (env:environment) exp_list = let module EC = Effect_and_coeffect in let exp_list_right_to_left, _effect = (* Annotate each expression with the (co)effects that happen after it when the original expression list is evaluated from right to left. The resulting expression list has the rightmost expression first. *) List.fold_left (fun (exp_list, effects_after) exp -> let exp_effect = self#effects_of exp in (exp, effects_after)::exp_list, EC.join exp_effect effects_after) ([], EC.none) exp_list in List.fold_left (fun results_and_env (exp, effects_after) -> match results_and_env with | None -> None | Some (result, env) -> match self#emit_parts env exp ~effects_after with | None -> None | Some (exp_result, env) -> Some (exp_result :: result, env)) (Some ([], env)) exp_list_right_to_left method private emit_tuple_not_flattened env exp_list = let rec emit_list = function [] -> [] | exp :: rem -> (* Again, force right-to-left evaluation *) let loc_rem = emit_list rem in match self#emit_expr env exp with None -> assert false (* should have been caught in emit_parts *) | Some loc_exp -> loc_exp :: loc_rem in emit_list exp_list method private emit_tuple env exp_list = Array.concat (self#emit_tuple_not_flattened env exp_list) method emit_extcall_args env ty_args args = let args = self#emit_tuple_not_flattened env args in let ty_args = if ty_args = [] then List.map (fun _ -> XInt) args else ty_args in let locs, stack_ofs = Proc.loc_external_arguments ty_args in let ty_args = Array.of_list ty_args in if stack_ofs <> 0 then self#insert env (Iop(Istackoffset stack_ofs)) [||] [||]; List.iteri (fun i arg -> self#insert_move_extcall_arg env ty_args.(i) arg locs.(i)) args; Array.concat (Array.to_list locs), stack_ofs method insert_move_extcall_arg env _ty_arg src dst = (* The default implementation is one or two ordinary moves. (Two in the case of an int64 argument on a 32-bit platform.) It can be overridden to use special move instructions, for example a "32-bit move" instruction for int32 arguments. *) self#insert_moves env src dst method emit_stores env data regs_addr = let a = ref (Arch.offset_addressing Arch.identity_addressing (-Arch.size_int)) in List.iter (fun e -> let (op, arg) = self#select_store false !a e in match self#emit_expr env arg with None -> assert false | Some regs -> match op with Istore(_, _, _) -> for i = 0 to Array.length regs - 1 do let r = regs.(i) in let kind = if r.typ = Float then Double_u else Word_val in self#insert env (Iop(Istore(kind, !a, false))) (Array.append [|r|] regs_addr) [||]; a := Arch.offset_addressing !a (size_component r.typ) done | _ -> self#insert env (Iop op) (Array.append regs regs_addr) [||]; a := Arch.offset_addressing !a (size_expr env e)) data (* Same, but in tail position *) method private emit_return (env:environment) exp = match self#emit_expr env exp with None -> () | Some r -> let loc = Proc.loc_results (Reg.typv r) in self#insert_moves env r loc; self#insert env Ireturn loc [||] method emit_tail (env:environment) exp = match exp with Clet(v, e1, e2) -> begin match self#emit_expr env e1 with None -> () | Some r1 -> self#emit_tail (self#bind_let env v r1) e2 end | Clet_mut (v, k, e1, e2) -> begin match self#emit_expr env e1 with None -> () | Some r1 -> self#emit_tail (self#bind_let_mut env v k r1) e2 end | Cphantom_let (_var, _defining_expr, body) -> self#emit_tail env body | Cop((Capply ty) as op, args, dbg) -> begin match self#emit_parts_list env args with None -> () | Some(simple_args, env) -> let (new_op, new_args) = self#select_operation op simple_args dbg in match new_op with Icall_ind -> let r1 = self#emit_tuple env new_args in let rarg = Array.sub r1 1 (Array.length r1 - 1) in let (loc_arg, stack_ofs) = Proc.loc_arguments (Reg.typv rarg) in if stack_ofs = 0 then begin let call = Iop (Itailcall_ind) in self#insert_moves env rarg loc_arg; self#insert_debug env call dbg (Array.append [|r1.(0)|] loc_arg) [||]; end else begin let rd = self#regs_for ty in let loc_res = Proc.loc_results (Reg.typv rd) in self#insert_move_args env rarg loc_arg stack_ofs; self#insert_debug env (Iop new_op) dbg (Array.append [|r1.(0)|] loc_arg) loc_res; self#insert env (Iop(Istackoffset(-stack_ofs))) [||] [||]; self#insert env Ireturn loc_res [||] end | Icall_imm { func; } -> let r1 = self#emit_tuple env new_args in let (loc_arg, stack_ofs) = Proc.loc_arguments (Reg.typv r1) in if stack_ofs = 0 then begin let call = Iop (Itailcall_imm { func; }) in self#insert_moves env r1 loc_arg; self#insert_debug env call dbg loc_arg [||]; end else if func = !current_function_name then begin let call = Iop (Itailcall_imm { func; }) in let loc_arg' = Proc.loc_parameters (Reg.typv r1) in self#insert_moves env r1 loc_arg'; self#insert_debug env call dbg loc_arg' [||]; end else begin let rd = self#regs_for ty in let loc_res = Proc.loc_results (Reg.typv rd) in self#insert_move_args env r1 loc_arg stack_ofs; self#insert_debug env (Iop new_op) dbg loc_arg loc_res; self#insert env (Iop(Istackoffset(-stack_ofs))) [||] [||]; self#insert env Ireturn loc_res [||] end | _ -> Misc.fatal_error "Selection.emit_tail" end | Csequence(e1, e2) -> begin match self#emit_expr env e1 with None -> () | Some _ -> self#emit_tail env e2 end | Cifthenelse(econd, _ifso_dbg, eif, _ifnot_dbg, eelse, _dbg) -> let (cond, earg) = self#select_condition econd in begin match self#emit_expr env earg with None -> () | Some rarg -> self#insert env (Iifthenelse(cond, self#emit_tail_sequence env eif, self#emit_tail_sequence env eelse)) rarg [||] end | Cswitch(esel, index, ecases, _dbg) -> begin match self#emit_expr env esel with None -> () | Some rsel -> let cases = Array.map (fun (case, _dbg) -> self#emit_tail_sequence env case) ecases in self#insert env (Iswitch (index, cases)) rsel [||] end | Ccatch(_, [], e1) -> self#emit_tail env e1 | Ccatch(rec_flag, handlers, e1) -> let handlers = List.map (fun (nfail, ids, e2, dbg) -> let rs = List.map (fun (id, typ) -> let r = self#regs_for typ in name_regs id r; r) ids in (nfail, ids, rs, e2, dbg)) handlers in let env = List.fold_left (fun env (nfail, _ids, rs, _e2, _dbg) -> env_add_static_exception nfail rs env) env handlers in let s_body = self#emit_tail_sequence env e1 in let aux (nfail, ids, rs, e2, _dbg) = assert(List.length ids = List.length rs); let new_env = List.fold_left (fun env ((id, _typ),r) -> env_add id r env) env (List.combine ids rs) in nfail, self#emit_tail_sequence new_env e2 in self#insert env (Icatch(rec_flag, List.map aux handlers, s_body)) [||] [||] | Ctrywith(e1, v, e2, _dbg) -> let (opt_r1, s1) = self#emit_sequence env e1 in let rv = self#regs_for typ_val in let s2 = self#emit_tail_sequence (env_add v rv env) e2 in self#insert env (Itrywith(s1#extract, instr_cons (Iop Imove) [|Proc.loc_exn_bucket|] rv s2)) [||] [||]; begin match opt_r1 with None -> () | Some r1 -> let loc = Proc.loc_results (Reg.typv r1) in self#insert_moves env r1 loc; self#insert env Ireturn loc [||] end | Cop _ | Cconst_int _ | Cconst_natint _ | Cconst_float _ | Cconst_symbol _ | Cvar _ | Cassign _ | Ctuple _ | Cexit _ -> self#emit_return env exp method private emit_tail_sequence env exp = let s = {< instr_seq = dummy_instr >} in s#emit_tail env exp; s#extract (* Sequentialization of a function definition *) method emit_fundecl f = current_function_name := f.Cmm.fun_name; let rargs = List.map (fun (id, ty) -> let r = self#regs_for ty in name_regs id r; r) f.Cmm.fun_args in let rarg = Array.concat rargs in let loc_arg = Proc.loc_parameters (Reg.typv rarg) in let env = List.fold_right2 (fun (id, _ty) r env -> env_add id r env) f.Cmm.fun_args rargs env_empty in self#insert_moves env loc_arg rarg; self#emit_tail env f.Cmm.fun_body; let body = self#extract in instr_iter (fun instr -> self#mark_instr instr.Mach.desc) body; { fun_name = f.Cmm.fun_name; fun_args = loc_arg; fun_body = body; fun_codegen_options = f.Cmm.fun_codegen_options; fun_dbg = f.Cmm.fun_dbg; fun_num_stack_slots = Array.make Proc.num_register_classes 0; fun_contains_calls = !contains_calls; } end let reset () = current_function_name := ""